International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645

VVon Neumann Entropy in Quantum Computation and Sine qua
non Relativistic Parameters- a Gesellschaft-Gemeinschaft Model

'Dr. K. N. Prasanna Kumar, 2Prof. B. S. Kiranagi, * Prof. C. S. Bagewadi

YPost doctoral researcher, Dr KNP Kumar has three PhD’s, one each in Mathematics, Economics and Political science
and a D.Litt. in Political Science, Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India
2UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India
*Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu university,
Shankarghatta, Shimoga district, Karnataka, India

ABSTRACT: Von Neumann Entropy and computational complexity theoryis a branch of thetheory of
computation in theoretical computer science and mathematics that focuses on classifying computational problems according
to their inherent difficulty, and relating those classes to each other. In this context, a computational problem is understood to
be a task that is in principle amenable to being solved by a computer (which basically means that the problem can be stated
by a set of mathematical instructions). Informally, a computational problem consists of problem instances and solutions
to these problem instances. For example, primality testing is the problem of determining whether a given number is prime or
not. The instances of this problem are natural numbers, and the solution to an instance is yes or no based on whether the
number is prime or not.A problem is regarded as inherently difficult if its solution requires significant resources, whatever
the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these
problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity
measures are also used, such as the amount of communication (used in communication complexity), the number of gatesin a
circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of
computational complexity theory is to determine the practical limits on what computers can _and cannot do. Closely
related fields in_theoretical computer science are analysis_of algorithms and computability theory. A key distinction
between analysis of algorithms and computational complexity theory is that the former is devoted to analyzing the amount of
resources needed by a particular algorithm to solve a problem, whereas the latter asks a more general question about all
possible algorithms that could be used to solve the same problem. More precisely, it tries to classify problems that can or
cannot be solved with appropriately restricted resources. In turn, imposing restrictions on the available resources is what
distinguishes computational complexity from computability theory: the latter theory asks what kind of problems can, in
principle, be solved algorithmically. Low-energy excitations of one-dimensional spin-orbital models which consist of spin
waves, orbital waves, and joint spin-orbital excitations. Among the latter we identify strongly entangled spin-orbital bound
states which appear as peaks in the von Neumann entropy (VNE) spectral function introduced in this work. The strong
entanglement of bound states is manifested by a universal logarithmic scaling of the vNE with system size, while the VNE of
other spin-orbital excitations saturates. We suggest that spin-orbital entanglement can be experimentally explored by the
measurement of the dynamical spin-orbital correlations using resonant inelastic x-ray scattering, where strong spin-orbit
coupling associated with the core hole plays a role. Distinguish ability of States and von Neumann Entropy have been
studied by Richard Jozsa, Juergen Schlienz.Consider an ensemble of pure quantum states |\psi_j>, j=1,...,n taken with
prior probabilities p_j respectively. It has been shown that it is possible to increase all of the pair wise overlaps
[<\psi_j|\psi_j>| i.e. make each constituent pair of the states more parallel (while keeping the prior probabilities the same),
in such a way that the von Neumann entropy S is increased, and dually, make all pairs more orthogonal while decreasing S.
This phenomenon cannot occur for ensembles in two dimensions but that it is a feature of almost all ensembles of three
states in three dimensions. It is known that the von Neumann entropy characterizes the classical and quantum information
capacities of the ensemble and we argue that information capacity in turn, is a manifestation of the distinguish ability of the
signal states. Hence our result shows that the notion of distinguish ability within an ensemble is a global property that
cannot be reduced to considering distinguish ability of each constituent pair of states.

Key words: Von Neumann entropy, Quantum computation, Governing equations
Introduction

Von Neumann entropy

In quantum statistical mechanics, von Neumann entropy, named after John von Neumann, is the extension of
classical entropy concepts to the field of quantum mechanics. John von Neumann rigorously established the mathematical
framework for quantum mechanics in his work Mathematische Grundlagen der Quantenmechanik In it, he provided a theory
of measurement, where the usual notion of wave-function collapse is described as an irreversible process (the so-called von
Neumann or projective measurement).

The density matrix was introduced, with different motivations, by von Neumann and by Lev Landau. The motivation that
inspired Landau was the impossibility of describing a subsystem of a composite quantum system by a state vector. On the
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other hand, von Neumann introduced the density matrix in order to develop both quantum statistical mechanics and a theory
of quantum measurements. The density matrix formalism was developed to extend the tools of classical statistical mechanics
to the quantum domain. In the classical framework, we compute the partition function of the system in order to evaluate all
possible thermodynamic quantities. Von Neumann introduced the density matrix in the context of states and operators in a
Hilbert space. The knowledge of the statistical density matrix operator would allow us to compute all average quantities in a
conceptually similar, but mathematically different way. Let us suppose we have a set of wave functions |¥ ) which depend
parametrically on a set of quantum numbers#+1, 722, ..., 7=+ The natural variable which we have is the amplitude with
which a particular wavefunction of the basic set participates in the actual wavefunction of the system. Let us denote the
square of this amplitude by #{#21.72=. .... 722 The goal is to turn this quantity p into the classical density function in
phase space. We have to verify thatp goes over into the density function in the classical limit, and that it
hasergodic properties. After checking that 2( 721, 722, ..., 72 ) is a constant of motion, an ergodic assumption for the
probabilities # (721, v2=, ..., 72~ ) makes p a function of the energy only .

After this procedure, one finally arrives at the density matrix formalism when seeking a form where w2 (721, 722, ..., v2nr)
is invariant with respect to the representation used. In the form it is written, it will only yield the correct expectation values
for quantities which are diagonal with respect to the quantum numbers+z1 , 722, ---, 72

Expectation values of operators which are not diagonal involve the phases of the quantum amplitudes. Suppose we encode
the quantum numbers 721, 7t2, -.., 7257 into the single index ¥ or . Then our wave function has the form

| Ty = Zﬂm‘ [ 2l -

The expectatiton value of an operator = which is not diagonal in these wave functions, so

LB Za a; {E| B .
The role, WhICh was originally reserved for the quantities, |ez: | is thus taken over by the density matrix of the system S.

4

Fleliy = a;al.
Therefore { H» readsas L &5 = Trip B).

The invariance of the above term is described by matrix theory. A mathematical framework was described where the
expectation valueﬂof guantum operators, as described by matrices, is obtained by taking the trace of the product of the
density operator /7and an operator 5 (Hilbert scalar product between operators). The matrix formalism here is in the
statistical mechanics framework, although it applies as well for finite quantum systems, which is usually the case, where the
state of the system cannot be described by a pure state, but as a statistical operator P of the above form. Mathematically, Pis
a positive, semi definite Hermitian matrix with unit trace

Given the density matrix p, von Neumann defined the entropy as = (=) — —'L'r(olng),

Which is a proper extension of the Gibbs entropy (up to a factor ) and the Shannon entropy to the quantum case. To
compute S(p) it is convenient (see logarithm of a matrix) to compute the Eigen decomposition of ©~ — =— 7+ 172 <1
The von Neumann entropy is then given by

SCpY — — S aps o vrse
a

Since, for a pure state, the density matrix is idempotent, p=p2, the entropy S(p) for it vanishes. Thus, if the system is finite
(finite dimensional matrix representation), the entropy (p) quantifies the departure of the system from a pure state. In other
words, it codifies the degree of mixing of the state describing a given finite system. Measurement decohere a quantum
system into something noninterfering and ostensibly classical; so, e.g., the vanishing entropy of a pure state |¥) =
(|O)+|1))/\/2, corresponding to a density matrix

1
LTz 1/ increases to S=In 2 =0.69 for the measurement outcome mixture

[n)
Tz (D 1) As the quantum interference information is erased.

Properties

Some properties of the von Neumann entropy:

S(p) is only zero for pure states.

S (p) is maximal and equal to 1 v for a maximally mixed state, m being the dimension of the Hilbert space.

S (p) is invariant under changes in the basis of P, that is, S (=) = S(& 7~z "), with U a unitary transformation.

S (p) isconcave, thatis, given a collection of positive numbers A: which sum to unity (33:A: = 1) and density
operators #:, we have
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S(2Zxp) = 2o S

S (p) is additive for independent systems. Given two density matrices #*.a . /= describing independent systems A and B,
we have S{pma & pr) — S{pa) + Sipe)

S(p) strongly sub additive for any three systems A, B, and C:

This automatically means that S(p) is sub additive:

S(pac)+ = S(pa) + Sipc)-

Below, the concept of subadditivity is discussed, followed by its generalization to strong Subadditivity.

Subadditivity
If .4, 2= arethe reduced density matrices of the general state /2.4 =, then
| S{ma) — Sips)] = S(par) = S(pa) + Sip=)-

This right hand inequality is known as subadditivity. The two inequalities together are sometimes known as the triangle
inequality. They were proved in 1970 by Huzihiro Araki andElliott H. Lieb While in Shannon's theory the entropy of a
composite system can never be lower than the entropy of any of its parts, in quantum theory this is not the case, i.e., it is
possible that S (p.a=) = Owhile S(p.a) = Oand S{pe) = 0O,

Intuitively, this can be understood as follows: In guantum mechanics, the entropy of the joint system can be less than the
sum of the entropy of its components because the components may be entangled. For instance, the Bell state of two spin-
1/2's, |+ = | TL» -+ | LT3, isa pure state with zero entropy, but each spin has maximum entropy when considered
individually. The entropy in one spin can be "cancelled" by being correlated with the entropy of the other. The left-hand
inequality can be roughly interpreted as saying that entropy can only be canceled by an equal amount of entropy.

If system _4 and system = have different amounts of entropy, the lesser can only partially cancel the greater, and some
entropy must be left over. Likewise, the right-hand inequality can be interpreted as saying that the entropy of a composite
system is maximized when its components are uncorrelated, in which case the total entropy is just a sum of the sub-
entropies. This may be more intuitive in the phase space, instead of Hilbert space, representation, where the Von Neumann
entropy amounts to minus the expected value of the =-logarithm of the Wigner function up to an offset shift.

Strong Subadditivity

The von Neumann entropy is also strongly sub additive. Given three Hilbert spaces, -4, &, <,

S(papc) + Slpe) = S(pag) + Sipsc).

This is a more difficult theorem and was proved in 1973 by Elliott H. Lieb and Mary Beth Ruskai using a matrix inequality
of Elliott H. Lieb proved in 1973. By using the proof technique that establishes the left side of the triangle inequality above,
one can show that the strong subadditivity inequality is equivalent to the following inequality.

S(pa) + S(pc) = S(par) + Slpsc)

When 2.4 i, etc. are the reduced density matrices of a density matrix #.4 =<. If we apply ordinary subadditivity to the left
side of this inequality, and consider all permutations of -1, &, <, we obtain the triangle inequality for £.14 =< : Each of
the three numbers S'(2.as), S(prc), S(P.ac)is less than or equal to the sum of the other two.

Uses

The von Neumann entropy is being extensively used in different forms (conditional entropies, relative entropies, etc.) in the
framework of quantum information theory. Entanglement measures are based upon some quantity directly related to the von
Neumann entropy. However, there have appeared in the literature several papers dealing with the possible inadequacy of
the Shannon information measure, and consequently of the von Neumann entropy as an appropriate quantum generalization
of Shannon entropy. The main argument is that in classical measurement the Shannon information measure is a natural
measure of our ignorance about the properties of a system, whose existence is independent of measurement.

Conversely, quantum measurement cannot be claimed to reveal the properties of a system that existed before the
measurement was made. This controversy has encouraged some authors to introduce the non-additivity property of Tsallis
entropy (a generalization of the standard Boltzmann-Gibbs entropy) as the main reason for recovering a true quantal
information measure in the quantum context, claiming that non-local correlations ought to be described because of the
particularity of Tsallis entropy.

THE SYSTEM IN QUESTION IS:

VVon Neumann Entropy And Quantum Entanglement

Velocity Field Of The Particle And Wave Function

Matter Presence In Abundance And Break Down Of Parity Conservation

Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms
Decoherence And Computational Complexity

Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits
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VON NEUMANN ENTROPY AND QUANTUM ENTANGLEMENT: MODULE ONE
NOTATION :

Gy5 : Category One Of Quantum Entanglement
Gy4 : Category Two Of Quantum Entanglement
G5 : Category Three Of Quantum Entanglement
T;5 : Category One Of Von Neumann Entropy
Ty, : Category Two Of Von Neumann Entropy
Ty5 : Category Three Of Von Neumann Entropy

WAVE FUNCTIONS AND VELOCITY FIELD OF THE PARTICLES: MODULE TWO
Gy : Category One Of Velocity Field Of The Particles

Gy, : Category Two Of The Velocity Field Of The Particles

G,g : Category Three Of The Velocity Field Of The Particles

Ty : Category One Of Wave Functions Concomitant To The Velocity Fields

T;, :Category Two Of Wave Functions Corresponding To Category Two Of Velocity Field

T, : Category Three Of Wave Functions-

BREAK DOWN OF PARITY CONSERVATION AND ABUNDANCE OF MATTER PRESCENCE: MODULE
THREE:

G, : Category One Of Systems Where There Is Break Down Of Parity Conservation
G, : Category Two Of Systems Where There Is Break Down In Parity Conservation
G,, . Category Three Of Systems Where There Is Break Down Of Parity Conservation
Ty, : Category Three Of Systems Where There Is Break Down Of Parity Conservation
T,; : Category One Of Systems Where There Is Abundance Of Matter

T,, : Category Two Of Systems Where There Is Abundance Of Matter

G,, : Category Three Of Systems Where There Is Abundance Of Matter

EFFICIENCY OF QUANTUM ALGORITHMS AND DISSIPATION IN QUANTUM COMPUTATION MODULE
NUMBERED FOUR:

G,s : Category Two Of Efficiency Of Quantum Algorithms

G, : Category Three Of efficiency Of Quantum Algorithms

G,, : Category One Of Efficiency Of Quantum Algorithms

T,, : Category Three Of Dissipation In Quantum Computation

T,s : Category One Of Systems With Efficiency In Quantum Algorithm

T, : Category Two Of Systems With Quantum Algorithm Of Efficiency (Different From Category One)

COMPUTATIONAL COMPLEXITY AND DECOHERENCE MODULE NUMBERED FIVE
G,g : Category One Of Computational Complexity

G,q :Category Two Of Computational Complexity

G5, : Category Three Of Computational Complexity

T,g : Category One Of Decoherence

T,q : Category Two Of Decoherence

Ty, : Category Three Of Decoherence

DIFFERENT POSSSIBLE INPUTS (QUBITS) AND QUANTUM SUPERPOSITION OF OUTPUTS MODULE
NUMBERED SIX

G5, . Category One Of Different Possible Qubits Inputs

G55 : Category Two Of Different Possible Qubits Inputs

G;, : Category Three Of Different Possible Qubits Inputs

T,, : Category One Of Coherent Superposition Of Outputs

T4 : Category Two Of Coherent Superposition Of Outputs

Ty, : Category Three Of Coherent Superposition Of Outputs

ACCENTUATION COEFFCIENTS OF THE HOLISTIC SYSTEM

Von Neumann Entropy And Quantum Entanglement

Velocity Field Of The Particle And Wave Function

Matter Presence In Abundance And Break Down Of Parity Conservation

Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms
Decoherence And Computational Complexity

Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits
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(a13)(1), (a14)(1), ((115)(1). (b13)(1). (b14)(1). (b15)(1) ((116)(2). (a17)(2), (‘118)(2)
(b16)(2)’ (b17)(2), (b18)(2): (azo)(3). (a21)(3), (azz)(3) , (bzo)(3). (b21)(3), (bzz)(3)
(a24)(4), (a25)(4), ((126)(4). (b24)(4). (bzs)(4). (b26)(4): (bza)(s). (b29)(5), (b30)(5),
(azs)(s), (a29)(5), ((130)(5). (a32)(6). (a33)(6). ((134)(6). (bsz)((’). (b33)(6), (b34)(6)

DISSIPATION COEFFCIENTS:

, , N ¢) Iy . , , , . . . .
(a13)(1), (a14)(1), (als) ’ (b13)(1). (b14)(1); (b15) , (‘116)(2); (‘117)(2); (318)(2)' (bm)(z); (b17)(2); (b18)(2)
, (aéo)(S), (aé1)(3), (aéz)(g). (béo)(g). (bé1)(3); (béz)e)

@)@, (a35) ", @)@, (b2)®, (bs) ™, (B30, (B3), (B39), (B3) (a3), (a30)®, (a3)®
(aéz)(@, (aé3)(6), (aé4)(6). (béz)%). (bég)(()); (bé4)(6)

GOVERNING EQUATIONS:OF THE SYSTEM VONNEUMANN ENTROPY AND QUANTUM
ENTANGLEMENT
The differential system of this model is now -

d . p

613 = (a;3) MGy — [(a13)(1) + (a13)(1)(T14,t)]G13 -
d . P

614 = (a10)MGy3 — [(a14)(1) + (a1) P (T, t)]G14 -
dG N Y PN Y

22 = (als)( )G14 [(a15) + (a15) (T14't)] Gis -
d . p

1= (b13) VT = [(b13)D = (b)) DG, O]Ty -
i . P

=2 (b14)( )T13 [(b14)(1) - (b14)(1)(G, t)]T14 -
dT EN(¢) PN Y]

— = (bys) VT, — [(bls) —(bis) (G, t)] Ti5 -

+(a13)( )(Ty4,t) = First augmentation factor -
—(b13)M(G,t) = First detritions factor -

@®

GOVERNING EQUATIONS OF THE SYSTEM VELOCITY FIELD OF THE PARTICLE AND WAVE
FUNCTION:
The differential system of this model is now -

dG . p
— = (a,6) @G5 — [(am)(z) + (a1)@(Ty7, t)]Gl6 -
& . p
—L = (a;7) @Gy — [(a17)(2) + (a17)(2)(T17,t)]G17 -
dGls

= (a15) P67 — [(a1)@ + (aig) P (Ty7,0)|Gyg -
‘”16 = (1) PTy; — [(016)® = (b1) D ((Gyo), )] T -
‘”” = (b)) @Tyg — [(01)@ = (bi)P((G1o),t)] Ty -

dTlS (bls)(z)Tﬂ [(bis)(z) - (bis)(Z)((Gw);t)]Tls -
+(a16)(2)(T17,t) = First augmentation factor -
—(b16)@((Gye),t) = First detritions factor -

GOVERNING EQUATIONS:OF BREAK DOWN OF PARITY CONSERVATION AND MATTER ABUNDANCE:
The differential system of this model is now -

4G , )
i = (az0) PGy — [(a20)® + (az0) P (Tyy, )]Gy -
e , )

i = (a31)® Gy — [(a3)® + (a3) P (Ty1, )]Gy -
dGzz

= (a) PGy — [(a32)® + (a3) P (Tyy, )]Gy -
dTZO = (b)) Ty — [(béo)(g) — (b30)® (Gy3, t)]Tzo -
dTZl = (b)) Ty — [(bél)(g) — (b3))®(Gy3, t)]T21 -

dT ’ "

22 = (byy))OTy; — [(h32)® = (b2) P (Go3, O|Tyy -
+(a20)( )(T,,,t) = First augmentation factor -
—(by)®(Gys,t) = First detritions factor -

GOVERNING EQUATIONS:OF DISSIPATION IN QUANTUM COMPUTATION AND EFFICIENCY OF
QUANTUM ALGORITHMS:
The differential system of this model is now -

46 , )
T2 = (a0) P65 — [(@20)® + (a5) P (Tas, )] 6oy -
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dG +\(4) PN
i = (az5)™Gyy — [(azs) + (ajs (T25't)] Gys -
i , ,
=2 = (ay6) W Gy5 — [(a26)™ + (a36) P (Tys, )] Gag -
dT24

(b24)(4) T25

dT
—2 (b26)(4)T25

+(a24)( )(T,s,t) = First augmentation factor-
—(b3)®((Gyy),t) = First detritions factor -
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[(B24)® = (b3) @ ((Gy7), t) | T4 -
25 = (bys) T — [(b35) ™ = (35) ™ (62, 1)] s -
[(B26)® — (b6)®((Gy7), )| Tys -

ISSN: 2249-6645

GOVERNING EQUATIONS:OF THE SYSTEM DECOHERENCE AND COMPUTATIONAL COMPLEXITY:

The differential system of this model is now -

dczg = (azg)® G,y — [(aég)(s) + (agg)(s)(ng,t)]ng -
dczg = (a29)®Gpg — [(aé‘;)(s) + (az0)® (Tyg, t)]G29 -
d630 = (a30)®G9 — [(a30)® + (a30)® (T, )] G35 -
”28 = (b2e)®Tyo — [(b3)® — (b3)® ((G21), ) T -
”” = (b39)Ts = [(39)® = (b30)® ((631), ) Ty -
“‘— = (b30) Ty = [(B30) = b30)® ((G31), 6)]Tso -

+(a28)( )(Ty,t) = First augmentation factor -
—(b5)®((Gs1),t) = First detritions factor -

GOVERNING EQUATIONS:COHERENT SUPERPOSITION OF OUTPUTS AND DIFFERENT POSSIBILITIES

OF QUBIT INPUTS
The differential system of this model is now -

d632 = (a3) @G35 — [(a3,)© + (a3,)© (Ts3, )]G, -
= (a33) @G, — [(a33)© + (a33)© (Ts3,1)|Gs3 -
d634 = (a3,)® G35 — [(a§4)(6) + (a34)® (Ty3, t)]634 -
‘”32 = (b32) T35 = [(B3)® = (b3)® ((Gss), )] Tz -
‘”33 = (bs3)© Tz, — [(b3)® — (b3) @ ((635), )] T35 -
‘”34 = (b3)©T53 — [(03)® — (b3)@((635), )] T4 -

+(a32)(6) (T33,t) = First augmentation factor -
—(b3,)®((G35),t) = First detritions factor -

CONCATENATED GOVERNING SYSTEMS OF THE HOLISTIC GLOBAL SYSTEM:

Q) Von Neumann Entropy And Quantum Entanglement
2 Velocity Field Of The Particle And Wave Function
3) Matter Presence In Abundance And Break Down Of Parity Conservation

4) Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms

(5) Decoherence And Computational Complexity

Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of = Qubits-

(@13) D[ +(a)) D (T, O] [+(a]) @2 (17, ) || +(a30) B3 (T4, )|

B)||+(azg) 5555 (Tyg, )] [ +(a3) @058 (T35, 1) |

(@) P +(@/) D (T, O)|[+(a] )@ (17, ) || +(a3) B (T4, )|

(Tys, £)|[+(a30) O555) (Tyo, ) ||+ (a33) 658 (135, 1)

[ N Y PN &Y m m
(a15) ' +(ajs) ' (Ty4, t) |+(a18)(2'2')(T17,t)“+(a22)(3'3')(T21,t)|

d613 _ ( €))
a;3)PGyy — ~
| +(aza) 44 (Tys,
d014 €b)
(a14) Gl3 v N (4,4,4,4)
I +(a25)
dci = (a15)( )614
] | +(age) 44 (Tys,

t) ||+(a§0)(5'5'5'5') (T, ) | | +(az,)©008) (Ty, t)|

Where | (a13) D (Tyy, f)| ;| (a1) D (Tyy, t) | )

15

vy . . —_
(015)( )(TM, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2'2') (Ty7, t)| , |+(a{7)(2'2') (Ty7, t)l , |+(a{8)(2'2') (Ty7, t)| are second augmentation coefficient for category 1, 2 and

3
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|+(a§0)(3r3r) (Tyy, t)|,|+(a§1)(3'3') (Ty1, t)|,|+(a§2)(3'3') (Ty1, t)| are third augmentation coefficient for category 1, 2 and 3

|+ (@) @44 (Tys, O |, [+(ajs (i)
2and 3

|+(a" )(5555)(T29,t)| |+(a ) 555 (T, t)| |+(a )(5'5'5'5')(T29,t)| are fifth augmentation coefficient for category 1, 2
and 3

|+(a§2)(6'6'6'6') (Ts3,1) | |+(a§3)(6'6'6'69 (Ts3, t)| ,|+(a§4)(6'6'6'6') (Ts3, t)| are sixth augmentation coefficient for category 1, 2
and 3-

(Tys, t) ,|+(a§6)(4'4'4'4') (Tys, t)| are fourth augmentation coefficient for category 1,

a0 i) =01 V6, D] [~ (b1 #*) (Gro, D] |- (b30) > (G2, 1)
= (by3) VT, - - 7 Tys -
13 u | —(b24)(4'4'4'4')(627; t) | | _(bzg)(s,s,s,s,) (G31; t) | | —(b32)(6’6’6’6‘) (035; t) | 3
i o 1) V=BV 6, D] [~ i) PP (610, O] |- (03093 (G55, 0)|
(b14) T13 v \(4,4,4,4) -~ m T14' -
[|=(b3s) (Gaz, || = (B30) 5555 (G, O)|| = (B33) @00 (G35, 1) |
NG NG - p 1
dT15 = (by5)MT (bis) |=(b5) (GO |_(b18)(2'2')(619't)||—(b22)(3’3’)(623»t)| T
15 14 — 15 ~
[ =B344 (Ga7, )] | = (B30) 555 (G31, £)]| = (B3) @45 (s, £)] |

Where | —(b3)W(G,t) | ,|—(b1"4)(1)(G, t)|, —(bi’s)(l)(G, t)|are first detrition coefficients for category 1, 2 and 3
|—(b{6)(2'2') (Gyo, ) | ,|—(b1"7)(2'2') (Gyo, t)|,|—(b{8)(2'2') (Gyo, t)l are second detrition coefficients for category 1, 2 and 3
|—(b§0)(3'3') (Gys, t)| ,|—(b§1)(3'3') (Gys, t)|,|—(b§2)(3'3') (Gys, t)lare third detrition coefficients for category 1, 2 and 3

|—(b§4)(4'4'4'4')(G27,t)|, _(bé's)(4'4'4'4')(G27,t) ,|—(b§6)(4'4'4'4')((;27,t)|are fourth detrition coefficients for category 1, 2
and 3

|—(b§8)(5'5'5'5')(G31, t)| ,|—(b§9)(5'5'5'5') (Gsy, t)| ,|—(b§0)(5'5'5'5') (Gs1,t) | are fifth detrition coefficients for category 1, 2 and
3

|—(b§2)(6'6'6'6')(G35, t)| , | —(b33)©000) (G, t)| , |—(b§4)(6'6'6'6‘) (Gss,t) | are sixth detrition coefficients for category 1, 2 and
(a16) @[ +(a1) @ (Ty7, O|[+(ar) 1 (T, || +(a50) 3D (T, D) |

dGlﬁ _ 2)
3 = (a4 6)( Gi7 —
[+ (@5) @49 (Tys, ) || +(a35) 55555 (T, ) || +(azy) @559 (T, )|
611 _ (q,,)0 (@) @[+ (ai) @ (T17, ) ||+ ) (T, )| +(a3) O3 (T, 1)
= (a
17 167 0 (44 444) " ~(5,555,5) " ~(6,6,6,6,6)
I +(azs) (T35, 8) || +(az9) (Tyo, ©) || +(as3) (T3, 1)
[ . - v \(L1) -
dGls = (0,)?6 (a18)(2)|+(a18)(2)(T17:t)l +(ajs) Ty 1) |+(a22)(3'3'3)(T21,t)| c
18 17 — 18 ©
| [+(az0) 9 (Tys, )| |+ (a50) ®555 (Tyo, )| +(a5e) ©658) (T3, t)

Where | +(ai6) P (T, 1) | ) |+(a{7)(2)(T17, t)|,|+(a{8)(2)(T17, t) | are first augmentation coefficients for category 1, 2 and 3

" ,, " 1,1, . ..
|+(a13)(1'1') (Ty4, t)| , |+(a14)(1'1') (Ty4, t)| , +(a15)( )(T14, t)| are second augmentation coefficient for category 1, 2 and 3

|+(a§0)(3'3'3)(T21,t)|,|+(a§1)(3'3'3)(T21, t)|,|+(a£2)(3'3'3)(Tz1,t)| are third augmentation coefficient for category 1, 2 and
3

"N 444,48 o\ @AAaD) N4 44,4) - o
|+(a24) 4444 (Tys, t) | +(az5) (Tys,t) ,|+(a26) S (T25,t)| are fourth augmentation coefficient for category
1,2and 3
|+(a§8)(5'5'5'5'5)(T29,t) | |+(a§9)(5'5'5'5'5)(T29, t)l ,|+(a§0)(5'5'5'5'5)(T29, t)| are fifth augmentation coefficient for category
1,2and 3
|+(a§2)(6'6'6'6'6) (Ts3, t)|, |+(a§3)(6'6'6'6'6) (Ty3, t)l , |+(a§4)(6'6'6'6'6) (Ty3, t)| are sixth augmentation coefficient for category
1,2and 3 -

M _ ()T, — (1) [~ (b1)® (G19,O)] [~ (01) T (G, O] |- (b30) 33 (623, 0)] .
16) 7Ty — 16 -
(=) 444 (G, O] [~ (00) 55559 (G, ||~ (b3) 0% (G35, D |
dT17 (b17)(2)|—(b17)(2)(619:t)| |—(b14)(11)(G t)“ (b21)B33)(G,3, t)|
= Bi))® T = o\ (44444) " 355555 " (66,666 fi7 -
[ [—(b2s) (Gy7,8) |—(b29)( o )(631:t)||—(b33)( 00 )(G3sit)|_
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, m » £(1,1) "
= (big) T, (b18)(2)|—(b18)(2)(G19.t)| —(bis) (G0 |‘(b22)(3'3'3')(623;t)| T
18 17 — 18 ~
[= (D7) #4449 (Go7, )| [ = (b3)E5559) (Gay, || = (05,0009 (G35, 1) |

where| —(b19) @ (Gy, t)| ,|—(b{7)(2)(G19. t)| ,|—(b{8)(2)(619, t)| are first detrition coefficients for category 1, 2 and 3

d718

|—(b13)(1'1') (G,v) | ,|—(bf4)(1'1') (G, t)| , —(b{s)(l'l')(G, t)| are second detrition coefficients for category 1,2 and 3
|—(b§0)(3'3'3') (Gy3, t)| | —(by1)B33) (Gys, t)|,|—(b§2)(3'3'3') (G,3, t)l are third detrition coefficients for category 1,2 and 3

|—(b§ 4D (G 1) | _(bgs)(4'4'4'4'4) (Gyy,t) ,|—(b§6)(4-4-4'4-4) (G, t)| are fourth detrition coefficients for category 1,2
and 3

|—(b§8)(5'5'5'5'5)(631, t)| ,|—(b§9)(5'5'5'5'5)(G31,t)| ,|—(b§0)(5-5-5-5-5)(G31,t)| are fifth detrition coefficients for category 1,2
and 3

|—(b§2)(6'6'6'6'6) (Gss, ) |,|—(b§3)(6'6'6'6'6) (Gss, t)| , |—(b§4)(6'6'6'6'6) (Gss, t)| are sixth detrition coefficients for category 1,2
and 3 -

oo “ (@50) @[ +(a30)® (T, O] +(a16) 42 (T17, )| +(a13) ) (T, 1)
a G ” - - G
= (az) Gy — |+(a24)(4,4,4,4,4,4)(T25't)||+(a28)(5,5,5,5,5,5)(T29't)||+(a32)(6,6,6,6,6,6)(7~33,t)| 20
s o (@)@ +(az0)® (T, ][+ (ai) @22 (T3, )| +(a1) W (T4, 8)|
= (82160 = (44 44440) " N(555555 " (66,6666 Gor -
+(ajs) (Tzs,t) |+(a29)( ””” )(ng,t)||+(a33)( “““ )(T33»t)|
[ , - - v (1,1,1) 1
d[;zz ~ (a,,)P6 (azz)(3)|+(a22)(3)(T21; t)||+(a18)(2’2’2)(T17. t)| +(a15) (Ty4, t) G
az, 21 — 22 °
[+ Caze) #4444 (T, O] [+(a30) S55559) (T, 0) || +(a34) 65500 (T35, D)

|+(a§0)(3)(T21, t)|, |+(a§1)(3)(T21, t) | |+(a§2)(3)(T21, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2'2'2)(T17,t)|,|+(a{7)(2'2'2)(T17, t)| , |+(a{8)(2'2'2)(7"17,t)| are second augmentation coefficients for category 1, 2
and 3

" n " 1,1,1, . . . .
|+(a13)(1'1'1')(T14,t)|,|+(a14)(1'1'1')(T14,t)|, +(a15)( )(T14,t:) are third augmentation coefficients for category 1, 2
and 3

[+ (az) 444449 (15, D) [ +(azs)
category 1, 2 and 3
|+(a§8)(5'5'5'5'5'5)(T29, t) |,|+(a§9)(5'5'5'5'5'5)(T29, t)|,|+(a§0)(5'5'5'5'5'5)(T29, t)| are fifth augmentation coefficients for
category 1, 2 and 3

|+(a§2)(6'6'6'6'6'6) (Ty3, ) | ) | +(az3)®00000) (T, 1) |,|+(a§4)(6'6'6'6'6'6) (T3, t)| are sixth augmentation coefficients for
category 1, 2and 3 -

(44,4444

(Tys, t) ,|+(a§6)(4'4'4'4'4'4)(Tzs,t)| are fourth augmentation coefficients for

T _ ()T (b30)®[=(030)® (G3, D] |- (1) 222 (610, V)| |- (b33) 1 (G, )| .

- 20 21— 20 -
|—(b a6, t)“—(b ) 555555 (G, t)“—(b3 )(6:66.66.6) (G, t)|

dT21 @ (b21)(3)|—(b21)(3)(G23;t)“ (b17) %23 (Gy, t)“ (b1) (G, t)l

2 = 020) Ty — vy (44,4,4,4,4) o B T -
I —(b2s) (G7, 1) |—(b29)(5‘5‘5‘5‘5‘5)(G31' t)“ —(b33)©£0000) (Gy, t)| ]
[ , - p PNCEED) 1

dez = (b,))OT (bzz)(3)|—(b22)(3)(523' t)ll— (b18)(2'2'2)(Gl9:t)| - (bis) G, 1) T

22 21— 22"

| [=(b30) #4440 (Gyy, D] [~(b30) 555559 (G, D] [~ (B5) 55559 (G5, D)

|—(b§0)(3)(623, t) | | —(by1) (6,3, t)| ,|—(b£2)(3)(623, t)| are first detrition coefficients for category 1, 2 and 3
|—(b{6)(2'2'2)(619, t)| , |—(b1”7)(2'2'2)(019, t)l , |—(b1”8)(2'2'2)(619, t)| are second detrition coefficients for category 1, 2 and 3

|—(b'1'3)(1'1'1') @, t)| ,|—(b'1'4)(1'1'1.) (@, t)| , —(b'l'S)(l’l’l')(G, t)| are third detrition coefficients for category 1,2 and 3

) " 4,4,4,4,4,4 " .- _
|—(b24)(4r4r4'4'4r4)(627,t) | —(bZS)( )(627,t) ,|—(bzé)(4'4'4'4'4'4)(627,t)| are fourth detrition coefficients for category
1,2and 3

|—(bgg)(5'5'5'5'5'5)(631,t) |,|—(bgg)(5'5'5'5'5'5)(631,t)l,|—(bgo)(5'5'5'5'5'5)(631,t)l are fifth detrition coefficients for category
1,2and 3
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|—(b§2)(6'6'6'6'6r6) (Gss,t) || —(by33) 00660 (G, t) |,|—(b§4)(6'6'6'6'6'6) (Gss,t) | are sixth detrition coefficients for category 1,
2and3 -

Qo _ 0 g _ | @) L0 DT, O] +(@30) O (T, D] [ Ha5) (T 0] |
= (a2 25~ 24 -
dt |+(a YLLL(T,, t) ||+(a16)(2 222 (Tyq,t) || +(az) >33 (T,,, t)|
4)
dGys (@,)D6 (azs) +(a25) (Tzs;t) |+(a29)(5’5’)(7‘29;t)||+(as3)(6‘6)(T33;t)| G
dt - 25 24 - - - 25 -
| |+(a14)(1'1'1'1)(T14, t) ||+(a17)(2'2'2'2)(T17, t) || +(ay;) %333 (T, 1) | ]
Gy (a26)@|+(az0) P (Tys, || +(a50) &%) (Tyo, | [+(a5) S (T35, 0)|
ac (a6)Gas - »\(LLLD "N22.2.2) " N(3.3.3.3) 626 -
] +(aj5) (T, 1) |+(a18) o (T17,t)||+(a22)( e (T21't)| ]

7 NG -
Where|(ay,)® (Tys,t)|, (azs)( )(Tzs, )|,](aze) @ (Tys, t)| are first augmentation coef ficients for category 1,2 and 3
|+(a£8)(5'5') (Tys, t)|,|+(a§9)(5'5') (Tys, t)|,|+(a§0)(5'5') (Tyo,t) | are second augmentation coef ficient for category 1,2 and 3

|+(a§2)(6'6') (Ts3, t)|,|+(a§3)(6'6') (Ty3, t)|,|+(a§4)(6'6') (Ts3, t)l are third augmentation coef ficient for category 1,2 and 3

" " " 1,1,1,1 R ..
|+(a13)(1'1'1'1)(T14,t) |,|+(a14)(1'1'1'1)(T14,t) | +(a15)( )(T14, t)| are fourth augmentation coefficients for category 1,

2,and 3

|+(a{6)(2'2'2'2)(T17,t) | |+(a{7)(2'2'2'2)(T17,t) |,|+(a{8)(2'2'2'2)(T17,t)| are fifth augmentation coefficients for category 1,
2,and 3

|+(a§0)(3'3'3'3)(T21, t) | |+(a§1)(3'3'3'3)(T21, t) | |+(a§2)(3'3'3'3)(T21, t)| are sixth augmentation coefficients for category 1,
2,and 3-

ATy, i |©30)P[ 03P G, O] [~ (b36) 5 (G, D] |- (b3) ¢ (G5, D]
dt = (b24) ™5 — IRYCERED) " N(2,2,2,2) " N(3,3,3,3) Tas -
| |_(b13) LLD(G, t)l |_(b16) e (619't)||—(b20) o (623't)| ]
[ \@® ANG) - . ]
des — (b )DT (bzs) _(bzs) (G5, ) |—(b29)(5’5’)(631't)||—(b33)(6‘6‘)(635't)| T
dt = (b2s) T2y = RYCERED) " N(2,2,2,2) "(3,3,33) &
| [ @) DG, 0] |=(bi7) @22 (619, 8) |- (b3) 333 (Gys, )] |
dT26 @ (b26) @) =(b36) M (Go7, )| | = (b3) %) (Gay, 1) ||- (b§4)(6‘6‘)(G35:t)|
ar = (e s \LLLD "N2222) "\(3333) Tas -
—(b15) @,1) |_(b18) e (619;1')“—(1722) o (623.15)' ]

Where | —(by4) P (6,7, 1) |, —(bgs)m (Gy7, ) ,|—(b£6)(4) (Gy7, t)l are first detrition coef ficients for category 1,2 and 3
—(byg) % (G31, )|, | = (b39) O (Gsy, ) |,| = (b30)®)(Gsy, t) | are second detrition coef ficients for category 1,2 and 3
—(b3) 0 (G35, t)|,|—(b33) % (G35, 1) |,|—(b34) %) (G35, t) | are third detrition coef ficients for category 1,2 and 3

[Fb 06, 0] [~ i 06, O] |~ (b1s) " 6. 0)

are fourth detrition coef ficients for category 1,2 and 3

= (bi6) 222 (Gro, || = (b1) 2D (Gyo, D) || =(b15) **P (G0, D) |
are fifth detrition coef ficients for category 1,2 and 3

= B30)®339 Gy, )} |- (38339 (G, D} |- (b3) 6239 (G5, )|
are sixth detrition coef ficients for category 1,2 and 3 -

dGyg (@) PG (azg)(5)|+(a28)(5)(T29,t)||+(a24)(44)(T25,t)||+(a32)(666)(T33 t)| c
= (g 20 ~ 28 "
dt |+(a HALLL(T,, t)||+(a1 )(22222)(7117 t)“+(a )(3:33.33) (T, )|_
dGyy (ay9) Gy — (a29)(5)|+(az9)(5)(T29't)l +(a 25) (TZSIt) |+(a 13) @00 (T3, t)| c
- Gz 28 . = 29 -
| [+@i) O DTy, 0| +ar) #2220 (T, D) || +(a) G233 (T, )|
i (@30) @] +(@30)® (Tyo, D] [ +(az6)4*) (Tys, )] | +(a3) @5 (T35, 1) |
L= (@20) 6y v )@LLLD 22222) (33333) Gz -
dt +(ais) (T, )| [+(azs) (Tiy, )| +(az,) (T, )]

Where | +(azg)® (Tyo, t)| |+(a29)(5)(T29, t)l |+(a30)(5)(T29, t)l are first augmentation coef ficients for category
1,2 and 3
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- NS - . .
And|+(a24)(4'4')(T25,t)|, +(ays ( )(T25,t) ,|+(a26)(4'4')(T25,t)| are second augmentation coef ficient for
category 1,2 and 3
|+(a§2)(6'6'6) (Ty3,t) | ,| +(az3) 0% (Ty3, t) | , | +(a34) 00 (T3, 1) | are third augmentation coef ficient for category
1,2 and 3
| +(ag3) V(T t) |,| +(ay, ) VD (Ty,, t) |, +(a{5)
1,2,and 3
|+(a{6)(2'2'2'2'2)(T17, t) || +(a;,) @222 (T, t) |,|+(a{8)(2-2-2-2-2)(T17, t) | are fifth augmentation coefficients for category
1,2,and 3
|+(a§0)(3'3'3'3'3)(T21, t) |,|+(a§1)(3'3'3'3'3)(T21, t) |,|+(a§2)(3'3'3'3'3)(T21, t)| are sixth augmentation coefficients for category
12,3 -

1,1,1,1,1 " ..
( )(T14,t) are fourth augmentation coefficients for category

dT,g — (b )(S)T (béB)(5)|_(b£8)(5)(G31' t)l |_(b£4)(4’4’) (Gy7, t)”— (béz)(%‘@ (G3s, t)| T
= (b8 29 — - - - 28 -
dt _ | —(by) LI (G, t)l |—(b16)(2'2'2'2'2)(019, t) ||_ (b30) 33333 (G, 1) | _
[ ,, BNCYS) p 1
dTyy (b,) ST — (b29)(5)|—(b29)(5)(631;t)l —(bys) " (Gyy, 1) |—(b33)(6‘6‘6)(035,t)| T
dr - P2 28 _ = - o -
| =i G, 0] [=(b1y) @222 (Gro, )| |- (b3) O34 (G55, 1)
ATy, © (30)@|=(b3) @ Gy, O] [~ (B3) 4+ (G, )] |- (B3) 5D (G5, D)
e (b30) ™Moo = (11111 "N2.2,2.2,2) "1(3.3333) Tao -
| _(b15) G,1) |_(b18) e (619.t)||—(b22) e (623,t)|_

where |— (b35) ™ (Gs1,1) ,|—(b§9)(5)(031, t)| ,|—(b§0)(5)(031, t)l are first detrition coef ficients for category 1,2 and 3

|—(b£4)(4'4') (Gy7, t)|, _(bé's)(4'4') (Gy7, ) ,|—(b£6)(4'4') (Gy7, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§2)(6'6'6) (Gss, t)| ,| —(b33) 0 (G, t)| ,| —(b34) 50 (G5, t)| are third detrition coefficients for category 1,2 and 3

|—(b1”3)(1’1'1'1'1)(G, t) |,|—(b{4)(1'1'1'1,1)((;, t)| , —(bi’s)(l'l'l'l'l')(G, t)| are fourth detrition coefficients for category 1,2, and
3

|—(b1"6)(2'2'2'2'2)(G19,t)|,|—(b{7)(2'2'2'2'2)(619,t)|,|—(bi'g)(Z'Z'Z'Z'Z)(Glg,t)| are fifth detrition coefficients for category 1,2,
and 3

|— (byg) 33333 (6,3, 1) | |— (byy) 33333 (6,3, 1) | |— (byy)B33333)(G,,, t)l are sixth detrition coefficients for category 1,2,
and 3-

A2 _ (0 s - | @) 1) O Ol |Has) 5 Ty, O]+ @) WD T 0] |
de = F @ D@y, O]+ O (0, )] [+H(a@) O30 M, ]|
PO I b TG CIGND) G ) +(az5) ™ (15,0 ..
at [+ (ai) WD (T, B)||+(a1,) G222 (T3, ) || +(a50) B339 (T, £)|

Wi _ o | @0 @0 T, O] +(@30) 459 (T, 0] [+(a20) 44 (T, )| 'G _
R O T el D) EX s el v)

|+(a§2)(6) (T35, t) |,|+(a§3)(6) (Ty3,t) |,|+(a§4)(6) (Ts3, t)l are first augmentation coef ficients for category 1,2 and 3

|+(a£8)(5'5'5)(T29, t) | , | +(a29) > (Ty, t) |,|+(a§0)(5'5'5)(T29, t)l are second augmentation coef ficients
for category 1,2 and 3

| +(ay,) ) (Tys, 1) | | +(azs)
category 1,2 and 3

(444,

(Tys,t) ,|+(a£6)(4'4'4') (Tys, t)l are third augmentation coef ficients for

|+(a{3)(1'1'1'1'1'1)(T14, t) |,|+(a{4)(1'1'1'1'1'1)(T14, t) | +(a{5)(1'1'1'1'1'1)(T14, t)| - are fourth augmentation coefficients

|+(a{6)(2'2'2'2'2'2)(T17, t) |,|+(a{7)(2'2'2'2'2'2)(T17, t) |,|+(a{8)(2'2'2'2'2'2)(T17, t)| - fifth augmentation coefficients

|+(a§0)(3'3'3'3'3'3)(T21,t)|,|+(a£1)(3'3'3'3'3'3)(T21,t)|,|+(a§2)(3'3'3'3'3'3)(T21,t)l sixth augmentation coefficients -
(b32) @[ =(b32)® (G5, ) ||~ (b30) 559 Gy, D] |- (b3) 44 (G, 0|

[ i) 06, 0] [ (1) 222D Gy, O] [~ (b3 T Gy D)]|

dt

(b32)(6) T33 -
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[ , - - vy (4,4,4) 1
dTs; (ba)OT (b33)(6)|—(b33)(6)(635.f)”-(b29)(5'5'5)(631;t)| - (b3s) (Gy7,1) T
dt — \M33 32 7 - — — 33 ~
|1 AV (G, )] |- (b1 22222 (G, £)] |- (b3) O35 (G, 1)
ATy _ 0y (b3)@|=(b3)® (G35, 1) || - (b50) 59 (a1, B)||- (b36)“**) (G, 1))
= (b34)™' T3 — (1,1,1,1,1,1) T4 -
at —(bis) G,1) |_(b18)(2'2'2'2'2'2)(019' t)”‘ (byy)®33333) (G, t)|

|—(bgz)(6)(G35,t)|,|—(b§3)(6)(635,t)| ,|—(b§4)(6)(G35, t)l are first detrition coef ficients for category 1,2 and 3
|—(b£8)(5'5'5)(631, t)| ,| —(by9) %% (G4, t)|,|—(b§0)(5'5'5)(G31, t)l are second detrition coef ficients for category 1,2 and 3

|—(b£4)(4'4'4') (G, t)|, —(bgs)(4'4'4')(627, t) ,|—(b§6)(4'4'4')(G27, t)l are third detrition coef ficients for category 1,2 and 3

|—(bf3)(1'1'1'1'1'1) G,t) |.|—(bf4)(1'1'1'1'1'1) G,1) | —(bl"s)(l'l'l'l'l'l)(G, t)| are fourth detrition coefficients for category 1, 2,
and 3

|—(b{'6)(2'2'2'2'2'2) (Gyo, t)|, |—(b1"7)(2'2'2'2'2'2)(Glg, t) |,|—(bfg)(z'z'z'z'z'”(Glg, t)| are fifth detrition coefficients for category 1,
2,and 3

|— (byg) 333333 (6,3, 1) | |— (byy) 333333 (G,g, 1) ||— (byy) 333333 (G,,, t)| are sixth detrition coefficients for category 1,

2, and 3-
Where we suppose-

® @) @) o0 (6) 7. 6) "7 >0

i,j =13,14,15
(8)  The functions (a;)™, ()™ are positive continuous increasing and bounded.
Definition of (p,))®, (;)®:

(a)"” (o t) < GOD < (Ai)®

1) @D @D < BID < (Bi)®-

. m (1)
© llmTz_Ew)(ai) (Ty4,0) = (p)P
(1
limG—mo(bi) . (G, t) =A (Ti)(l)
Definition of (A3 )M, (B3 )® :
Wherel(A13 YD, (B3 )D, (p)D, (ri)(l)lare positive constants and [i = 13,14,15}
They satisfy Lipschitz condition:
, , . ~ _— €))
[(@)D(Tyy, 1) — (@) DTy, O] < (ki3 YD |Tyy — Tiyle~ 3D Dt
1(6HVG,8) = B)IDVG, )] < (ki3 )D||G — G|~ (1) Pe -

With the Lipschitz condition, we place a restriction on the behavior of functions
(@)D (Tyy, ) and(a;) P (T, t) . (T1,, t) and (Ty4, t) are points belonging to the interval [( ky3 )™, (M3 )P] . Itis to be
noted that (a;) (T, 4, t) is uniformly continuous. In the eventuality of the fact, that if ( #,5 ) = 1 then the function
(@)D (Ty4, t) , the first augmentation coefficient would be absolutely continuous. -
Definition of (M3 )@, (k3 )® :
(D) (M3 )D, (ky3)D, are positive constants
@® _pp®

(M13)® 7 (My3)D <1
Definition of ( P13 )™, (Q43)®:
(E) There exists two constants (P;3 )™ and (Q;3 )™ which together with ( M3)®, (k13)D, (A;3)P  and
(By3)® and the constants (a;)®, (a)®, )D, ()W, (p)®, ()P, i =13,14,15,
satisfy the inequalities
[(@)® +@)® + (Az)D+ (Pi3)® (ki3)P] <1

[ B)D + B)IDP + (B3 )P+ (013)D (ky3)P]<1-

_r
(Mq3)D
1

(My3)M

Where we suppose-

(ai)(Z)’ (alf)(Z)’ (a;)(z), (bi)(z), (bl/)(Z), (blu)(Z) >0, l’] — 16,17,18-

The functions (a;)®, (b;)"® are positive continuous increasing and bounded.-
Definition of (p,))®, (r,)@:-
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(a;,)(Z)(TU, ) < (@)@ < (Aw )(2) -

(1) ? G0 ) s (MDD < BN < (Byg )@ -
. n (2)
llmTz_m(ai)( ) (Ty7,8) = (p)P-
. n (2
hm(;—mo(bi) (A(Gw):t) = ()@ -
Definition of (A )®, (B )P :
Where|(415)@, (Bis )@, )@, ()@ are positive constants and [{ = 16,17,18}
They satisfy Lipschitz condition:-
@)D (Ti7,8) = (@)D (Ti7, O] < (kyg )PITy; — Ty le™(Tie)Pe -
(6)P((619),0) = B)P ((G19), £)1 < (k1 YD (Gro) = (Gro) I e~ i)t -
With the Lipschitz condition, we place a restriction on the behavior of functions (a;)®(Ty;,t) and(a;)®(T;;,t) . (T\7,t)
and (Ty,, t) are points belonging to the interval [( ky5 )@, (M4 )®] . Itis to be noted that (a;)® (Ty,, t) is uniformly
continuous. In the eventuality of the fact, that if ( M;s )@ = 1 then the function (a;)®(Ty;,t) , the SECOND
augmentation coefficient would be absolutely continuous. -
Definition of (M )@, (k)@ :-
(F) (M )P, (k6 )P, are positive constants
@® _mp®
(M16)@ 7 (M) i
Definition of (P53 )®, (03 )P :
There exists two constants ( P4 )@ and ( Q4 )® which together with ( M, )@, (k14 )P, (A,5)Pand ( By )@ and the
constants (a,)®, (a))®, (b)®, (b)?, )P, (1)?P,i=16,17,18,
satisfy the inequalities -
1 ’ A ~ ~
(M) @ [(@)@®+@)P+ (As)P+ (Ps)P (k)P <1-
1 ’ A ~ ~
m[ B)P +(B)P + (Bis)P + (016)P (k)P < 1-
Where we suppose-
© @ @) () e, 6). ()7 >0, ij=202122
The functions (al-")(3), (bi")(3) are positive continuous increasing and bounded.
Definition of (p,))®, (;)®:
NO) .
(al-)( (T, < @)® < (Ag)®
mn (3 , ~
() (G, 0) < (1)@ < (b)Y < (Byy )®-
; n (3
llmTz_}w(ai% ) (Ty1,0) = (p)®
) n (3
llmG—»oo(bi) (Ci23' t) = Eri)(g)
Definition of ( A,y )@, ( By )™ :

Where|(A20 )®, (By )@, ()@, (ri)(3)|are positive constants and [i = 20,21,22}

They satisfy Lipschitz condition:
1(@)® (Ty1, £) = (@)D (Tyy, )] < (kgg )BTy — Ty le~(M20) O
1(b)® (63 t) = ()P (G3, )] < (fegp )P||Goz — G || e~ (M20)Pt -

With the Lipschitz condition, we place a restriction on the behavior of functions (a;)®(Ty;,t) and(a;)® (Ty,t) . (T, t)
And (T, t) are points belonging to the interval [( ko )®, (M4, )®] . Itis to be noted that (a;)® (T4, t) is uniformly
continuous. In the eventuality of the fact, that if ( M,, )® = 1 then the function (a;)®(T;,t) , the THIRD first
augmentation coefficient would be absolutely continuous. -
Definition of (M, )®), (ky )@ :
(H) (M )®, (kyo )@, are positive constants
@® _0®

(M) 7 (M0 )P
There exists two constants There exists two constants (P, )® and (0, )® which together with
(Mg )P, (9 ), (A30)Pand ( By )® and the constants (a,)®, (a)®, ()@, (b)), )P, ()®,i =20,21,22,
satisfy the inequalities
(@)® + (@)@ + (A )® + (Py )P (k)P <1

(BB + (B + (By )P+ (Q2)® (ky)®]<1-

<1-

;[
(Mz9)®

;[
(M20)®
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Where we suppose-

(N @@, (@), (@)®, )@, ()™ (6)¥ >0, i,j=242526

) The functions (alf')m, (b[)m are positive continuous increasing and bounded.
Definition of (p)®, ()®:

(@) (s, ) < )@ < (Ayy )®
B ((Gy),t) < ()@ < (bY@ < (Byy ) D-

. n (4)
(K)  limp(a)) (Tys,t) = (p)®

limG—mO(bi”)M) ((627): t) = (ri)(4)
Definition of (A, )®, (B, )™ :
Where |( A2, )™, (B2 )™, ()@, (r,)™ |are positive constants and [i = 24,25,26}

They satisfy Lipschitz condition:
@)™ (Tys,t) = (@)D (T, O] < (Rpq Y| Tys — Tys|e ()Pt
(b)Y (G2, ) = (b)) P ((G2), )] < (Rpa YP(Gay) = (Gop) [~ Pe -
With the Lipschitz condition, we place a restriction on the behavior of functions (a;)®(Tys,t) and(a))® (Tys,t) . (Tys, t)
And (T;s, t) are points belonging to the interval [( &y )®, (M, )®] . Itis to be noted that (a;)® (T,s, t) is uniformly
continuous. In the eventuality of the fact, that if ( M,, )® = 4 then the function (a; )® (T;s,t) , the FOURTH
augmentation coefficient would be absolutely continuous. -
Definition of (M, )®, (kpy )@ :
(L) (M )@, (ks Y@, are positive constants

2@ by ®
(I(sz @ ’(;zzj <1
Definition of (P, )@, (0,4 )@ :
(M) There exists two constants ( P,, )™ and ( Q,, )® which together with ( M,, )@, (k4 )@, (A)Pand ( By, )@
and the constants (@)™, (a,))®, (b)®, (1)@, ()@, )W, i = 24,25,26,
satisfy the inequalities
m [(@)® + (@)® + (A )P+ (Pyy)® (kpy )P] <1
m[ b + B)® + (B )P+ (Q2)® (ke )P <1-
Where we suppose-
N @)®,@)®, (@), )P, B)®, (b)) >0, i,j= 282930
(0) The functions (a; )®, (b; ) are positive continuous increasing and bounded.
Definition of (p,))®, (;)®:

(a; ) (T9,0) < () < (Ayg )®
B)P(G31),1) < (DS < B < (B )®-

P)  limyye (@) (Tyo, ) = (p)®
limgoo, (b, )® (G3y, ) = (1)®
Definition of (A,g ), (Byg )™ :

Where|(A28 ), (B ), ()P, ()™ | are positive constants and [i = 28,29,30}-
They satisfy Lipschitz condition:
1@ )P (T30,0) = (@ ) (T, D] < (ko )P Tyg — Tpgle™ (T2
16 (G51),8) = (B ((G31), E)] < (Rag )P (Ga1) — (Gy) ] e™ M2 -
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T,e,t) and(a; )® (Tyg,t) . (Tye, t)
and (Tyo, t) are points belonging to the interval [( &y ), (M,g )] . Itis to be noted that (a; )™ (Tyo, t) is uniformly
continuous. In the eventuality of the fact, that if ( M,g ) = 5 then the function (a; )®(Ty, t) , the FIFTH augmentation
coefficient would be absolutely continuous. -
Definition of ( M,g ), (kg )® :
Q) (M5 ), (kg ), are positive constants
@)® _6)®
(Mag)®) 7 (Mpg)® <t
Definition of (P,g )®), (0,5 )™ :
(R) There exists two constants ( P,g )® and ( 0,5 ) which together with ( Mg ), (k.5 ), (Ay5)Pand (Byg )™
and the constants (a;)®, (a)®, (b,)®, (b)), ()P, )®,i =28,29,30, satisfy the inequalities
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T L@@ + @)+ (Ag)® + (P )® ()] < 1
m[ B + (1) + (B )+ (Q25)® (kpg)®]<1-
Where we suppose-
(@)®, ()@, (@)@, (bY@, ()@, (b )® >0, ij=2323334
(S) The functions (a; )®, (b; )© are positive continuous increasing and bounded.
Definition of (p,)©, (;)®:
(a; ) (T33,8) < ()@ < (A3 )®
(b )O(G35), ) £ (1)@ < (b)® < (B3, )®-

(M) limr, o (a; )© (Tz3, 1) = (p)©®
limg_e, (b )@ ((G35),8) = (1)®
Definition of ( Az, )©®, (B;, )© :
Where |(43,)©, (B3, )@, (p)©, (r,)® |are positive constants and [i = 32,33,34}

They satisfy Lipschitz condition:

(@) )O (T3, 6) = (@) O (T3, O] < (Rap YO Ts5 — Tazle™ (M)

(B ((G35),6) = (b)) O((G35), £)] < (Rsp )O[(Gas) = (Gas)'[Je™ a2 )t -

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )© (T35, t) and(a; )© (Ty3, t)

. (T33,t) and (Ty3, t) are points belonging to the interval [( ks, )©, ( M3, )®] . Itis to be noted that (a; )©® (Tys, t) is
uniformly continuous. In the eventuality of the fact, that if ( M5, )(® = 6 then the function (a; )© (Ty3,t) , the SIXTH
augmentation coefficient would be absolutely continuous. -

Definition of ( M3, )®, (k3, )© :

(M3, ), (k3, ), are positive constants

a)® b)®
(1(%2))(6) w%i @ <1

Definition of ( P;, ), (03, )® :

There exists two constants ( 2, )©® and ( 03, )© which together with ( M3, )©®, (k3; )®, (A5,)®@and ( B;, )® and the
constants (a,)®, (a,))®, ()@, (b)®, ()@, )©®,i = 32,33,34,

satisfy the inequalities
@)@+ @)@+ (A3) O+ (Pp)® (k3)®]<1
m[ (b)) + (1)@ + (B3 ) + (03,)® (k3z) @] <1-

Theorem 1: if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of G;(0),T;(0) :

G(t) < (P )(1)6(M13 ®e | G;(0) =G > 0|

TS (0 Ve O =1>0]

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of _G;(0),T;(0)

G(D) < (Pig)PeMe)®t - G,(0) =G0 >0

Ti(5) < (Qi)PeMme)Pt | T,0) =T > 0

if the conditions above are fulfilled, there exists a solution satisfying the conditions

G(1) S (Pyg)Pem0)P  G,(0) =60 >0

Ti(6) < (Qp )PelM0)Vt | T,0) =T > 0

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of _G;(0), T;(0) :

G0 < (Py)Pem® TG0 =60 > 0]

T(0) < (Qu)We® L@ =1 >0] .

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of _G;(0), T;(0) :

G(t) < (Py )(S)B(Mzg ®e | G;(0) =G > Ol

Ti(t) < (Qp )@ ™)Vt [T,(0) =T >0}

if the conditions above are fulfilled, there exists a solution satisfying the conditions
Definition of _G;(0), T;(0) :

() < (Py) e TG0 =67 > 0]

_r
(M33)® [
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T,(t) < (Q5)@e™2)t  [T(0) =T > 0]

Proof: Consider operator A() defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G(0) =G, T;(0) =T2, G < (P )V, TP < (Q13)®, -
0 <G;(t) — G < (P3)DeMs )Lt

0<T,(t)—T? <(Q;3)VelMs YDt _

By

Gi3(t) = G + fot [(a13)(1)614 (5(13)) - ((a’13)(1) + a'1'3)(1)(T14 (5(13))' 5(13))) Gi3 (5(13))] dsgs) -
G (t) = Gy + fot [(a14)(1)613 (5(13)) - ((a’14)(1) + (a'1'4)(1)(T14 (5(13))' 5(13))) 014(5(13))] dsqasy -
Gis(8) = G + fot [(a15)(1)G14 (saz) = ((ais)(l) + (a15) P (Tua (s13)), 5(13))) 015(5(13))] dsqs) -
T =T +J, [(b13)(1)T14 (saz) = ((bi3)(1) — (1) (6(sa3), 5(13))) T13(S(13))] ds(3) -
T (t) =T + fot [(b14)(1)T13 (5(13)) - ((bi4)(1) - (b;’4)(1)(6(5(13))' 5(13))) T14(5(13))] dsgz) -

T15 ® = T105 + fot [(bls)mTM (5(13)) - ((bis)(l) - (b;s)(l)(G(s(B)), 5(13))) T15(5(13))] d5(13)

Where s 13y is the integrand that is integrated over an interval (0, t)-

Consider operator A®?) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy -
G:(0) =G, T,(0) =T, G) < (P )?, T < (Q16)?, -

0 <G, (t) _ Gio < (ﬁ16 )(2)€(M16 Y@t

0<T(t) =T < (Qys )PeMs e

By

Gi6 (1) = Gfs + fot [(a16)(2)G17 (sae) = ((alm)(z) +a16) P (Ti7 (s16)), 5(16))) Gig (5(16))] dsse) -
Gi7(t) = Gy + fot [(a17)(2)Gl6 (5(16)) - ((al17)(2) + (a,1,7)(2)(T17(S(16))' 5(17))) Gi7 (5(16))] ds(e) -
Gig(t) = Gfg + fot [(a18)(2)G17 (sae)) = ((ais)(” + (a15)@(T17 (5016)), 5(16))) Gig (5(16))] ds(e) -
Ti6(t) = T + fot [(b16)(2)T17 (5(16)) - ((bia)(z) - (b;6)(2)(6(5(16))' 5(16))) Tis (5(16))] dse) -
T () =TS + fot [(b17)(2)T16 (5(16)) - ((bl17)(2) - (b;’7)(2)(6(5(16))' 5(16))) T17(S(16))] dse) -

— t ' "
Tig(t) =TS + |, (b18)(2)T17 (5(16)) - (b18)(2) - (b18)(2)(G(5(16))' 5(16)) Tig (5(16)) ds(1e)
0
Where 544 is the integrand that is integrated over an interval (0, t)-
Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy -
G;(0)=G), T;,(0) =T, G < (Py )P, T? < (Q2)®, -
0.< Gi() = G < (Pyg )P M)
0 <T(6) =T < ( Qg )M -
By

Gao (t) = G3p + fot [(azo)(3)621 (s@oy) — ((alzo)(s) +a30)®(To1 (520))s 5(20))) Gao (5(20))] ds(0) -
Gy (8) = G3; + fot [(a21)(3)620 (s@oy) — ((a'21)(3) +(a20)® (a1 (s20))s 5(20))) Gy (5(20))] ds() -
Gy (8) = G35 + fot [(azz)(3)621 (s@oy) — ((alzz)m +(a22)® (Ta1 (s20))s 5(20))) G2 (5(20))] ds() -
Ty (t) = Tip + fot [(bzo)(g)Tm (5(20)) - ((blzo)@) - (blzlo)@)(G(S(zo))' 5(20))) Ty (5(20))] ds(z) -
T =TH + fot [(b21)(3)T20 (5(20)) - ((b’21)(3) - (b’2’1)(3)(6(5(20))' 5(20))) Ty (5(20))] ds(z) -

— t ' "

T, () = Tp; + fo [(bzz)(g)Tm (5(20)) - ((bzz)(g) - (bZZ)(S)(G(S(ZO)): S(zo))) Ty, (5(20))] ds 20

Where s,y is the integrand that is integrated over an interval (0, t)-

Consider operator A™ defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G(0) =GP, T,(0) =T2, G? < (P )P, T < (Q2a)®, -
0 < G,() = G? < (Byy )WDe(M2a) M

0 ST (t) — TP < (Qyy )MVt .

By

Gou () = GJy + fot [(‘124)(4)625 (sen) = ((0’24)(4) +a0) P (Tos (52))s 5(24))) Goa (5(24))] ds(z4) -
G5 (8) = G35 + fot [(‘125)(4)624 (sen) = ((aés)(4) + (a25) ™ (Tas (52, 5(24))) G25(5(24))] ds ) -
G (t) = G + fot [(aze)(4) Gas (Sn) = ((aée)(4) + (a26)(Tos (5(24))'5(24))) Gae (5(24))] dsqa) -
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= t ’ "

T () = T3, + fo [(b24)(4)T25 (sen) = ((b24)(4) — (20)¥(G(s2m), 5(24))) Toa (5(24))] dsz4) -

— t ’ "

Tps () = T35 + |, [(bzs)(4)T24 (sen) = ((bzs)(4) = (b25) (G (s2m), 5(24))) T25(5(24))] ds(as) -

= t ’ "

Tye (8) = T3 + fo [(b26)(4)T25 (sen) = ((bza)(4) — (b20)® (G (s2m), 5(24))) T2 (5(24))] ds(24)

Where s(,4) is the integrand that is integrated over an interval (0, t)-

Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy -

Gi(0) =GP, Ti(0) =T, G < (P )® TP < (Q2)®, -

0 < G;(t) — G < (Pyg )®e(Mas )t

0<T,(t) =T < (O )De(M2a)®t

By

_ . ’ )

Gos (1) = G + [(azg)(s)GZ‘)(s(ZB)) - ((azs)(s) + a25)® (Tao (S28) ). 5(28))) Gag (5(28))] ds zg) -

Gpo () = G35 + fot [(a29)(S)G28 (5(28)) - ((a’29)(5) + (a20)®(Tyo (5(28))' 5(28))) G2o (5(28))] dss) -
G () = G3p + fot [(a30)(5)G29 (ses) = ((aéo)(s) + (a30)® (T0 (S(2m))s 5(28))) G3o (5(28))] dszg) -
Tys(t) = Tps + fot [(bzs)(s)TZf) (s@s) — ((bés)(s) — (b28)(G(s28)), 5(28))) Ts (5(28))] ds(zs) -
Ty (t) = Tjy + fot [(b29)(5)T28 (5(28)) - ((béfa)(s) - (b,2,9)(5)(G(S(28))' 5(28))) Ty (5(28))] ds(zg) -

— t ' "

T30 (t) = Tgp + fo [(b30)(5)T29 (5(28)) - ((b30)(5) - (b30)(5)(G(s(28)), 5(28))) T30 (5(28))] dszs)

Where s,y is the integrand that is integrated over an interval (0, t)-

Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy -

G;(0) = Gio , T;(0) = Tio ’ Gio = (1332 )(6) :Tio < (Q32 )(6)' -

0.<Gi(8) = G < (Pyy )OeM2)

0<Ti(0) =T < (Q5 ) @eM2) -

By

— t ' "

Gs, (1) = Gf, + fo [(a32)(6)G33 (5(32)) - ((a32)(6) + a32)(6)(T33 (5(32)). 5(32))) Gs, (5(32))] ds(s) -
— t ’ "

G33(t) = GS5 + [ [(033)(6)032 (sG2)) = ((ass)(@ + (a33) @ (T35 (532)), 5(32))) G33(5(32))] ds(y) -
— t ’ "

G3y (1) = G3, + fo [(a34)(6)G33 (5(32)) - ((a34)(6) + (a34)(6)(T33 (5(32)),5(32))) G34(5(32))] ds(zz) -

_ t ’ "

T () =T + fo [(b32)(6)T33 (5(32)) - ((b32)(6) - (b32)(6)(6(5(32)), 5(32))) T3, (5(32))] ds(sy) -

_ t ’ "

T3 () =T + fo [(b33)(6)T32 (5(32)) - ((b33)(6) - (b33)(6)(6(5(32)), 5(32))) T33 (5(32))] ds(sy) -

— t ' "
T3y () = TS, + fo [(b34)(6)T33 (5(32)) - ((b34)(6) - (b34)(6)(6(5(32)), 5(32))) T34(5(32))] ds 32)
Where s (3, is the integrand that is integrated over an interval (0, t)-

@) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious
that

t 5 ®
Gi3 () < G + [ [(a13)(1) (G1O4+(P13 YDe(Mis) 5(13))] dsqz) =

(a13)V(P13)D J7N e
(1 + (a13)(1)t)(;104 +W(e( 13)Dt _ 1) _

From which it follows that
_(P13)D+6Y,

- € W 5 — 5
(Gy3(t) — Gy)e~ (M) < L) ((P3 )V + G104)€< O14 ) + (P )(1)l

= (My3)D

(G?) is as defined in the statement of theorem 1-
Analogous inequalities hold also for Gy, , G5, Ti3, Tha, Tis-
The operator A4 ®?) maps the space of functions satisfying GLOBAL EQATIONS into itself .Indeed it is obvious that-
t 5 @ (@16 (P16)® @
Gie () < G + [ [(‘116)(2) (GIO7+(P16 )©eMio) 3(16))] dsaey = (1 + (a16)Pt)GY + %T(lzé)(emw) - 1)

From which it follows that
_(P16)P+6Y;

((P)® + 6107)9( —6(1)7—> + (B )@

@)
0 Y, — (M)t (a6)
(G16(8) — Grgle™ M1 )™t < (e )@

Analogous inequalities hold also for G;; , Gig, Tig, T17, Tig-

@) The operator A®) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious
that

t 5 3
Gao(t) < G + [(azo)(g) (6201 +( Py )P M20) S(ZO))] dso) =
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3) 3)
(1 + (az0)®t)GY; + M(emm OIS 1) i

(Mp0)®
From which it follows that
_(P20)®)+6%

((Py)® + Gzol)e< —531—> +(By)®

0 —( M0 )Pt (a20)®
(G () — Gp)e™ 20 = (Mz0)®

Analogous inequalities hold also for G, , Gy,, Ty, To1, Toz-
(b) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious
that

t ~ “)
Gy (t) < G2y + fo [(a24)(4) (Gzos +( Py )(4)9(M24) 5(24))] dsca) =

(az4)® (Pry Y® 4)
(1+ (a2 @) G5 + LI (o) — 1) -

From which it follows that

(_ (P24)®+6Ys
((Py)® +Gl)e\ s

) > ~
(Goq (t) — Gy)e~(Mas e + (P )®

T (M24)®

(GY) is as defined in the statement of theorem -
(© The operator A®) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious
that

t 5 )
Gog () < Gl + [, [(azs)(s) (G209+(P28 )SeMzs) 5(28))] ds(zg) =

5 (@28)(P28)®) [ (17,67
(1 + (aZB)( )t)Ggg +W(e( 28 )t _ 1) _

From which it follows that
_(P28)®)+6Yy

_ ®) ® 5 ( —0—> 5
(Gag (8) — GPp)e™ (M)t < LB (B Y6) 1 GY e\ 9 /4 (Pyg )®

T (M5)®

(GY?) is as defined in the statement of theorem -
(d) The operator A® maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious
that

t ) ©
Gs2 () < G + [ [(a32)(6) (63?3 +( Py )@ Ms2) 5(32))] ds(z) =

(a32)©®) (P3)® 72N O)
(1+ (az)®t)G3; + W(e( 27— 1) -

From which it follows that
_(P32)®)+6%

_ ©) © 5 - — 5
(Gaz (8) — GE,)e~Ms2)™t < a3z (( P; )©® + G303)€< 933 > + (Ps, )(6)l

(M32)®

(G?) is as defined in the statement of theorem 1

Analogous inequalities hold also for G,s , Gag, Tos, Tos, Tog -
@® _ep®

(M13)D 7 (My3)D

(P35 )M and (Qq3 )™ large to have-

It is now sufficient to take < 1 and to choose

(P13)D+6?
@)® |, 5 5 I - — A
2 (P13)(1) + (( Py ) + Gjo)e J < (P3)D-

(My3)®

[ ( Q13 )(1>+T}’>
~ | ~ ~
((Q013)D + 7}0)3 g +(0:13)P] < (Q13)D -

bW
(M13)D

In order that the operator A™ transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself-

The operator A is a contraction with respect to the metric

d ((G(l),T(l)), (G(Z),T(Z))) =

sup{max |G.(1)(t) - G.(Z)(t)|e‘(M13)(1)t,max |T(1)(t) - T.(Z)(t)|e‘(M13)(1)t} -
. teRy |t t teRy @ ! t

Indeed if we denote

Definition of G,7: (G, T)=AD(G,T)

It results

|le(§) _ 6i(2)| < fot(a13)(1) |G1(i) _ Gl(i)|e‘mm)(l)s(meWB)(DS(B) dS(lg) +

[ @)®]6L5 = 67 oM Va4

@)1, 503|685 — G |e= P12 Vsan o (M1)Psas) 4

14 13
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2 " 1 " 2 - @ @®
61(3)|(a13)(1)(T1(4)'5(13)) - (a13)(1)(T1(4)'S(13))| e (M13) 5(13)9(M13) 5(13)}‘15(13)
Where 543y represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows-

— ) 1 ' —~ -~ -~

|6 — G@]e~(P)Ve < TN (@)@ + (@)D + (Ax) D + (Pi3) D (Fyz)D)d ((G(n’T(n; G(z)‘T(z)))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows-
Remark 1: The fact that we supposed (a;3)® and (by3)™ depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (Py3)Pe™1Pt gnd (0,5)e M)Vt respectively of R, .
If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; ) and (b; )@, i = 13,14,15 depend only on T, and respectively on G (and not on t) and hypothesis can
replaced by a usual Lipschitz condition.-
Remark 2: There does not exist any t where G; (t) =0and T; (t) =0
From 19 to 24 it results
AOE Gioe[—fé{(aé)(l)—(a; YD (T1a(sa3))saz)}dsas)| >0

T, () = TP~ > 0 fort > 0-

Definition of ((M13)®),, (M13)®), and ((My3)®), :

Remark 3: if G, is bounded, the same property have also G4 and G5 . indeed if

Gz < (My3)W it follows d;’% < ((M3)®), = (a14)VGy4 and by integrating

Gia < ((/M13)(1))2 =Gy + 2(“14)(1)((/M13)(1))1/(a’14)(1)

In the same way , one can obtain

Gis < ((M13)®), = Gis + 2(a5) P (M13) ™), / (ar5)™

If Gy, or G;5 is bounded, the same property follows for G5, Gi5 and Gy3, Gy, respectively.-
Remark 4: If G5 is bounded, from below, the same property holds for G,, and G,5 . The proof is analogous with the
preceding one. An analogous property is true if G, is bounded from below.-

Remark 5: If T,; is bounded from below and lim,_,., ((b; )V’ (G(t), t)) = (by4)® then T}, — oo.
Definition of (m)® and ¢ :

Indeed let t; be sothatfort > t;

(b19)® — (bHP(G (D), 1) < &, Th3 (1) > (M)W -

Then % > (a;2) P (m)® — g Ty, which leads to

W ()@

Ty = (M) (1 —e1t) + TS e *1t If we take t such that e~¢1t = % it results
1

((a14)<12>(m)<1>)

Ty, = , t= logg1 By taking now &; sufficiently small one sees that T;, is unbounded. The same property
1

holds for Ty5 iflim,_,., (b15)® (G(t),t) = (bys) P

We now state a more precise theorem about the behaviors at infinity of the solutions -
- - @® _p®

It is now sufficient to take 1@ e ® < 1 and to choose

(P )P and ( Q1 )@ large to have-

(P16 )(2)+G?
@)@ | % 5 G -
(Mlt’))(z) (Plﬁ)(Z) +((P16 )(2) +Gj0)e J < (P16 )(2) -
[ (216)P41}
CHIGH I ‘( 0 > A -
(M16)@ ((Q1)® + 7}0)6 J +(016)P] < (016)? -

In order that the operator A® transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself-

The operator A®) is a contraction with respect to the metric

d (((619)(1); (T19)®), ((619)®, (T19)(2))) =

S“fp{?elu%f |Gi(1) ) — Gi(Z) (t)le_(Mle)(Z)tvrtréﬂ%f |Ti(1) ® — Ti(Z) (t)|e—(M16)(2)t} _
Indeed if we denote

Definition of Gyg, T © ((Gro, Tig ) = AP (Gyo, Tro)-

It results

|le%) _ 6i(2)| < fot(ale)(z) |G1(;) _ Gl(g)|e—(mlﬁ)(z)s(m)e(ﬂm)(z)s(m) ds(lé) +
[ @e@16l5 — 63 oMo save= o Do
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@) P15, 51965 = G556 o V5o

2 " 1 " 2 — @) @)
61(6)|(a16)(2)(T1(7),5(16)) - (a16)(2)(T1(7)iS(16))| e (M16)sa6) o (M1s) fa0}ds ¢ -
Where s 4 represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows-
|(G19)(1) _ (Glg)(2)|e—(ﬁ16)(z)t <
1 ’ —~ P -
Tho® (@)@ + (@)@ + (A1) P + (P1) P (k1) @)d (((G19)(1), (T1)Y; (G19)®, (T19)(2))) -
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows-
Remark 1: The fact that we supposed (a;s)® and (b;¢)@® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (P,s)@eM10)?t and (Q,4)@eM16®t respectively of R,.
If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b, )@, i = 16,17,18 depend only on T;, and respectively on (G;5)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition.-
Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0
From CONCATENATED SYTEM OF GLOBAL EQUATIONS it results
G ()= G?e[‘ff;{(“;)(z)‘(a; (117 (sae)sas)ldsas)] > ¢

T, = Te-COP) > 0 fort > 0-

Definition of ((My6)@),, (My6)@), and ((My6)@), :

Remark 3: if G;4 is bounded, the same property have also G, and G;g . indeed if
Gig < (My)@ it follows dg’% < ((M6)@), = (a17)@Gy; and by integrating

Gy < (My)@), = GY; + 2(a;7)@((My6)@), /(a17)®

In the same way , one can obtain
Gig < (( M16)(2))3 = G + 2(a;5) @ (( M16)(2))2/(a18)(2)

If Gi7 or G5 is bounded, the same property follows for G4, Gig and Gq4, G5 respectively.-
Remark 4: If G4 is bounded, from below, the same property holds for G;; and G5 . The proof is analogous with the
preceding one. An analogous property is true if Gy, is bounded from below.-

Remark 5: If T, is bounded from below and lim,_,,, ((b; )® ((G15)(1),t)) = (by,)® then Ty, — oo.
Definition of (m)® ande, :

Indeed let t, be sothatfort >t,

(b17)@ = (b; )P ((G19)(D, 1) < £, Ty (1) > (M) -
Then % > (a;7)® (m)® — ¢, T, which leads to

@ (m)@
Ty = (M) (1 —e22t) + TS e 22" If we take t such that e 22t = % it results -
2

(a17)P ()@ 2 . .. .

Ty; = (f) t= lOgs_ By taking now ¢, sufficiently small one sees that T, is unbounded. The same property
2

holds for Tyg if lim,_, (b15)® ((G16)(®),t) = (b15)®
We now state a more precise theorem about the behaviors at infinity of the solutions -

@® e ®
(M30)® 7’ (Mp0)®
(P )® and (Q, )@ large to have-

It is now sufficient to take < 1 and to choose

(P20)3)+6?

@® | 3 p. _(—GO—> P
o | ()@ + ()@ 460 T | < ()@ -

(020)®+7?

CHIS I ‘( 0 > A -
(M20)3) ((Q20)® + 7}0)6 J +(Q20)P < (Q20)® -

In order that the operator A®) transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself-

The operator A®) is a contraction with respect to the metric

d (((623)(1); (T23)™), ((6:5)?, (ng)(Z))) =

S?p{%%f |Gl.(1)(t) _ Gz(z)(t)|e_(M2°)(3)t:T[Elgf |Ti(1)(t) _ Tl.(z)(t)|e‘(M20>(3)t} )
Indeed if we denote

Definition of Gyz, Ty :( (G23), (Ta3) ) = AP ((Ga3), (Ta3))-
It results
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|G(1) (2)| < f (a, )(3) |G(1) 2(%)|e—(ﬂzo)msao)9(7‘720)(3)5(20) ds(zo) +
Jy (@20)® 65" = G5 e o0 Psog= (Mo Psceo 4
@1, 5|62 — 62 e P ¢

G(Z)K 20)(3)(T2(11):5(20)) - (a;o)(3)(T2(12),S(20))| e_(TVIZO)(g)S(ZO)e(mO)ms(zo)}ds(zo)
Where s,y represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows-

|6 — @]e=(M20)Pe <

1 ’ —~ ~ -
W((azo)@ + (a20)® + (Az0)® + (Pyg) P (kp0)®)d (((G23)(1), (Ty3)D; (Gp3)@, (T23)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis (34,35,36) the result follows-
Remark 1: The fact that we supposed (a3,)® and (by,)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (Pyy)®e ™20t gnd (ye) e M200°¢ respectively of R,.
If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b, )®,i = 20,21,22 depend only on T,; and respectively on (G,3) (and not on t) and hypothesis can
replaced by a usual Lipschitz condition.-
Remark 2: There does not exist any t where G; (t) =0and T; (t) =0
From 19 to 24 it results
G (t) = GiOe[—fot{(a;)G)—(a;’ )(3)(T21(5(20))5(20))}‘15(20)] >0

T, () = T2e-00P) > 0 fort > 0-

Definition of ((M0)®),, (M30)®), and ((M0)®), :

Remark 3: if G, is bounded, the same property have also G,; and G,, . indeed if
Gro < (My)® it follows d;’% < ((My0)®), = (a21)®G,; and by integrating
Go1 < ((/MZO)G))Z =G + 2(“21)(3)((/Mzo)(”)l/(a’m)@)

In the same way , one can obtain
Gap < ((/Mzo)(3))3 =Gj + 2(a22)(3)((/1\7120)(3))2/(a'22)(3)

If G,; or G, isbounded, the same property follows for G,, , G,, and G, , G, respectively.-
Remark 4: If G,, is bounded, from below, the same property holds for G,, and G,, . The proof is analogous with the
preceding one. An analogous property is true if G,; is bounded from below.-

Remark 5: If T,, is bounded from below and lim,_, ((b; )® ((G3)(£),£)) = (b31)® then Tp; — co.
Definition of (m)® and &5 :

Indeed let t; be sothat for t > ¢,

(b21)(3) - (b”)(3)((G23)(t) t) < &, Ty () > (M) -
Then £2L > (a,,)® (m)® — &,T,, which leads to

B®)(m)®
T,y = (M) (1—e 53t) + The et If we take t such that e 53¢ = % it results

(a21)(3)(m)(3) 2 . .. .
T,y = (f) t =log - By taking now &5 sufficiently small one sees that T,; is unbounded. The same property

holds for Ty, iflim, .., (b22)® ((G23) (), t) = (by)®
We now state a more precise theorem about the behaviors at infinity of the solutions-

(al) R ChoN
It is now sufficient to take My )® " (flgy)®

(P )™ and (Qgq )@ Iarge to have-

< 1 and to choose

(P24)M+6?
@® | 5 ). .,
T ® (Po)® + ((Pa)® +G0)e g < (P )® -

(Q24)D+1)
(b®

(M24)™®) ((Q24)™® + 7}0)6_< g > +(024)P| < (024)® -

In order that the operator A™ transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself-

The operator A™ is a contraction with respect to the metric

d (@D, 1)), (6P, (T)@) ) =

sup{mﬂ%x |Gl.(1)(t) - Gi(z)(t)|e‘(M24)(4)f,mﬂ%x |Ti(1)(t) - Tl.(z)(t)|e‘(M24)(4)t}
i teRy tER4

Indeed if we denote
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Definition of (Gy7), (Tz7) : ((Gz7), (Tz7) ) = AW ((Gr), (T27))

It results
) _ (2) @ _ (2) (o) @ Mo @D
|G |<f (a24)(4)|G G,s |e (M24)""5(24) o (M24)""5(24) ds (o) +
fo {(a24)(4) |Gz(i) — Gz(i)| —(W24)(4)5(24)e—(ﬂz4)(4)s(24) +
@) P (TS, 500|653 = G2 e~ M2 Vsene M) Vs 4

2 1 " 2 - ® ®
G( )|( 24)(4)(T2(5)'5(24))_(‘124)(4)(T2(5)'5(24))| e~ (M20) s 2a) o (M24) SeD}ds (a4
Where 5,4y represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows-

|(Gz7)(1) — (Gyy)P|e~M20)®r <

T (@)@ + @)@ + (2@ + (Po)@ (ko)) (62D, (1)) D (6P, (1)) )

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows-

Remark 1: The fact that we supposed (a,,)™ and (b,,)™ depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (P,,)®e ™20t gnd (0,,)®e ™2™t respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )™ and (b, ), i = 24,25,26 depend only on T,5 and respectively on (G,,) (and not on t) and hypothesis can
replaced by a usual Lipschitz condition.-

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From THE CONCATENATED SYTEM OF GLOBAL EQUATIONS it results

Gi (t) > Gioe[—fot{(a;)(‘*)—(a;' )(4)(T25 (5(24))'5(24))}‘15(24)] >0

T, () = T2~ > 0 fort > 0-

Definition of ((M,4)®),, (M,)®), and ((M,)®), :

Remark 3: if G,, is bounded, the same property have also G,5 and G, . indeed if
Gpy < (My)™ it follows dg_tzs < (M4)®), = (a25)™® Gys and by integrating

Gas < ((/M24)(4))2 = G35 + 2(a25)(4)((’1\7124)(4))1/(a'25)(4)

In the same way , one can obtain
Go6 < ((/M24)(4))3 =G + 2(a26)(4)((/M24)(4))2/(a,26)(4)

If G,5 or Gy s bounded, the same property follows for G,, , G,5 and G4, G5 respectively.-
Remark 4: If G,, is bounded, from below, the same property holds for G,5 and G, . The proof is analogous with the
preceding one. An analogous property is true if G,5 is bounded from below.-

Remark 5: If T,, is bounded from below and lim,_,,, ((b; )™ ((G;)(t),t)) = (by5)™® then Tys — co.
Definition of (m)® and ¢, :

Indeed let t, be sothatfort >t,

(bps)™® — (b,,)(4)((G27)(t) t) < &, Tpy (8) > (M) -

Then L2 > (a,:)® (m)® — &, T, which leads to

&) ()@
Tys = (M) (1 —e#4t) + T e 54t If we take t such that e =4t = % it results

(azs)(4)(M)(4) 2 , - )

Tys = (f) t =log — By taking now ¢, sufficiently small one sees that T,s is unbounded. The same property
4

holds for Tye if lim, e, (b26)® ((G27) (), t) = (b36)™
We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities hold also
for Gyg, G0, T2g, Tog, T30z
Iti fficient to take @® 6
is now suffici 10)® (1100
(Py3 )™ and (Q,5 )® large to have-

< 1 and to choose

(P28)5)+6?
@® | 5 )| .,
r5)® (Poe)® + ((Pys )® +GP)e ! < (P )™ -

(028)3)+1)

NG, =t A A
(1(;213)“) (( Q25)® +T)e ( K ) + (Q2)®| < (Q2) -

In order that the operator A®) transforms the space of sextuples of functions G; , T; satisfying GLOBAL EQUATIONS into
itself-

The operator A®) is a contraction with respect to the metric

d (((631)(1); (T3) D), ((G31)?, (T31)(2))) =
WWW.ijmer.com 1997 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645

1 2 — ) 1 2 — )
i + "

Indeed if we denote

Definition of (G51), (T31) ©  ((G31), (T51) ) = A®((G31), (T31))

It results

|G(1) G(z)| < (azg)(5)|G(1) G(z)l =(M28)Ps 28y o (M28) s 2g) dsg) +
f{( 28)(5)|G(1) G(Z)|e_(M28)(5)5(28)e_(m28)( )s28) +

(az)® )(T(l) 5(28))|G(1) G(2)| ~(M120) s 26) o (M20) Vs 2s) 4

G(Z)K 28)(5)(T29 5(28)) - (a )(5)(T2(§)'5(28))| e_(ng)(S)s(zg)e(mS)(S)S(ZS)}ds(ZB)

Where s,q) represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows-

|(G31)(1) - (G31)(2)|€_(M28)(5)t <

(mzz)(s) ((a28)® + (a26)® + (Ae)® + (Prg)® (kp5)®)d (((031)(1), (T5)P; (G3)P, (T31)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result follows-

Remark 1: The fact that we supposed (azg)® and (byg)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (Pyg)®e ™20t and (0pe) e M28)™¢ respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )™ and (b, )™, i = 28,29,30 depend only on T,q and respectively on (Gs;)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition.-

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 19 to 28 it results

G (t) > Gioe[—fé{(aé)(s)—(a; )(T29(528))5 28)) 5 28 | >0

T, (t) = Tioe(_(bé)(S)t) >0 fort>0-

Definition of ((/Mzs)(s))y ((/1\7128)(5))2 and ((/MZS)(S)):g :

Remark 3: if G,g is bounded, the same property have also G, and G, . indeed if
Grg < (M,g)®™ it follows d(% < (Mp)®), — (a20)® Goo and by integrating

a9 < ((/Mzs)(s))z = Gjo + 2(“29)(5)((/Mzs)(s))l/(a’m)(s)

In the same way , one can obtain
G3p < ((ﬂzs)(s))3 =G + 2(“30)(5)((7‘7[28)(5))2/(“’30)(5)

If G,9 or G, is bounded, the same property follows for G,g, G3o and G,g, G,q respectively.-
Remark 4: If G,g is bounded, from below, the same property holds for G, and G5, . The proof is analogous with the
preceding one. An analogous property is true if G,4 is bounded from below.-

Remark 5: If T,g is bounded from below and lim,_,., ((b; )® ((G31) (), t)) = (b39)® then Tpq — oo.
Definition of (m)® and & :

Indeed let t; be so that fort > ¢

(b20)® = (b )P ((G31)(0), 1) < &5, Tpg (1) > (M)

Then L2 > (2,0)® (m)® — £, Ty, which leads to

) (m)(®)
Ty = (M) (1 —e7®t) + The*5t If we take t such that e=#5t = % it results

(a29)(5)(TH)(5) 2 . .. .

Ty = (f) t= logg— By taking now &5 sufficiently small one sees that T,q is unbounded. The same property
5

holds for Tyy if lim,_e, (b30)® ((G31)(t), t) = (b30)®
We now state a more precise theorem about the behaviors at infinity of the solutions
Analogous inequalities hold also for Gss , Gs4,Tsy, Taz, Taa-
(al) O _wd®

(M3,)©® * (f132)©

(P35, )® and (Q5, )® Iarge to have-

It is now sufficient to take < 1 and to choose

(P32)(©)+6?
@® | ; )| .,
377 © (P52)® + ((P3)® + Gjo)e / < (Pyp)® -

(032 )(6)+T
(b)®

(M;z)“) (( Q32 )(6) * To)e ( K ) + (032 )(6) < (632 )(6) -
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In order that the operator A transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself-
The operator A is a contraction with respect to the metric

d (((635)(1), (T35)@), ((G35)®, (T35)(2))) =
sup{max |G (t) — Gi(z)(t)|e‘(m32)(6)t,max IT® () - Tl.(Z)(t)|e‘(M32)(6)t}
. UteRy teRy

Indeed if we denote

Definition of (Gs), (Ts5) :  ( (Gss), (T55) ) = A©((G35), (T35))

It results

659~ 6] = Ji(ae)® (680 — G2 e P T 5 s, +
f {(a 32)(6)|G(1) Gg)|e—(W32)(6)5(32)e—(ﬂ32)(6)5(32) +

(@32) (T35, 5632) 1657’ — G(Z)l ~(M32)s(32) o (M52)Ps2)

2 2 - ® ®
G( )|( 32)(6)(T3 5(32)) —(a )(6)(T3(3)'5(32))| e~ (Ms2) ™ s(32) o (M32) *62}ds 32)
Where S(32) represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows-

|(G35)® = (G35)@|e~ M)t <

@ (@)@ + (@) + (A5)@ + (P) @ (i) @) (((635) D, (Ts5) Vs (63)?, (T55)P) )

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows-

Remark 1: The fact that we supposed (as,)® and (b3,)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (Ps,)©e ™32t and (4,)® e M3s2)®¢ respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b, )®,i = 32,33,34 depend only on T3 and respectively on (Gs5)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition.-

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 69 to 32 it results

G (t) = Gioe[—fé{(aé)("’)—(a;’ )O(T33(532))532)) M5 32) | >0

T, (t) = Tioe(‘(bé)(é)t) >0 fort>0-

Definition of ((M3,)®),, (M3,)®), and ((M5,)®), :

Remark 3: if G5, is bounded, the same property have also G;; and Gs, . indeed if
Gy, < (M3,)® it follows dg% < ((M3) @), — (as3)®Gs3 and by integrating

G33 < ((ﬂ32)(6))2 = Ggs + 2(“33)(6)((7‘7[32)(6))1/(“’33)(6)

In the same way , one can obtain
G3q < ((ﬂ32)(6))3 =G4, + 2(“34)(6)((7‘7[32)(6))2/(61’34)(6)

If G35 or G, is bounded, the same property follows for G;, , G4 and Gs, , G35 respectively.-
Remark 4: If G;, is bounded, from below, the same property holds for G55 and Gs, . The proof is analogous with the
preceding one. An analogous property is true if Gs5 is bounded from below.-

Remark 5: If T;, is bounded from below and lim,_,,, ((b; )® ((G35)(t),t)) = (b33)©® then T33 — co.
Definition of (m)® and ¢ :

Indeed let t, be sothat for t > t,

(b33)© — (b, ) O ((G35)(0), t) < &, Tsz (£) > (M)©-

Then 222 > (a43)® (m)©® — &, Ty3 which leads to

(6)(m)(6) .
T = (M) (1 —e~*6t) + T e6¢ If we take t such that e 66t = % it results

(a33)<6>(m)<6) 2 , - )
T3z = (f) t =log o By taking now ¢4 sufficiently small one sees that T;; is unbounded. The same property

holds for Ty, if lim,_e (b34)© ((Gs5)(£), (), t) = (bss)®

We now state a more precise theorem about the behaviors at infinity of the solutions of the system-
Behavior of the solutions

Theorem 2: If we denote and define

Definition of (o,)®, (6,)V, )V, (r,)@ :

(a) o), (0,)V, ()W, (r,)® four constants satisfying

—(a)® < _(a1’3)(1) + (‘11,4)(1) - (‘11”3)(1)(7"14 )+ (?14)(1)(T14 ,t) < —(0y)™
—(1)® < =(b13)® + (b1)® = (b13)V(G, 1) = (b)) (G, t) < ()™ -
Definition of (v;)®, (v,)®, (u))®, (uy) D, v, u® :
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By (v))® >0, (v,)® < 0 and respectively (u;)® > 0, (u,)® < 0 theroots of the equations (a;4)™® (v(l))2 +
(Vv = (ar)® = 0 and (5) P (D) + (@) Vu® = (b)) =0
Definition of (,)@,, (1,)D, (i1,)®, (i1,) D :
By (1)™ > 0, (%)™ < 0and respectively ()™ >0, (@i,)P < 0 the roots of the equations (a“,)(l)(v(l))2 +
(02)(1)1/(1) - (a13)(1) =0 and (b14)(1)(u(1))2 + (Tz)(l)u(l) - (b13)(1) =0-
Definition of (m,)®, (m,)®, (u)™®, (u)®, (vp)® :-
(b) If we define (m,)® , (m)®, ()@, (u)™ by
(mz)(l) = (Vo)(l): (m1)(1) = (V1)(1)' if (Vo)(l) < (V1)(1)
(m)® = W)W, (m)H® = @)D, if v)® < ()P < @)D,

0
and |(vp)® = %
14

(mz)(l) = (Vl)(l):(ml)(l) = (Vo)m' if (171)(1) < (Vo)(l) t
and analogously
(Hz)(l) = (uo)(l): (Hl)(l) = (u1)(1), if (uo)(l) < (u1)(1)
(Hz)(l) = (ul)(l)' (Hl)(l) = (ﬁ1)(1) Jif (u1)(1) < (uo)(l) < (1_‘1)(1);

0
and | (uo)® = ;1—03
14

(H2)® = @)D, w)® = W)™, if @)™ < (u)™ where (u)®, ()
are defined respectively-
Then the solution of CONCATENATED GLOBAL EQUATIONS satisfies the inequalities

GP3€((51)(1)_(p13)(1))t SGi3@) < G103e(51)(1)t
where (p;)® is defined by equation 25

®_ (€Y] 1)
WGBe((sl) @)t < G, (D) <=5 (1) GY et .

(a15)M60s ((51)(1) (p13)(1))t (5D 0 ,—(S2)Dt (a15) D6, Wt _
((ml)“)((51)<1>—(p13)<1>—(Sz)<1>) [e ¢ ] +Gise < Gis(0) < m2)D (D —(a15)D) le
e—(als)(l)t] + Glose—(a1s)(1)t) -

TO EVt < () < TY e(<R1)<U+<r13)<1>)t -
(11 )(1) —a T3 e®DDt < Ti3(t) < )(1) T103e((R1)(1)+(’13)(1))t -
(b15) V77 (1) —b ) b y®
(ﬂl)(l)((;1)(1)_1(115)(1)) [e(Rl) et t] +Tise” s < Ty (8) <
(a15) D1y R YD @ (R 0 (R
W2)M(RDD+(r13)D+(R)D) [e(( DT — e t] + Tise (" -

Definition of (5,)®, (S)®, (RNW, (R,)™V:-
Where (S,)® = (a33)® (m,)™® — (a33)®
($2)® = (ag5)® — (py5)®
(RYW = (b3 YD ()@ = (by3)®
(R)W = (by5)® = (115)@ -
Behavior of the solutions
If we denote and define-
Definition of (6,)@®,(6,)@,(t))?, (1,)@ :
6))?,(0,)?, (1))?, (1,)® four constants satisfying-
—(0)® < —(a16)® + (@17)® — (@16) P (Ty7,t) + (a17) P (T, 1) < —(0)P -
—(1)® < =(b16)@ + (1)@ = (b16) P ((G19), t) = (b17)P((Gro) ) < = (1)@ -
Definition of (v;)®, (v,)®, (1)@, (u,)® :-
By (1)@ >0, (v,)® < 0 and respectively (u;)® > 0, (u,)® < 0 the roots-
of the equations (a37)®(v®)” + (6,)@v® — (ay)® =0 -
and (b,)® (u®)” + (1)@u® — (bys)® = 0 and-
Definition of (,)®,, (#,)®, (1)@, (i1,)® :-
By ()@ >0, (v,)® < 0 and respectively (i1,)® > 0, (i1,)® < 0 the-
roots of the equations (a17)(2)(v(2))2 + (0)Pv® — (a;6)@ = 0-
and (b)) (u®)” + (1) Pu® ~ (b, )® = 0-
Definition of (m;)® ,(m,)@, (u))@, (up)® :--
If we define (m)®, (m,)®, (u)®, (u)® by-
(m)® = (v)@, ()@ = )P, if )P < ()@ -
(my)® = (v)@,(m)® = @)D, if )P < W)® < (7)P,
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GO
and |(v)® =3¢
17

(m)® = ()@, (m)® = )@, if )@ < ()@ -

and analogously

(#2)(2) = (uo)(z)’ (/11)(2) = (u1)(2)' if (uo)(z) < (u1)(2)

(u)® = (ul)m (1)@ = @), if @) < ()@ < @)®,

and|(u)® =

7

(p)® = (ul)(z):(ﬂl)(z) = (u)®, if (1)® < (up)@ -
Then the solution of CONCATENATED GLOBAL EQUATIONS satisfies the inequalities

GO e(GP-@10®)t < G (1) < GY et
()@ is defined -

ﬁ e EDP-10D) < 6 (1) S @ )(2) G, eGPt
1

(a18)Ggs ((51)(2)_(,,16)(2))t _ _(52)(2)t] PPEON < (@18)®6s @t _
G001 O ®) [© ¢ *Gige =610 =< oo (5 D-wp®) ©

e—(ais)(z)t] + G?Be—(ais)(z)t) -

To e®Pt < (1) < TY e((Rl)(2>+<r16)(2))t )

@ @ @
o )(2) T eRD™E < T, (b) < )T106e((R1) +(r16) )t -
(b13) P18 R <2)t EPARNCR 0 (b )@t
W@ (R)D—(b19)®) [0 — e Ty e < Ty (1) <
(a18)(2)T96 R (2)+ ) t —(R (Z)t 0 .—(R (Z)t
DO (R)D+re D+ D) e(®RDP+16) D)t _ o—(R2) ]+T183 R2)™t _

Definition of (S,)®, (S,)®, (R))®, (R,)@®:--
Where (S;)@ = (a;6)® (my)@ — (a;6)®
(52)(2) = (a18)(2) - (P18)(2) -
(R1)(2) = (b16)(2)(ﬂz)(1) - (b,16)(2)
(Rz)(z) = (b,18)(2) - (7”18)(2)'
Behavior of the solutions
If we denote and define

Definition of (5,)®, (62)®, (x)® , (1)@ :
(a) 0)®,(0,)®, )P, (1,)® four constants satisfying
—(02)® < —(a20)® + (a31)® = (a30) P (T1 , 1) + (a21)® (T , 1) < —(01)®
—(1)® < =(b30)® + (b31)® — (b30)P (G, 1) — (b)) P ((G3), t) < —(1)® -
Definition of (v;)®, (v,)®, (u)®, (uy)® :
(b) By ()®>0,(1,)® <0 and respectively (u;)® >0,u,)® <0 the roots of the equations
(a21)(3)(v(3))2 + (o) — (ay0)® =
and (b,1)®U®)” + (1)@u® — (by)® = 0 and
By (7,)® >0, (#,)® < 0 and respectively (;)® >0, (#@,)® < 0the
roots of the equations (a21)(3)(v(3))2 + ()PP — (a,0)® =0
and (b;))®(u®)” + (1) Pu® — (by)® =0
Definition of (m;)®, (m,)®, (u)®, (u)® :-
©) If we define (my)®, (m,)®, (u)®, (u)® by
(mz)(3) = (Vo)(B): (m1)(3) = (V1)(3)' if (Vo)(3) < (V1)(3)
m)® = )®, (m)® = @), if v)® < ()@ < (),

GO
and |(vy)® = ﬁ

(mz)(3) = (V1)(3):(m1)(3) = (Vo)(g): if (171)(3) < (v)® -
and analogously

12)® = @)@, (u)® = W)@, if (we)® < (u)®
0
1)@ = @), @)@ = @)@, if @W)® < @)@ < @)@, and|we)® =13

(12)® = @)@, @)® = W)®, if @) < (uy)®
Then the solution satisfies the inequalities

69 e(EP-0200P) < ¢, (1) < 69, eVt
()@ is defined-
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PINC) UG
WGZO e(GDP-020) < 6, (1) < )(3

(@22)@69, [ ()P =20)® PING) (53 (a22)P69 ®
e((51) (on) )t _ o=(52)Pt ] 4+ GYe Dt < G (1) < . eSDYt _
G0 20— ®) 2 2(®) < B - ) |
~@)Pt] 4 G, e~@22)Pry
e + Gype )

Gzooe(sl)(”c -

T0 e®DPt < Ty (t) < TS e((Rl)(3)+(T20)(3))t .

3) (€)) ®
e e(R1) t<T, (t)< )() ((R1) +(r20)9)t -

(b22)®T (R (3% —(by) @t 0 ,—(by) @t
D@ (RN -(b3)®) [e DO et ] tlpe < T (D) <

(a22)®1 (RDP+@20)®Nt _ ,—(R)P¢ 0 ,—(R)®¢ _
U2) B (R)PD+(r20) B +(R2)P) [e ¢ ] + e -
Definition of (51)(3): (52)(3)' (R1)(3)' (Rz)(S):'
Where (51)(3) = (azo)(3)(m2)(3) - (aéo)(3)

(52)8) = (azz)m - (pzz)(B) ,

(Rl)(3) = (bzo)(3)(#2)(3) - (bzo)(3)

(Rz)(S) = (béz)(B) - (rZZ)(3)'
Behavior of the solutions
If we denote and define

Definition of (0,)®, (6,)® , (1)@, (1,)@ :
(d) (@)W, (0,)P, ()P, (1,)® four constants satisfying
—(02)® < —(a2)® + (@35)® — (@) (Ts, ) + (a5) P (Tys, 6) < —(o)®
~(@)® < =(b30) ™ + (b25)® = (b30) P ((G7), t) = (bp5) P ((G27), t) < —=(z)®
Definition of (v;)®, (v))®, ()@, (up)®,v®,u® :
(e) By (v)®>0,w,)® <0 and respectively (u)® >0, wu,)® <0 the roots of the equations
(@) (V@) + ()P — ()@ =
and (bys)@(u®)” + (1) @u® — (by)® = 0 and
Definition of (7,)®,, (,)®, (i1,)®, (i1,)@ :
By (7)™ >0, (#,)® < 0 and respectively (;)® >0, (@i,)® < 0 the

roots of the equations (a,s)® (v(4))2 + () Pv® — (a,9)® =0

and (b5)® (u®)” + () Pu® — (b)) = 0
Definition of (m;)*, (m,)™®, (u)™®, ()@, (vo)™ :-
0] If we define (m)® , (m)™®, (1)@, (u)® by

(mz)(4) = (Vo)(4)' (ml)(4) = (Vl)(4): if (Vo)(4) < (V1)(4)

(m)® = ()@, (m)® = @)P,if W)® < (V)® < @)®,  and |(v))® = Zﬂ
(m)® = W)@, (m)® = ()@, if P < (v))®

and analogously
012)(4) = (uo)(4): (#1)(4) = (u1)(4)» if (uo)(4) < (u1)(4)
()™ = @)@, ()@ = @), if @)™ < @)™ < @)™, and|(u)™® = T24
25
(1)@ = )@, ()™ = (o)™, if @)™ < (ug)™ where (u)®, (@, )Vare defined
Then the solution of CONCATENATED GLOBAL EQUATIONS satisfies the inequalities
69, (P -w20D) < 6, (1) < 6§, eVt
where (p,)™ is defined

(1 )(3)

1 @_(p,a)® @
WGM (V=020 < Gy (1) = )(4) G2aeCV

(a26)GPy SD ()Nt (5Dt 0 L —(5))®¢
((ml)(‘”((51)<4>—(p24)<4>—(s2)<‘”) [e(( DE T - ]+626€ RO

(a26)46240(m2)4(851)4—(a26)4e(S1)4t—e—(a26")4t+ G260e—(a26")4t

|T0 e®Wt < (1) < Tzze(<R1>(‘”+<rz4)(‘”)t |
78,e Yt <, (1) <—® 79, e (R)W+02)®)e

(11 )<4) (4)
(b26) DT, [ ® )(4)t — b, )(4%] 0 o—(b2e) @t
TP (@@ 60 e+ Taee T T S Tog (1) <
(a20) Oy RDB+(r2) D)t _ o= (R )(4)t] 0 o—(R)Y®t
1)@ (R B +(r2) D +(R2)D) [e( ' 2 ) — o= (R: + Thee 2
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Definition of ($;)®, (S)®, (R)™, (R)™:-
(SD™ = (a20)® ()™ — (az)®

(52)(4) = (‘126)(4) - (p26)(4)

RD™ = (b)) @ ()™ — (b3)® and  (R)™ = (bye)™® — (1)
Behavior of the solutions
Theorem 2: If we denote and define
Definition of (01)(5) ) (02)(5) ) (T1)(5) ) (,[2)(5) .
() (@), (6,)®, (1P, (1,)® four constants satisfying
—(02)® < —(azg)® + (a20)® — (a28) P (Ty9, 1) + (a29) P (Tyg , 1) < —(07)®
—(12)® < =(b35)® + (b29)® = (b2s)® ((G31), ) = (B29)®((G31), 1) < —(21)®
Definition of (v;)®, (v;)®, (), (uy)®,v®,u® :
(h) By (v)®>0,1,)® <0 and respectively (u;)® >0, wu,)® <0 the roots of
(@20)® (V) + @)V ~ (@)@ = 0
and (by0)®(u®)” + (1)U — (byg)® = 0 and
w (171)(5)" (172)(5)' (ﬁl)(S)' (ﬁz)(S) .
By (v))® > 0, (#,)® < 0 and respectively (&1;)® > 0, (i1,)® < 0 the

roots of the equations (azg)(s)(v(s))2 + (6,) VS — (a)® = 0

and (b,9)® (u®)” + (2)Ou® — (bye)® =0
Definition of (ml)(s) ) (mz)(s) ) (#1)(5): (/42)(5): (Vo)(s) -
(i) If we define (ml)(s) ) (mz)(s) ) (/41)(5): (Mz)(s) by

(mz)(s) = (Vo)(s)' (m1)(5) = (V1)(5): if (Vo)(s) < (V1)(5)

G

0
(m)® = (1), (M) = @)D, if 1) < W) < @)D,  and |(v)® =
29

(mz)(s) = (Vl)(s)' (m1)(5) = (Vo)(s): if (171)(5) < (Vo)(s)
and analogously

(,uz)(s) — (uo)(s)' (“1)(5) — (ul)(S)’ if (uo)(s) < (u1)(5)
(,uz)(s) _ (ul)(s)’ (#1)(5) = (ﬁl)(S) Jif (ul)(s) < (uo)(S) < (ﬁl)(S)’ and (uo)(S) = %

(1)® = W)®, (1)@ = we)®, if (@) < (ug)® where (;)®, (@) Pare defined
Then the solution of CONCATENATED SYSTEM OF GLOBAL EQUATIONS satisfies the inequalities
Gzose((sl)(S)_(pzs)(s))t S G(t) < Gzose(sl)(s)f
where (p,)® is defined

) (pyg)®) 1 )
— e G8ae (VTP < G (6) < 5 GRSV
(a30))69g $Y5)_ () ®) —(5)® 0 (51
((ml)(S)((51)(5)_(ng)(S)_(sz)(S)) [e(( D)) — o) ] +G5e D7 < Gy (0) <
(@30)56280(m2)5(51)5—(@30")5¢(51)5t—e—(a30)5t+ G300e—(a30")5¢

Tzoge(Rl)(S)f < Tye(t) < T208e((R1)(5)+(rzs)(5))t

©) 1 () )
Tjpe®D fsrzg(t)gmrzoge((m +(r28) )t

_1
(u)®
(b30) DT
@B (RDE —(b30)®))

(a30) 51 [ (RS +(ra) )t _ _(Rz)(s)t] 0 (ROt
wO B+ O+ ®) 1 e +Tzoe

Definition of (5))®, (5,)®, (R))®, (R,)®:-

Where (5)® = (ay5)® (my)® — (ays)®
(52)(5) = (‘130)(5) - (P30)(5) ,
(Rl)(s) = (bzs)(s)(/iz)(s) - (bzs)(s)

(Rz)(s) = (b'30)(5) - (7”30)(5)
Behavior of the solutions
Theorem 2: If we denote and define

Definition of (d,)®, (5,)@, (1), (1) :

)] (@)@, (6)@, (1)@, (7,)® four constants satisfying

—(02)©® < —(az)@ + (a33)® — (a3,) @ (T3, ) + (a33)© (Ta3, ) < —(07)©®

—(12)® < —(b3,)© + (b33)® — (b3) @ ((G35), 1) — (b33) @ ((G35), t) < — (1)@

Definition of (v;)®, (v,)®, (u)®, (uy)®,v®,u© :

(3] By )®>0,1,)® <0 and respectively (u;)® >0, (u,)® <0 the roots of

eRD®t _ e‘(béo)(S)t] + TS e~ 0300t < T3 (1) <
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(a33)(6)(V(6))2 + () — (a3)® =0
and (b53)©u®)” + (1)©u® — (bs,)® = 0 and
Definition of (¥;)©,, (1,)©@, (i1,)®, (i1,)©® :
By (#,)® >0, (1,)® < 0 and respectively (1;)® >0, (%i,)® < 0 the
roots of the equations (asz)® (1/(6))2 + (6,)Ov® — (a3,)® =0
and (byy) @ (@) + (1) Ou® — (bs)® = 0
Definition of (m;)®, (m,)©, (u)®, (u)®, (vp)® -
) If we define (m,)©, (m,)©, (u)®, (u)® by
(mz)(6) = (Vo)(6): (m1)(6) = (V1)(6)' if (Vo)(()) < (V1)(6)

_ . _ 69
(M) @ = ()@, (m)® = @)@, if )@ < ()@ < @)@, and|(v)® = Gz

(m)® = (1)®, (m)® = V)@, if @)@ < (v))©®
and analogously
1)@ = ()@, (u)®@ = W)@, if (up)® < (uy)®

_ . _ T
W2)® = W)@, ()@ = @)@, if wW)® < W)@ < @)@, and|(uy)® = %

(12)® = W)@, () ©® = (up) @, if (@)@ < (up)® where (u;)®, (@) @are defined respectively
Then the solution of CONCATENATED SYSTEM OF GLOBAL EQUATIONS satisfies the inequalities
nge((sl)(ﬁ)_(p“)(ﬁ))t <SGy (t) < G3oze(51)(6)t
where (p,)© is defined

(6)_ (6) (6)
WG32 e =32t < G (1) <7 )(6) G, eD®t
(a30)®6% $116)_ (6) RN P 0 —(s)©)¢
((m1)<6>(<51)<6>—(p32)<6>—(Sz)<6>) [e(( DT @) — gD ]+G34e G G () <

(@34)6G320(m2)6(S1)6—(a34)6e(S1)6t—e—(a34)6t+ G340e—(a34)6¢

To et < T (1) < TY e((R1)<6>+(raz)<6))t

( )(e) — 5 The ™ < Ty, (1) S G)® (e) e (D +rs2) e
nq
(b34) T (Rl)(é)t _ —(b: )(G)t 0 ,—(b3)©t
(ﬂl)(ﬁ)((Rl)(é)_(b'34)(6)) [e e ] + T34€ 34 < T34 (t) <
(a30) 1 R1)®)+(rg2) Ot —(R)©®)¢ 0 ,—(Ry)©®¢
DO+ 0o O ) [e(( DO+@32) )t _ o—(R2) ]_|_ T, e~(R2)

Definition of (5;)©, (5,)®, (R)®, (,RZ)@:'

Where (5)© = (as,)©® (m,)© — (a3,)®©
($)© = (aza)® = (p3)® ,
(R)@ = (b52)© () — (b3,)®
(R)® = (b3)® = (r24)®

Proof : From GLOBAL EQUATIONS we obtain
wa
2= (a) W - ((a13)(1) - (a14)(1) + (a13)® (T, t)) = (a1)® (T14, VD — (a1) Pv®

Deflnltlon of v :- y =218
— 014

It follows

((a )(1)(V<1)) + (0,) D — (q )(1)) <
From which one obtains
Definition of (¥,)®, (vy)® :-

G _
(a) For 0 <|(vp)® = ﬁ < (v)® < (@)@

dv(l)

- ((a14)(1)(v(1))2 + (o) MV — (a13)(1))

DD+ Dy De [e1)® (D= M) ] DD —(ve)®
1+(0)Wel~@OD(GDD-00®)] o) D-()®
it follows (v)™® < vV (t) < (v)®

V(l)(t) > ' (C)(l) _

In the same manner , we get
(71)(1)4_(5)(1)(72)(1)8[—(a14)(1)((71)(1)—(72)(1)) f]
1+ Wel- @O (EDD -T2 W) ]

From which we deduce (v)® < v (t) < (#,)W

DD ®
)W -®

v(l)(t) < ' (C_')(l) _
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(b) If 0< ()P < )P = % < ()™ we find like in the previous case,
(vl)(1)+(c)(1)(vZ)(1)e[—(a14)%f)((V1>(1)—(vz)(1))t]
1+(C)(1)e[_(“14)(1)((" DW-M) t]
FD+OD @y We[~@ P (T -2 D) ]
1+(5)(1)e[—(a14)(1)((V1)(1)—(Vz)(1)) t]

)W < < v() <

< (@)W

©) If 0<()® < @)D <|v)® =42 | we obtain
14

(Vl)(1)+(ﬂ(1)(vz)(1)e[_(“14)(1)((V1)(1)_(172)(1))t]
1+(@(1)e[—(a14)(1)((71)(1)—(72)(1))t]

And so with the notation of the first part of condition (c) , we have

Definition of v(P(¢) :-

(my)® < v () < (m)D, | v () = LY
G14(t)

v)® < vD(©) < < (vo)®

In a completely analogous way, we obtain
Definition of u™(t) :-

DD < uD(©) < )P, |uO@) =228
Now, using this result and replacing it in CONCATENATED GLOBAL EQUATIONS we get easily the result stated in
the theorem.

Particular case :

If (a;3)® = (a1,)@, then (6,)® = (6,)® and in this case (v;)® = (¥)D if in addition (vy)® = (v;)® then
v (1) = (v)® and as a consequence Gy3 (t) = (Vo) PG4 (t) this also defines (v,)™ for the special case
Analogously if (b13)® = (b1,)D, then (t,)® = (1,)® and then

(u)® = (i) Pif in addition (uy)® = (uy)® then T3 (t) = (uy) P Ty, (t) This is an important consequence of the
relation between (v;)® and (v,), and definition of (uy)®.

From CONCATENATED SYSTEM OF GLOBAL EQUATIONS we obtain

dv® ' ' o Y
FT (a16)® — ((a16)(2) — (@)@ + (a16)(2)(T17;t)) = (a17) P (Ty7, v P — (a;7)Pv@
Definition of v® :- y@ = G16
G17
It follows

2 dv @ 2
~ (@@ (@) + @)V - (0,)®) < 2= <~ (@)D (E@) + (0)PV® - (a;6)®)
From which one obtains
Definition of (¥,)@®, (vy)@ :-

GY _
(d) For 0 < (v))® = ﬁ < ()@ < ()@

@ ) > (Vl)(2)+(c)(2)(1/2)(2)e[7(1117)(2)((1/1)(2)7(1/0)(2))t] (C)(Z) ~ M
B 140 @e["@P(0DP-00@) ] ' ~ v0)®-wp)®
it follows (v)® < v@(t) < (v))®
In the same manner , we get
V(1) < TP+ D @[~ P (D -02) )] ©® = WP -e0®
- 1+©) @~ @DP(TDD - D) o] : — w®-®@
From which we deduce (vy)® < v®(t) < ()P
0
(e) If 0<(v)® < ()® = % < (1)@ we find like in the previous case,
—(a17)A ()@ - @
()@ < D +O O Vel (01 i <v®@) <

140 @[~ @DP (6D -2 @) ]
TP+ @) @e [—(a 17)(2)((71)(2)—(72)(2)) t]
14@©) @[~ @DNB (TP -T2 @) ]

< ()@

® o< )®< @) < (1)@ =% , we obtain

TO+©@ @y @ e~ @DNP(TDP-2P) ]
14© @ [-@NB(EDD - @) ]

And so with the notation of the first part of condition (c) , we have

Definition of v®(t) :-

m)@ < v@(©) < ()@, |vO(e) = 245
17

()@ < v@(p) < < (v)®
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In a completely analogous way, we obtain
Definition of u®(t) :-

1)@ < u®(©) < @)@, |u@(©) =248
Now, using this result and replacing it in CONCATENATED SYSTEM OF GLOBAL EQUATIONS we get easily the
result stated in the theorem.

Particular case :

If (ajs)® = (a;,)@, then (6,)® = (0,)® and in this case (v;)® = ;)@ if in addition (v,)® = (v;)@ then
v@(t) = (v,)@ and as a consequence Gy (t) = (Vo) @Gy, (1)

Analogously if (bjs)® = (b1;)@, then (1,)@ = (1,)® and then

(u)® = (@) Pif in addition (ug)?® = (u;)® then Tyx () = (uy)@ Ty, (t) This is an important consequence of the
relation between (v;)® and (v,)@®

: From CONCATENATED GLOBAL EQUATIONS we obtain

dv® , , ) )
= (azo)(3) - ((azo)(3) - (a21)(3) + (azo)(3)(T21' t)) — (a21)(3)(T21, v — (a21)(3)v(3)
Definition of v® :- 3 = gﬂ
21
It follows

2 dv® 2
~ (@)@ ) + (@) = (a0)P) < 2= < = (@)D (V@) + (@) OV = (00)®)

From which one obtains
GY _
(@) For 0 < (v)® = < (v)® < (1)@

G21
DD+ @y @@ (DD -0 @) ]

1+(0)®e [-@2® (1B -we)®)¢]

it follows (v)® < v®(t) < (v)®

In the same manner , we get

T+ @y P~ @DP(ED-02®) ]

1+ @@ (EDD-T2®) ]

Definition of (¥,)® :-

From which we deduce (vy)® < v®(¢t) < (#)®
0

(b) If 0<(V)® < )® = f}% < (1)@ we find like in the previous case,
21

_ @®-®

®
o= ~ 00®-0)®

, (C)(S)

_ o)P-®

3)
V(L) < " w)®-®

’ (5)(3)

)+ By @~ @D (D -02)®) ]
14(0)® e~ @2DP(eDE -2 P) ]

T OB @y~ @D (TP -2®) ]
14O @~ @2DP(EDE-T2P)) ]

0
©) If 0< ()@ < @)@ < ()@ =2, we obtain
21

)® < < V() <

< @)®

TP+ @@ "@2(TDP-2®) ]
14O @@ (D -2 P)) <]

And so with the notation of the first part of condition (c) , we have

Definition of v® (¢) :-

()@ < v () < ()@, [vO©) = 23
21

v)® < v < < ()@

In a completely analogous way, we obtain
Definition of u®(¢t) :-

E)P < @ < ()@, | @) =225
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (ay0)® = (a3;)®,then (6,)® = (6,)® and in this case (v;)® = (¥)® if in addition (v,)® = (v;)® then
vB (1) = (v))® and as a consequence G,, (t) = (Vo) P G, (t)

Analogously if (byy)® = (by)®, then ()@ = (1,)® and then

(u)® = (@) ®if in addition (ux)® = (u))® then Ty () = (uy)P Ty, (t) This is an important consequence of the
relation between (v;)® and (v,)®

: From GLOBAL EQUATIONS we obtain

dv® ' ' " "
pra (az0)® — ((‘124)(4) — (az5)® + (a2)® (Tys, t)) = (az5)® (Tys, OV — (ag5) v
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Definition of v(* :- @ = G
G2s

It follows
dv®

2 2
~ (@) (@) + (@)D = (0,)®) £ 2= < = (@) P (VD) + (0)Dv® = (@) @)
From which one obtains
Definition of ()™, (vy)® :-

0

@  For0<|()® =5 < )® < @)@
V(4)(t) = (v1)(4)+(C)(4)(vz)(4)g[_(azs)(4)((1/1)(4)—(1/0)(4))t] (C)(4) _ M

T W@ ® (0D -wo®) ] ' v @-)®
it follows (v)™® < v®(t) < (v))@
In the same manner , we get

, () ®(F D@ —

V(4)(t) < (71)(4)+(C)(4)(Vz)(4)g[ (az5)W(@NW-w2) )t] (5)(4) _ M

- 1+ (0@l @2)P(EDD-®) (] ' @ —wH®

From which we deduce (v,)® < v(‘;) ) < (@)W
(e) If 0< (V)W < (V)W = % < (1)@ we find like in the previous case,
25
@) (0B (g B [~@25) P (DB -2) D) ¢
(Vl)(4) < v1)"™+(C0) M (vp) 6[4 4( . ) ] < v(4)(t) <
140 @l ~@29 )P (0D -02)®) <]
_ ) (F D =@
D +HOD @)@l (E0H-e2 D) ] < (@)W
i _ (B -g,H@® =\
1+(C)(4)e[ (az5)M(TDW-G2®) ¢]
0

) If 0< )@ < @)® <|(vy)@ =%: , we obtain

YH (OB (v Pe [Fam®(en®-a2®) |
L+ (O ®e @29 (ED®-G2)®) ]

And so with the notation of the first part of condition (c) , we have

Definition of v®(¢) :-

(m)® < v () < ()@, [vP(©) = 25
25

)@ < VOO <& SO

In a completely analogous way, we obtain
Definition of u®(¢) :-
1)@ < u®© < (WP, [uP© = E3

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :
If (a4)® = (azs)®, then (6,)® = (6,)® and in this case (v,)® = (#)® if in addition (v))® = (v,)® then
v (1) = (v,)® and as a consequence G,4 (t) = (Vo)™ G,s () this also defines (vo)™® for the special case .
Analogously if (by,)® = (bys)®, then (1)@ = (1,)™® and then

(u)® = (@,)@if in addition (1)@ = (u;)® then T,,(t) = (uy)®T,5(¢) This is an important consequence of the
relation between (v;)® and (v,)®, and definition of (uy)®.

From GLOBAL EQUATIONS we obtain

dv® ' ' " .
pra (az)® — ((azs)(s) — (a29)® + (a8)® (T, t)) — (A39)® (Th, VO — (a59) PV
Definition of v® :- y® = Gz8
G29
It follows

dv®)

2 2
~ (@) ()" + @) — (0)®) £ 2= < = (@) (V)" + (6) S — (a,9)®)
From which one obtains

Definition of (#,)®, (vy)® :-

G _
@ For 0 <|(v)® = ﬁ < ()@ < @)®
V(S)(t) - (vl)(5)+(C)(5)(vZ)(5)e[_(a29)(5)((1/1)(5)—(1/0)(5)) ] (C)(S) _ D -)®
T 5@ (CDO-00®)] ' ) @—()®

it follows (v)® < v® () < (v)®

In the same manner , we get

(71)(5)4_(5)(5)(72)(5)8[—(a29)(5)((71)(5)—(72)(5)) f]
54(0)®)el @2 (DO -T2 ]

_ 71)5) — 5)
) — V> ~(o)
- © )& -)®
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From which we deduce (v,)® < v(i)(t) < (755)®
(h) If 0<(v)® < )® = % < (#,)® we find like in the previous case,
29
WD+ () ®el~@29 (D=2 ]
1+(C)(5)e[—(a29)(5)((v DE-2)®)¢]
(Vl)(5)+(5)(5)(;2)(5)e[—(a29)(5)((V1)(5)—(V2)(5))t]
1+(5)(5)e[—(a29)(5)((V1)(5)—(Vz)(5))t]

v)® < < vO() <

< @)®

0
(i) If 0< (1)® < (7)® <|(v)® =2 , we obtain
29

(gl)(5)+(@(5)(vz)(5)e[—(a29)(5)((V1)(5)—(172)(5))t]
1+(@(5)e[—(a29)(5)((71)(5)—(72)(5))t]

And so with the notation of the first part of condition (c) , we have

Definition of v®(t) :-

m)® < vO®) < (m)®, |vO () _ Gs®
Gog(t)

v)® < v < < (v)®

In a completely analogous way, we obtain
Definition of u®(t) :-

1)® < u® ) < W)@, |uO© =23
Now, using this result and replacing it in CONCATENATED GOVERNING EQUATIONS OF THE GLOBAL
SYSTEM we get easily the result stated in the theorem.

Particular case :

If (ay3)® = (a39)®, then (6,)® = (0,)® and in this case (v;)® = (¥)® if in addition (v,)® = (v5)® then
vOI(t) = (v))® and as a consequence G,g (t) = (Vo) G,o (t) this also defines (v,)® for the special case .
Analogously if (byg)® = (bye)®, then (t,)® = (1,)® and then

(u)® = (1)) ®if in addition (ue)® = (u;)® then Tyg(t) = (uy) > Ty (t) This is an important consequence of the
relation between (v;)® and (v,)®, and definition of (uy)®.

From GLOBAL EQUATIONS we obtain

dv(® ' ' o Y
A (az)® — ((a32)(6) — (a33)® + (az)© (T3, t)) — (a33)© (T35, v — (a33) Ov®
Definition of v® :- v® = &2
G33
It follows

dv(®

~(@)©O) + @)V = (@:)@) < = < = (@)@ V@) + @) Ov® - (a)®)

From which one obtains
Definition of (#,)(®, (v))® :-

. GY _
)} For 0 < |(v))©® = ﬁ < ()@ < (1)@

W) O+(0) O () ©e |~ @33) O (DO -0 @) ]
14(0)©)[~@3) (0 DO-00)®)]

it follows (v4)©® < v®(t) < (v)©®
In the same manner , we get

(©)© = DO -v)®

(6) -
vt = " w)©-(v)®

] a3 O ()@ p)® -
VO (1) < TDO+OO @)@l @3 (OO -T2 ) ] (€)© = T O-t0)®
B 140 ©e @3 (TDO -2 @) ] ' v0)©®-)®
From which we deduce (v)©® <v©®(t) < (¥,)®
0
(k) If 0<(v)® < (v)® = g% < (1,)©® we find like in the previous case,
33
—(a33)®) (v )OI —(v)(©)
()@ < e el TV
14(0) )| ~@3) @ (DO -02) ) ¢]
TO+(O)O @y ©e @3 (TDO-2)®) ] - (5.1®
1+(O)®[~@O(EDO-2®@) ] T @)
0
() If 0<()® < @) <|)® =% , we obtain

T+ O () O~ @33) O (TDO-2)®) ]
14(0)®)|~@3) (DO -T2 () (]

And so with the notation of the first part of condition (c) , we have

Definition of v©®(t) :-

(v)® < vO () < < (v)®@
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G32(t)
(m)® < vO©) < (m)©@, [vO(0) = 20

In a completely analogous way, we obtain
Definition of u©(t) :-

1)@ < @) < @)@, |u®(@) =245
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (a3,)® = (a33)®, then (6,)® = (6,)@ and in this case (v;)©® = (¥,)® if in addition (v4)® = (v;)© then
v®(t) = (v,)©® and as a consequence Gs (t) = (vo)©® G35 (t) this also defines (v,)© for the special case .
Analogously if (b3,)® = (b33)®,then (7,)©® = (1,)© and then

(u)® = (1) @if in addition (1y)® = (uy)® then Ty, () = (uy)®Ts3 (t) This is an important consequence of the
relation between (v;)® and (v,)(®, and definition of (u,)®.

We can prove the following

Theorem 3: If (a; )P and (b, ) are independent on ¢ , and the conditions (with the notations 25,26,27,28)
(a13)P(a1)® — (a33)P(a;)® < 0

(a13)(1)(a14)(1) - (a13)(1)(a14)(1) + ((113)(1)(1713)(1) + (a14)(1)(p14)(1) + (p13)(1)(p14)(1) >0
(b13) P (b1)® = (b13) P (b)) >0,

(b13) P (1) P = (b13) P (b1) D = (b13) P (11) P = (b1) P (1) P + (133) P ()P < 0

with (py3)®, (r4)® as defined are satisfied , then the system

If (a; )Pand (b; )® are independent on t , and the conditions

(a16)P(a17)® — (a36)P(a;7)® < 0

(‘{16)23 (a,17)((22)) - (a16)((22)) (a17)((22)) + (am)(z)(pm)(z) + (a17)(2)(P17)(2) + (P16)(2)(P17)(2) >0

(b16)"(b17)' — (b16)** (b17)** >0,

(b16)(2)(b17)(2) - (b16)(2)(b17)(2) - (b16)(2)(r17)(2) - (b17)(2)(7"17)(2) + (7”16)(2)(7”17)(2) <0

with (pys) @, (11,)@ as defined are satisfied , then the system

If (a; )P and (b; )® are independent on ¢ , and the conditions

(a20)® (a31)® — (a0)® (a)® <0

(a,zo)g (agl)((j)) - (azo)((;)) (a21)((33)) + (a20)® (020)® + (@20)® P21)® + 20)® (1) > 0

(b20)" (b21)™ = (b29)* (b)) > 0,

(béo)(3)(bé1)(3) - (bzo)(3)(b21)(3) - (blzo)(3)(7"21)(3) - (b’21)(3)(7”21)(3) + (7"20)(3)(7”21)(3) <0

with (py0)®, (1) as defined by equation 25 are satisfied , then the system

If (a; )P and (b; )™® are independent on ¢ , and the conditions WE CAN UNMISTAKABLY PROVE THAT:
(a24) ™ (@35)® — (a4)® (a5)™® < 0

(a24)® (azs)(4) — (a24)®(a25)™ + (a24)™ (20)™ + (azs)(4) (025)® + (220)® (025)® > 0

L N@D pl @) (4) 4)

(b24)"™ (by5)™ = (b24)** (b5)™ > 0,

(b24)® (bés)m — (b30)® (bz5)™ — ()™ (rp5)® — (blzs)m (r25)® + (14) @ (125)® < 0

with (p,4)®, (1,5)® as defined are satisfied , then the system

If (a; )P and (b; )™ are independent on ¢ , and the conditions

(a28)® (a29)® — (aze)® (aze)® < 0

(agg)ii (ag9)((§)) - (azs)((;)) (a29)(is)) + (azs)(s)(st)(s) + (a29)(5)(P29)(5) + (st)(s) (P29)(5) >0

(b25)"> (b39)"> — (byg)™ (b29)™ >0,

(bzs)(s)(bm)(s) - (bzs)(s)(bzra)(s) - (bzs)(s)(rw)(s) - (b29)(5)(rz9)(5) + (Tzs)(s) (Tz9)(5) <0

with (,5)®, (159)® as defined are satisfied , then the system

If (a; )®and (b; )® are independent on ¢ , and the conditions

(a32) @ (a33)® — (a3,)®(a33)® <0

(a32)E6; (‘133)((6)) - (a32)((6)) ((133)((6)) + (a32)©@ (32)© + (a33)© (p33)© + (932)© (p33)© > 0

(b32)® (b33)® — (b3,)® (b33)® >0,

(b32) @ (b33) @ — (b32)® (b33)® — (b3,) @ (r33)© — (b33)® (133)©@ + (13,) ) (133)@ < 0

with (p3,)©, (133)© as defined are satisfied , then the system

(a13)PGyq — [(@13) D + (@13) P (T19)]Gi3 = 0

(014)(1)613 - [(a}4)(1) + (a,1,4)(1)(T14)]Gl4 =0

(a15) P61y — [(@15)P + (a35) P (T19)] 615 = 0

(by3) VT — [(b;g)(l) - (b;,a)(l)(G) ITi3=0

(b)) VT3 — [(b;4)(1) - (b,1,4)(1)(G) Ty =0

(by5) DTy = [(bys) P = () V(G JTis = 0 _

has a unique positive solution , which is an equilibrium solution
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(a16)?@Gy7 — [(a,16)(2) + (a,1,6)(2)(T17)]G16 =0
(a17) @Gy — [(a’17)(2) + (a,1,7)(2)(T17)]G17 =0
(a18) P Gy7 — [(a19)@ + (a1) P (T17)]Gig = 0
(b16)PT17 — [(b16)® — (b16) P (G19) 1Ty = O
(b17)PTis — [(017)P = (1) P (G19) ITy7 = 0

(b18)(2)T17 - [(bis)(z) - (bgs)(z)(Gw) ITig =0
has a unique positive solution , which is an equilibrium solution for THE SYSTEM

(a20)® Gy — [(aéo)(3) + (ago)(g)(Tm)]Gzo =0
(az)® Gy — [(a’21)(3) + (a;1)(3)(T21)]G21 =0
(a)® Gy — [(aéz)(3) + (agz)(g)(Tm)]Gzz =0
(bzo)(S)Tm - [(béo)(S) - (b;o)(3)(623) 1Ty =
(b21)(3)T20 - [(b,21)(3) - (bg1)(3)(G23) 1T =

(bzz)(S)Tm - [(béz)(3) - (bgz)(3)(G23) 1T, = 0
has a unique positive solution , which is an equilibrium solution for THE HOLISTIC SYSTEM

(az) P Gys — [(a’24)(4) + (az)® (Tzs)]G24 =0

(a25)® Goq — [(a25)™® + (a35) ™ (Tp5)] G5 = 0

(a26) G5 — [(a,26)(4) + (aze)® (Tzs)]Gza 0

(b24)®To5 = [(20)® = (b2)®((G27)) T4 = 0

(b25)“To4 = [(b5)® = (b25)“((G27)) 1T35 = 0

(bza)(4)T25 - [(b,26)(4) - (bg6)(4)((G27)) [T = 0

has a unique positive solution , which is an equilibrium solution for the system HOLISTIC SYSTEM

(a26) ) Gzo — [(a26)® + (a26) ) (T39)] Gog = O

(a20)® G5 — [(a,29)(5) + (a;9)(5)(T29)]G29 0

(a30)Gzo = [(a30)® + (a30) (T39)]G30 = 0
0
0

o o

(bzs)(s)Tw - [(bés)(s) - (bgs)(s)(G31) ITys =

(b29)(5)T28 - [(bé9)(5) - (bg9)(5)(G31) 1Ty =

(b30)(5)T29 - [(béo)(s) - (bgo)(s)(Gm) T30 =0

has a unique positive solution , which is an equilibrium solution for the system (HOLISTIC SYSTEM)
(a32)® 633 — [(a32)® + (a32)©(T33)]G3, = 0

(a33) @63y — [(a33)® + (a33)® (T33)]Ga3 = 0

(a34)© Gz — [(a34)® + (a34) @ (T33)] G4 = 0
(b32)(6)T33 - [(béz)(G) - (bgz)(G) (G35) T3, = 0
(b33)(6)T32 - [(b§3)(6) - (b§3)(6) (G35) T3 = 0
(b34)(6)T33 - [(b§4)(6) - (b§4)(6) (G35) |Tsq =
has a unique positive solution , which is an equilibrium solution for the system (GLOBAL)

|
o

Proof:

(@) Indeed the first two equations have a nontrivial solution G5, Gy, if

F(T) =

(a13)P (a1)® - ((1_13)(1)((114)(1? + (a'13)(1)(a'1'4)_(1_) (Thg) + (a'14)(1)(a'1'3_)(1)(T14) + (a13) P (T14) (@1) P (T1) = 0
@) Indeed the first two equations have a nontrivial solution G, G;; if

F(Ty) =

(a16)P(a17)® = (a16) P (@17)® + (a16)® (@1) P (T17) + (@17) P (a16)? (T17) + (a16)P (T17) (a17) P (T17) = 0
(@) Indeed the first two equations have a nontrivial solution G, Gy, if

F(VT23) ol ’ r " r " " "

(a20)® (@21)® = (a20)® (@) + (20)P (@21)® (T1) + (a21)P (a20) P (T21) + (@20)® (T21) (321)P (Ty) = 0
(@) Indeed the first two equations have a nontrivial solution G4, G5 if
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F(Ty;) =
(a24)™® (a35)™® — (a24)® (a25)™ + (a2) P (a25) P (T5) + (a35)® (A20) P (T5) + (a24) @ (Tos5) (a35) P (Tp5) = 0
(a) Indeed the first two equations have a nontrivial solution G,g, G,q if
F(T5) =
(azs)(s)(aw)(s) - (028)(5)(6129)(5) + (azs)(S)(a29)(5)(T29) + (a29)(5)(a28)(5) (T) + (‘128)(5) (T29)(a29)(5) (Tr9) =0
(@) Indeed the first two equations have a nontrivial solution Gs,, G35 if
F(Ts55) =
(a3,) @ (a33)® = (a32)® (a33)©@ + (a32) @ (a33) @ (T33) + (@33)® (a32) @ (T33) + (@32) @ (T33) (a33) @ (T33) = 0
Definition_and uniqueness of Ty, :-
After hypothesis £(0) < 0, f(0) > 0 and the functions (a; )’(T,,) being increasing, it follows that there exists a
unique Ty, for which f(T7,) = 0. With this value , we obtain from the three first equations
Gia = (a13) V614 Gie = (a15) W64
BB a1 D+@iD(ry,)] 157 (1) D+(a15)D(14,)]
Definition_and uniqueness of Ty, :-
After hypothesis f(0) <0, f(e0) >0 and the functions (a; )®(T;,) being increasing, it follows that there exists a
unique Ty7 for which f(Ty;) = 0. With this value , we obtain from the three first equations
Goo = (a16)@G17 Gia = (a18)PG17
16 [(a16)P+(a1)P(Ti7)] 18 [(a18) P +(a15)P(T17)]
Definition_and unigueness of T;; :-
After hypothesis f£(0) < 0, f(e0) >0 and the functions (a; ) (T,,) being increasing, it follows that there exists a
unique Ty, for which f(T5;) = 0. With this value , we obtain from the three first equations
G = (a20)®6y4 G = (a22)® 6y
20 [(a20)®+(az0)®(T51)] ’ 22 [(a22)®+(az)®(731)]
Definition and unigueness of Tys :-
After hypothesis f(0) <0, f(0) >0 and the functions (a;')(‘”(Tzs) being increasing, it follows that there exists a
unique Tys for which f(T;5) = 0. With this value , we obtain from the three first equations
G = (a2)W65 (a26)P 635
2T [(az)®Haz) D (155)] [(a26)®+(az6)® (155)]
Definition_and uniqueness of Ty :-
After hypothesis £(0) < 0, f(e0) >0 and the functions (a; ) (T,) being increasing, it follows that there exists a
unique Tyy for which f(Tyy) = 0. With this value , we obtain from the three first equations
G = (a28) 629 (a30)®)629
28 [(a28) S +(aze)D(T35)] [(a30)®+(az0)®(T39)]
Definition_and uniqueness of T35 :-
After hypothesis £(0) < 0, f(e0) >0 and the functions (a; ) (T33) being increasing, it follows that there exists a
unique Ty3 for which f(T35) = 0. With this value , we obtain from the three first equations
Goy = — (a32)(f)033 , (a34)(i)033
32 [(a32)©O+(az)O(155)] [(a34)©®)+(az4)(©(753)]
(e) By the same argument, the equations(SOLUTIONALOF THE GLOBAL EQUATIONS) admit solutions
(P(q) = (b1”3)(1)(b14)(1) - (b13)(lll) (b)) — } )
[(613) P (b1) P (6) + (b1) P (b13) D (®)]+(b13) P (6) (b1) P (G) = 0
Where in G(G,3, Gy4,Gy5), Gi3, G5 must be replaced by their values It is easy to see that ¢ is a decreasing function in
G4 taking into account the hypothesis ¢(0) > 0,¢() < 0 it follows that there exists a unique Gy, such that
9(G) =0
j] By the same argument, the equations 92,93 admit solutions G, G;7 if
CP(Gm) = (”b16)(2)(b17)(2) - (b16)(i) (b17)(2) - ., .,
[(b16)(2)(b17)(2)(619) + (b17)(2)(b16)(2)(Gl9)]+(b16)(2)(619)(b17)(2)(619) =0
Where in (Gy4)(Gyg, G17, G1g), Gy, Gig must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G, taking into account the hypothesis @(0) > 0, @(c0) < 0 it follows that there exists a unique G;, such
that p((G19)*) =0
(9) By the same argument, the equations 92,93 admit solutions G,, G,; if
9"(?23) = (on)(g)(bn)m N (bzo)(i) (b21)(3) - . .
[(bZO)(g)(bH)B)(GZB) + (b21)(3)(bZO)(g)(GZ3)]+(b20)(3)(623)(b21)(3)(623) =0
Where in Gy3(Gyg, Go1,Gy2), Gog, G, Must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G,, taking into account the hypothesis @(0) > 0,¢@(c0) < 0 it follows that there exists a unique G5, such
that p((G,3)") =0
(h) By the same argument, the equations SOLUTIONAL SYSTEM OF THE GLOBAL EQUATIONS admit
solutions Gy, G5 if
9"(?27) = (Pz4)m (bas)™ - (b24)(‘:) (bys)™® — } )
[(D20)® (b35) P (Gy7) + (b35)® (b34) ™ (G27)|+(b3) P (G27) (b35) P (G7) = 0
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Where in (G,7) (G4, Gos, Gog), Gaa, G, Must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G,5 taking into account the hypothesis @(0) > 0,¢(c0) < 0 it follows that there exists a unique G, such
that 9 ((G7)") =0

(1) By the same argument, the equations SOLUTIONAL SYSTEM OF THE GLOBAL EQUATIONS admit
solutions G,g, Gy if

¢(G31) = (bés)(s)(bé9)(5) - (bzs)(s)(bw)(s) -

[(028) 5 (b20) ) (G31) + (b29)® (b2)® (G31)]+(b25) (G31) (b39)®(G31) = 0

Where in (G31)(G,g, Go9, G3o), G,g, G3o Must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G,4 taking into account the hypothesis ¢(0) > 0,¢(o0) < 0 it follows that there exists a unique G4 such
that ((G31)") =0

()] By the same argument, the equations SOLUTIONAL SYSTEM OF THE GLOBAL EQUATIONS admit
solutions Gs,, G5 if

@(G3s) = (b3) @ (b33)® — (b3,) @ (b33)® —

[(B32)® (b33)® (G35) + (b33) @ (b32)® (G35)]+(b32)© (G35) (b33) @ (G35) = 0

Where in (G35)(Gsy, G33, G34), G35, G34 must be replaced by their values It is easy to see that ¢ is a decreasing function
in G;3 taking into account the hypothesis ¢(0) > 0, () < 0 it follows that there exists a unique Gs3 such that
p(G)=0

Finally we obtain the unique solution of THE HOLISTIC SYSTEM

Gy4 givenby ¢ (G*) = 0, T}, given by f(T},) = 0 and

G = (a13)M61y * (a15)161y

B 7 @) D+@n®(ri)] T T [(@1)D+ahs) D (1))
T — (b13) Ty T — (b15) D1y

13 b

T [ D—) DG 17 015 W-015) D (6]
Obviously, these values represent an equilibrium solution of THE GLOBAL SYSTEM OF GOVERNING
EQUATIONS
Finally we obtain the unique solution of THE HOLISTIC SYSTEM
Gi7 givenby @((G19)*) = 0, Ty; given by f(Ty7) = 0 and

G = (a16) P61y G = (a18)P6iy

16 [@16) @+ 1)@ (ri7)] 18 (@110 )]
b16)®)T} b1g) @) T}

T = (b16)'“'T1y R (b1g)'*’ Ty

[016)@ -1 @ (619)7)] 187 [019)@-018) P (G19)7)]
Obviously, these values represent an equilibrium solution of THE HOLISTIC SYSTEM
Finally we obtain the unique solution of SOLUTIONAL EQUATIONS OF THE GLOBAL SYSTEM
G, givenby p((G,3)") = 0, T3 givenby f(T3;) = 0 and

Gi = (a20) 63 G = (a22)63

207 [(ap)®+@)@(T51)] ' 22 T [(ag)®+az)®(T5)]
T — (b20)®15; TE = (b22) P15

20 — ’ 22 —

[(b20)®)~(b20)® (G23] [(22)®)~(b22)®) (G237)]
Obviously, these values represent an equilibrium solution of THE GLOBAL GOVERNING EQUATIONS
Finally we obtain the unique solution of SOLUTIONS FOR THE GLOBAL GOVERNING EQUATIONS

G;s givenby ¢(G,;) = 0, Tys givenby f(T;s) = 0 and

G* — (a24)(4)62*5 G* — (aZG)G)GES
27 [(a2)W+@z)®(135)] T 20 T [(a26) P +(az6)®(155)]
(b24) T35 (b26) T35
Ty = , Tz =

T 02D -3 (627)")] [(b26) P =(b26) P (G27))]

Obviously, these values represent an equilibrium solution of GLOBAL GOVERNING EQUATIONS
Finally we obtain the unique solution of THE HOLISTIC SYSTEM

Gy given by @((G31)*) = 0, Tyy givenby f(T5,) = 0 and

G = (a28)® 639 Gi = (a30)®639
28 7 [(azg) D +(az)®(T50)] ' 30 T [(a30)®+(az0)®)(T5)]
Tr — (b28) T34 TE — (b30) )T
28 — ’

[(526)® =) ((G31)")] 307 [(h30)®~(b30)® ((631)")]
Obviously, these values represent an equilibrium solution of THE HOLISTIC SYSTEM
Finally we obtain the unique solution of SLOUTIONAL EQUATIONS OF THE CONCATENATED EQUATIONS
G35 givenby @((G35)*) = 0, T55 given by f(T53) = 0 and

GE = (a32)®635 GEl = (a34)©635
32 7 [(ag)®+@3)©@(133)] 3 T [(a30)©+(az4)©(T53)]
(b32) T3 (b3) T3
T3, = v T3y =

T 3 ©- 3@ (G35)7)] [(b3)©—(b3)© (G35)")]
Obviously, these values represent an equilibrium solution of the GLOBAL SYSTEM
ASYMPTOTIC STABILITY ANALYSIS
Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a;, )*’ and (b, )™ Belong to
CD(R,) then the above equilibrium point is asymptotically stable.
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Proof:_Denote

Definition of G;, T; :-
G, =G + G I, =T+ ’]l‘
il a ) 6(b )( )
%(m) = (@)® o= (6) =,

Then taking into account equations OF SOLUTIONALEQUATIONS OF THE GLOBAL SYSTEM and neglecting the
terms of power 2, we obtain

L8 = (@)D + (1)) Gz + (013) VG — (@13) V63T,
df;tm = _((all‘*)(l) + (p14)(1))((314 + (a14)(1)G13 - (Q14)(1)G1*4T14
d%s = —((a15) P + (p15)P)Gy5 + (15) PGy — (q15) V615 Ty
D = (1)~ (15) D) Tys + (i) Vs + 51545 (5056 T3 G;)
Dot (b)) D = (1) V) Ty + (1) DTy + T3 (501076 Tir G)
s = (1)~ (i5) D) Tys + (1) Vs + 51545 (5051 Ti5 G;)

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to C®( R,) then
the above equilibrium point is asymptotically stable

_Denote

Definition of G;, T; :-

G =G +G T =T +T,

%(Tﬁ) = (CI17)(2) ) u((67‘19) )= Sy

dg% = —((@e)® + (p16)(2))(G16 +(a16)PGy7 — (q16) PG Ty
dg% = —((@)® + @1))?)Gy7 + (a17)P Gy — (q17)PGi; Ty
dg% - _((a,18)(2) + (p18)(2))G18 + (als)(Z)Gn - (Q18)(2)G;8T17
d:% = —((b16)® = (116) @) T + (1) PT17 + X}216(s6)) Ti6 ;)
d:% = —((017)?® — ) P)Ty7 + (1) DTy + X116 (sany Ti7 G )
d:% = —((b19)® — (1g) @) Tig + (h1g) DTy + X116 (8 Tis G )

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )®® Belong to C®(R,)
then the above equilibrium point is asymptotically stable

Denote
Definition of G;, T; :-

G=G+G,  T,=T +T,

F] (€ ) ab;

0 (1) = (@0 (G ) =,

dG /
—= _((azo)(3) + (p20)P) Gy + (020)8)«521 — (420)®G3, Ty
dG / )
- = ~((@20)® + (P20)P) Gy + (a21)P Gy — (421)P 631 Ty
dG / \
- = ~((a22)® + (P22)P) Gz + (a22) P Gy — (422)P 63, Ty
dT, ’ *
=2 = —((b20)® — (1) P) T + (b2) DTy + Ei220(520)) T50 ;)
dT, ’ *
721 = —((02)® = (1)) Ty + (b)) P Ty + ijizo(s(zng)TnGj)
dT, ’ *
722 = —((02)® = () )Ty, + (b)) DTy + ZJZEZO(S(ZZ)U‘)TZZGj)

If the conditions of the previous theorem are satisfied and if the functions (a; )™ and (b; ) Belong to C®(R,)
then the above equilibrium point is asymptotically stabl

Denote
Definition of G;, T; :-

G, =G + G T-=T*+']I‘

"(“25)( LT3 = (g)® |, 22 )( WO (6y) ) = s,
d(:% = —((a24)(4) * (p24)(4))(G24 + (a24) PG5 — (q2) M G5, Ts
d(;% = —((az5)™® + 25)®) G5 + (a25) P Gps — (425) G35 Ts
T2 = —((@26)® + (P26)®) Gz + (a26)PGigs — (926)“ G5 Ts
d:{% = —((2)® = (12) ) Ty + (b2)PT5 + 212624(5(24)(j)T2*4 G)
d:iri = —((bys)™® = (125) ) 5 + (b25) DTy + X: 24(5(25)(1)T25(G' )
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dT26

pr ~((B26)® = (ra6)®)T26 + (bo6) PTos + X7224(526)0) 26 ;)
If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to C®(R,)
then the above equilibrium point is asymptotically stable

_Denote
Definition of G;, T; :-

GiZGi*‘l'(Gi ,Ti=Ti*+']Tl-
2@@39)® ., 90 )® .
%(ng) = (q29)® a—(;j((G31) ) =5
dGyg

P —((@20)® + (028)®) Gizg + (a28) P Grg — (q26) G35 To

28 = —((@2)® + 120)®) G + (a29) G — (429) PG50 Tz9
d:l;% = _((a,30)(5) + (p30)(5))G30 + (az0)®Gao — (q30)® 63 Tyo
% = —((b36)® — (r2) )Ty + (bpg) Ty + 213228(5(28)0)7?8 (G]-)
T2 (159 = (1)) T0 + (b39) VT + T (5090 T3 G;)
T = (30)® — (r30) @) T + (b30) T + T (5300, 50 G )

If the conditions of the previous theorem are satisfied and if the functions (a; ) and (b; )® Belong to C®(R,)
then the above equilibrium point is asymptotically stabl

_Denote

Definition of G;, T; :-
Gi=Gi*+(Gi ,Tl-=Tl-*+']Tl-
2(a33)® .. (b ) .
%(Qﬁ =(q5)® , a—(;j((G35) ) =5

d:’% = _((a,32)(6) + (p32)(6))G32 + (a32)(6)G33 - (CI32)(6)G§2 T33
dg% = —((@3)@ + (033)©)G33 + (a33) @Gz, — (33) 633 T3
d(;% = —((@3)© + (03)©) G4 + (a34) @ G33 — (q34) @63, T3
d:% = —((b5)©@ = (r3) @) T3, + (b3) T35 + X343, (532)) T2 G;)
dj% = —((b3)© = (r33) @) T35 + (b33) T3, + X343, (5633)) T5:.G;)

dT ' .
734 = _((b34)(6) - (T34)(6))T34 + (b34)(6)T33 + 2}3132 (5(34)U)T34«;’]‘)

The characteristic equation of this system is

(DD + B1)® = Gi)OHDD + (@)D + (15) ™)

[(((/1)(1) + (a13)® + 13)P) (1) V6h + (@)D (@13) 61 )]

(((/1)(1) + (b13)® — (13) D) sayan T +(b14)(1)5(13),(14)T1*4)

+ (((/1)(1) + (a1)® + 1) V) (q1) V615 + (a13)(1)(q14)(1)6{‘4)

(((/1)(1) + (b13)® = (1) D) sy an Tia + (b14)(1)5(13),(13)T1*3)

(((/1)(1))2 + (@)™ + (@) + 1) + (1)) (}L)(l))

(WD) + (bi)® + Bi1)® = (1) + (1)) (DD

+ (((/1)(1))2 +((@3)® + (@)™ + (1) + (p1) ™) (}L)(l)) (015) VG5
+H(DD + (a1)® + (013)P) ((a15)P (@) V67 + (@1) P (a15) P (q13)V613)

(((/1)(1) + (b13) W = (1)) s a5 T +(b14)(1)5(13),(15)T1*3)} =0
+

(DD + (1) — () PN (P + (@15)® + (15)P)
[(((/1)(2) + (a16)@ + (016)?) (q17)Gi; + (a17)(2)(Q16)(2)G;6)]
(((/1)(2) +(b16)® = (116)®)san,anTi7 +(b17)(2)5(16),(17)Tf7)
+ (((/1)(2) +(a17)@ + (017)?) (q16) PGl + (a16)(2)(Q17)(2)GI7)
(((/1)(2) +(b16)? = (16)®)san,ae Ti7 + (b17)(2)5(16),(16)Tf6)
(W) + (@)@ + @) + Pi)@ + @1)?) DD)
(((/1)(2))2 +((016)? + (b17)® = (1)@ + (117)®) (A)(Z))
+ (((/1)(2))2 +((@16)® + (@)@ + (p16)® + (21)?) (A)(Z)) (9:18) PGy
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+(OP + (@16)® + (916)?) (A1) P (@17)PGi7 + (a17)P (a15) P (q16) P Gi6)

(((/1)(2) +(b16)® — (116) @) 517, a8 Ti7 +(b17)(2)5(16),(18)Tf6)} =0
+

(P + (02)® = () PN(DP + (a2)® + (p22)P)

[(((/1)(3) + (a20)® + (920)) (421063, + (a21)(3)(QZ0)(3)G2*0)]

(((/1)(3) + (byo)® — (7”20)(3))5(21),(21)T2*1 +(b21)(3)5(20),(21)T2*1)

+ (((/1)(3) + (a20)® + (21)9)(920)P G50 + (azo)(3)(QZ1)(1)G2*1)

(((/1)(3) + (by0)® — (7”20)(3))5(21),(20)T2*1 + (b21)(3)5(20),(20)T2*0)

(((/1)(3))2 + ( (a20)® + (a20)® + (20)® + (p21)(3)) (/1)(3))

(WD) + (B3P + (b3)® = (0P + (1)) WD)

+ (((/1)(3))2 + ((a20)® + (@200 + (020)® + (21)P) (A)G)) (422)%Gyy
+((/1)(3) + (aéo)(3) + (on)(B)) ((azz)(3)(QZ1)(3)G2*1 + (a21)(3)(azz)(”(%o)(”GEO)

(((/1)(3) + (byo)® — (Tzo)(3))5(21),(22)T2*1 +(b21)(3)5(20),(22)T2*0)} =0
+

((/1)(4) + (bye)® — (T26)(4)){((/1)(4) + (az6)® + (pza)(4))
[((DD + @20)® + @209 (425) P55 + (a25) P (026) P63 )]
(((/1)(4) + (b,24)(4) - (Tz4)(4))5(25),(25)T2*5 +(b25)(4)5(24),(25)T2*5)
+ (((/1)(4) + (aés)(4) + (pzs)(4))(CI24)(4)G2*4 + (a24)(4)(q25)(4)02*5)
(((/1)(4) + (byg)® — (T24)(4))5(25),(24)T2*5 + (bzs)(4)5(24),(24)T2*4)
(W) + (@)™ + (@)@ + @) + P25)®) W®)
(@D + (20D + B3)® = ()@ + (155)®) (D)
+ (((/1)(4))2 + (@)™ + (a55)® + (P20 + (925)?) (A)G)) (926)™ G
+((/1)(4) + (a’24)(4) + (P24)(4)) ((026)(4) (QZS)G)GZ*S + (azs)(4) (a26)(4) (QZ4)(4)GZ*4)

(((/1)(4) + (b24)® = (124)®)5(25),26) T25 +(b25)(4)5(24),(26)T2*4)} =0
+

(DD + 030)® = (3)P) (DS + (a30)® + 30)®)
[(((/1)(5) + (a26)® + (28)) (29)G39 + (a29)(5)(q28)(5)62*8)]
(((/1)(5) + (b26)® — (126)®)5(29),29) T3 +(b29)(5)5(28),(29)T2*9)
+ (((/1)(5) + (a20)® + (929)) (425) G35 + (azs)(s)(CIz9)(s)G§9)
(((/1)(5) + (b28)® — (126)®)5(29) 28y T30 + (b29)(5)s(28),(28)T2*8)
(W) + (@) + (@) + ) + (20)®) D)
(W) + (B + (b30)® — () + (126)®) W)
+ (((/1)(5))2 +((a26)® + (a20)® + (p26)® + (020)®) (/1)(5)) (430)®G3
+H(D® + (a28)® + (026)®) ((a30)®(G20) G + (a29)® (a30)® (426) P G35)

(((/1)(5) + (b2e)® = (128))5(29),30) T +(b29)(5)5(28),(30)T2*8)} =0

E—(/l)(@ +(b3)©@ = 3)ON(D® + (a30)@ + (3)®)

[(((/1)(6) +(a32)®@ + (p32)©) (433) @ G35 + (a33) @ (932) @63, )]

(((/1)(6) + (b32)® = (r3)©) 533,33 T3 +(b33)(6)5(32),(33)T3*3)

+ (((/1)(6) +(a33)@ + (p33)©) (432) G35 + (a3)© (Q33)(6)G3*3)
(((/1)(6) + (b32)®@ = (13) @) s(33),32) T + (b33)(6)5(32),(32)T3*2)

((WO) + (@)@ + (@)@ + P3)© + (p3)@) WD)
((WO) + (B5)® + (b3x)® — (3)@ + (135)@) (H®)
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+((WO) + (@)@ + (@)@ + @)@ + 03)@) D) (4364
+((’1)(6) + (az)© + (p32)(6)) ((034)(6) (q33)© G35 + (a33)® (az)©® (Q3z)(6)63*2)

(((/1)(6) + (b32) @ — (132)©)5(33),3) T3 +(b33)(6)5(32),(34)7‘3*2)} =0
And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves the
theorem.
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