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Abstract : This paper presents the kinematics and stiffness 
analysis of flexible parallel manipulators. As a primary step, 

the forward kinematic solutions are obtained using soft 

computing approaches based on Genetic Algorithms (GAs) 

and Neural networks (NN) and workspace configuration is 

arrived. The Jacobian and platform stiffness matrices are 

evaluated within the defined workspace. The flexible link 

configuration with compliant joints is analyzed using a pseudo 

rigid-body model. The revolute joint compliance is considered 

with narrow rectangular flexure hinges which are idealized as 

equivalent torsional springs in pseudo rigid-body model. 
Having the defined link dimensions and joint cross-sections at 

any configuration, the model is discritized with frame and 

plate elements and the assembled system is analyzed statically 

and dynamically. The methodology is illustrated with 3-RRR 

flexible parallel manipulator and the results are compared with 

commercial software solution. 

 
Keywords: Kinematics, Workspace, Flexible links, Forward 

kinematics, Pseudo rigid body model. 

I. Introduction 
Nowadays parallel manipulators have become an 

attractive topic of interest in several applications, such as 

machine tools, motion simulators, micro robots, medical 

devices and physical sensors, due to their intrinsic advantages 

in the factors of payload, stiffness, accuracy, operational 
velocity and acceleration. Parallel manipulators which are 

closed kinematic structures composed of two platforms 

interconnected by few links. The top platform (referred to as 

end-effector) is the mobile one controlled with respect to the 

base platform through variable link lengths to obtain the final 

position and orientation of the end-effector. The inverse 

kinematics of such manipulators, which maps the task space 

to the joint space, is a straight-forward problem; while the 

direct kinematics is often complex involving multiple 

solutions in Cartesian space. Direct kinematics is concerned 

with the determination of the end-effector pose from the given 

set of link lengths or joint angles. It has no closed form 
solution since it involves solving a series of simultaneous 

nonlinear algebraic equations and non-unique multiple set of 

solutions referred to the assembly modes, are obtained from 

one set of data. 

Several approaches have been proposed for the 

forward kinematics of such manipulators. The analytical 

approach formulates a system of nonlinear equations and then 

converts it to a high degree univariate polynomial which can 

be solved by numerical techniques. It has been shown that for 

the most general parallel manipulators, this approach leads to 

a polynomial of degree 40, resulting in 40 distinct solutions 

[1-2]. However, the challenging problem is not to find all the 
solutions, but to directly determine a unique solution among 

all possible solutions. Two approaches achieve this 

requirement, namely the iterative approach and the use of 

additional sensors [3-5]. These approaches have their own 

disadvantages in terms of complexity and cost. The Jacobian 

matrix of the system [6] is also of importance in static 

analysis and velocity kinematics, which in turn required in 

trajectory control tasks.  

In practice, the functionality of linkage would be 

drastically affected by treating the closed-loop assembly as a 

compliant mechanism. Monolithic skeleton joining all the 

links with narrow cross sectional segments forms such 
compliant mechanism. There are several advantages of these 

compliant mechanisms and many studies [7-8] revealed the 

analysis of such compliant parallel linkages. The workspace 

characteristics, including total (or reachable) and primary (or 

dexterous) spaces and the singularity characteristics are also 

important factors in design as well as control coordination of 

parallel manipulators. The total workspace is the region over 

which the end-effector can reach with at least one orientation, 

whereas the primary workspace is that the end-effector can 

reach with all orientations [9]. Many researchers have 

addressed the workspace analysis of parallel manipulators and 
the predominant approach used as seen in the literature in 

general, has been a geometric mapping. For example, the 

boundary of the dexterous workspace for a 3-degree of 

freedom (DOF) planar parallel manipulator was determined 

by using screw theory [10] and geometric reasoning [11-12]. 

For a broader class of parallel manipulators, a study to 

classify the various shapes of workspace due to changes in 

link lengths was reported in [13] and a formulation of an 

architecture-independent method based on kinematic mapping 

can be found in [14].  The manipulator sometimes looses 

degrees of freedom at some inverse kinematic singularities 

within the workspace. It is shown that at these instants 
stiffness of manipulator reaches a maximum value. Several 

recent works focused on such studies to improve the 

effectiveness of the manipulation.  

In this line, the present work deals with forward and 

inverse kinematics, workspace and stiffness analysis of 

parallel manipulators. The forward kinematics solutions are 

obtained numerically by minimizing the squared-error defined 

in terms of Cartesian pose vector and the solutions are 

validated with radial-basis function neural network outputs. 

Jacobian matrix at a particular platform pose is then obtained 

and platform stiffness matrix is determined. For the analysis 
of the link-flexibility and joint compliance effects, a finite 

element model is proposed with frame and plate elements 

Stiffness Metrics for Design of 3-RRR Flexible Manipulator 
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along with equivalent torsional stiffness at the joints. This 

facilitates in evaluation of changes in platform stiffness 

matrix of manipulator. The stiffness indices are validated with 

commercial finite element code. The paper is organized as 
follows: Section-2 deals with the mathematical modelling of 

illustrated 3-RRR planar parallel manipulator and various 

indices to represent the kinematic characteristics along with 

an introduction to the proposed FE model. Section-3 describes 

the results and discussion.  

II. Mathematical Modelling 
The 3-RRR is a three degree-of-freedom planar 

parallel manipulator. It has a mobile platform and three R-R-

R serial chains that join it to a fixed base. Each chain is 

composed by three rotational revolute (R) joints. As shown in 

Fig.1, the point P(x,y) is the end-effector position in the 

global reference frame and ϕ be its orientation. The point O is 

the origin of the fixed reference frame and the points Ai, Bi, 

Ci, with i=1,2,3, define the rotational articulations of each 

limb. Points Ai are actuated, so that the actuators are fixed to 

the base. Thus, the three fixed pivots A1,A2 and A3 define the 

geometry of a fixed base and the three moving pivots C1,C2 
and C3 define the geometry of a moving platform. Together, 

the mechanism consists of eight links and nine revolute joints.   

In the programming of a robot manipulator, typically a set of 

desired positions and orientation, and perhaps the time 

derivatives of the positions and orientations of the end-

effector are specified in space. The problem is to find all 

possible sets of actuated joint variables and their 

corresponding time derivatives which will bring the end-

effector to the set of desired positions and orientations with 

the desired motion characteristics. This process is known as 

inverse kinematics. On the other hand, sometimes the actuated 
joint variables and possibly their time derivatives are obtained 

from reading of sensors installed at the joints, from which all 

possible sets of end-effector positions and orientations and 

their corresponding time derivatives are obtained. This 

procedure is called direct or forward kinematics. The closure 

loop equations are extremely important in order to analyze 

and solve these kinematics problems of parallel robots, as 

they implicitly include the constraints of the mechanism. For 

direct kinematics of a 3-RRR manipulator, Gosselin [15] 

showed that a maximum of six solutions are possible. 

However, due to the trajectory tracking procedure, only one of 

the solutions is deemed to be correct. Kinematics problems 
can be solved by various methods such as geometric vector 

analysis, matrix algebra, direct search and screw-theory. 

2.1   Inverse Kinematics  

Inverse kinematics of 3-RRR is a straight-forward problem, 

which is an essential step for the velocity kinematics [16-17]. 

The base coordinate frame O-X0-Y0 shown in Fig. 1 is fixed at 

joint A1 and a moving or mobile coordinate frame P-X-Y is 
attached at the center of the moving platform. Let a and h 

denote the width of the base and moving platforms 

respectively. It is also assumed that the length of each link in 

the limb as l. 

 

 

 

 

 

 

 

 

 

Fig.1 Schematic of 3-RRR Planar Parallel Manipulator 

 

The position vector of point Bi (i=1,2,3) in the base coordinate 

frame can be expressed as 

 

           (1) 

 

where rAi and rBi are the position vectors of joint points Ai and 

Bi. Also, θAi are rotation angles of links AiBi. The position 

vector of Ci can be written as                

 

=              (2) 

 

Here again, rp is the position vector of P with respect to base 

coordinate frame O-X0-Y0 and rp
ci is the position vector of Ci 

in the mobile frame P-X-Y, [R]= 







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

cossin

sincos
is the 

rotation matrix for transforming the coordinate system P-X-Y 

to O-X0-Y0 and θBi is the rotation angle of links BiCi. The 

constraint equation associated with the ith kinematic chain can 

be expressed as a second-order norm given by: 

 

= l, i=1, 2, 3  (3) 

 

These are three equations in-terms of actuation degree of 

freedom Ai for given set of coordinates of P and they 

correspond to workspace space circles. The above equation 
(3) can be written as  

 

e1i sin Ai + e2i cos Ai + e3i =0            (4) 
 

Based on equation above equation, the inverse kinematics 

solution for 3-RRR mechanism can be expressed as  
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e21= -2l                                                                            (7) 

e31=                  (8) 

e12=-2l                                                    (9)  

e22=-2l                                          (10) 

 e32=  

                                    (11) 

e13=-2l                                          (12)                                     

e23=-2l                                                    (13) 

e33=                           (14) 

 
Taking the time derivative of the Eq. (3) leads to:  
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Where 

 

                                                    (16) 
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Q13=  

                                                                               (19) 

Q23=                      (20)                         

 

 Q33=                                       (21) 

 

Equation (15) can be written as: [Jq]{ }=[JX]{ } with [Jq] 

and [JX] as two Jacobian matrices; one giving the condition 

for direct singularity problem and other gives that of the 

inverse singularity states. 

 

2.2 Forward Kinematics Solutions 

The investigation of forward kinematics issue is 

important and practical for the manipulation and control of the 

pose of the parallel manipulator. In present paper, two soft 

computing tools are proposed based on (i) minimization of 

positional error of platform joints and (ii) integrating a neural 
network with inverse kinematics model. Referring to Fig.2, if 

the six input angles and all the link-lengths are specified, the 

positions of points Ci are calculated from the following 

equation [18]:   

+ , 

                               + ],                  i=1, 2, 3  

              (22) 

 

 

 

 

 

 

 

Fig.2 Connectivity of point C1 in one limb 

On the other hand, the real coordinates Ci, real, are obtained 

from a set of Cartesian pose vector (x, y and ϕ) of the table 

centre according to the following inverse relations: 

                                                                                                                                                                                                                                                                                            

                                                                               (23) 

     

       (24) 

                                  (25) 

The connectivity error f= , between the 

two sets of points Ci,real and Ci  constitutes the objective 

function to be minimized. When this error is close to zero, the 

manipulator achieves a desired position and orientation of the 

mobile platform. In present work, binary coded genetic 

algorithms (GA) approach is used to obtain the optimum 

solution. GA [19-20] is computational method meant to solve 

complex and nonlinear optimization problems. They are 

inspired by the genetic processes of living organisms. In 
nature, individuals of a population compete for basic 

resources. Those individuals achieving better surviving rates 

have higher probabilities to attract possible partners and to 

generate descendants. As a consequence, best adapted 

individuals’ have higher chances to be passed on to the next 

generations. GA, in order to emulate this behavior, works 

with a population of individuals. Each individual represents 

the possible solution of a problem (for example the best set of 

features to identify disruptions). The quality of each 

individual in evolutionary terms is evaluated on the basis of a 

fitness function. A higher probability to have descendants is 
assigned to those individuals with better fitness functions. The 

most promising areas of the searching space are explored by 

favoring the crossing between the better adapted individuals.  

Neural networks are noted for the ability of complex 

functions learning and relationship building, which led to 

their extensive applications including pattern classification, 

function approximation and optimization. They can be 

utilized to address the forward kinematics problem of parallel 

manipulators. As the solution of inverse kinematics problem 

for parallel manipulators is simpler than forward kinematics 

problem, neural network addresses the forward kinematics 

model through the use of inverse kinematics solution. 
Training set for neural network is selected out of the set of 
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inverse kinematics solutions. Discrete points of each actuated 

joint are taken as inputs and corresponding poses about the 

motion of platform center are considered as outputs. The 

neural network is trained using the above off-line training set 
and gives the solution of the forward kinematics model. In 

present work, conventional radial basis function network [21] 

with a nonlinear hidden layer and a linear output layer is 

employed. Each of the units in hidden layer applies a fixed-

feature detector which uses a specified kernel function 

(Gaussian) to detect and respond to localized portions of the 

input vector space. The network output is a weighted linear 

summation of the output of the hidden neurons. This network 

is a universal function approximates that demonstrates more 

robustness and flexibility than traditional regression 

approaches such as polynomial fits. Fig.3 shows the proposed 

methodology of solving forward kinematics. 
 

2.3 Workspace of the linkage 

An important characteristic of a parallel manipulator 

is its workspace. Several types of workspaces have been 

proposed, such as the constant orientation workspace, the 

maximal workspace, the inclusive maximal workspace, and 

the dexterous workspace. The constant orientation workspace 

of a planar parallel mechanism can be found as the 

intersection of annular regions corresponding to the reachable 

workspaces of its kinematics chains. 

 

The equations of workspace circles can be expressed as [16]: 

(x+Cixcos  - Ciy sin  -Aix)
2 + (y + Cix sin   

+ Ciy cos  -Aiy)
2 =(l1  l2)

2      (26) 
 

Here l1 and l2 are the lengths of links AiBi and BiCi 

respectively. The prime  indicates that coordinate 
measurement is with respect to mobile frame of reference. 

Thus, workspace essentially depends on x,y and . If l1  l2, 

there are two concentric circles correspond to every center. In 

practice, the link lengths are taken identical in most of the 

cases. 

 

2.4 Jacobian analysis 

Let the actuated joint variables and the location of 

the moving platform be denoted by the vectors q and x, 

respectively. Then the kinematic relations can be written in 

the general form as f(x,q)=0 where f is the function of x=(x, y, 

ϕ)T and q=(θA1, θA2, θA3)
T and 0 is an n-dimensional zero 

vector. The variables x, y and Φ are the coordinates of the 

end-effector point P with respect to the base and orientation of 

the platform, respectively. Moreover, θA1, θA2 and θA3 denote 

actuated joints. Differentiating the f with respect to the time, 

[JX]{ } + [Jq]{ }=0 is obtained. Here  and  are the time 

derivatives of x and q, respectively. Here [Jq] and [JX] are two 

separate Jacobian matrices. The overall Jacobian matrix for a 

parallel manipulator can be obtained as [J] = [Jq]
-1[JX] and 

also corresponding stiffness  

2.5 Stiffness Analysis & Dexterity index 
The value of stiffness evolves according to the 

geometry, topology of the structure and position and 
orientation of the platform within the workspace. The 

stiffness of a parallel robot at a given point of its workspace 

can be characterized by its stiffness matrix. This matrix 

combines the forces and moments applied to the platform. For 

rigid body model, the stiffness matrix is defined as follows 

[22]: 

 [S]=k[J]-T[J]-1 =k([J][J]T)-1                      (27)                                                                              

where k is the stiffness of actuated joint which is 

assumed to be same for all the joints. The condition number is 

quite often used as an index to describe the accuracy/dexterity 

of a robot and the closeness of a pose to a singularity. 
Condition number of a matrix is used in numerical analysis to 

estimate the error generated in the solution of a linear system 

of equations by the error on the data. When applied to the 

Jacobian matrix, the condition number will give a measure of 

the accuracy of the Cartesian velocity of the end-effector and 

the static load acting on the end-effector. The dexterity of a 

manipulator can be denoted as the condition number of its 

Jacobian matrix. Dexterity has recently emerged has a 

measure for manipulator kinematic performance. 

2.6 Finite element model  

Links are considered as flexible members 

undergoing flexural and axial deformations. For analysis of 

flexibility effects, each limb (i=1,2,3) of the manipulator is 

discretized with frame elements and therefore the stiffness 

matrix for each of the three limbs is calculated as an 

assemblage of individual link stiffness matrices. In present 

case, there are three degrees of freedom at each node namely 

axial deformation (u) and bending deflection (v) and slope () 
as shown in  Fig.4.  
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Fig.4 Finite element model 

The unknown displacements at the joints are 

calculated from the applied joint torques and the elemental 

forces and corresponding stresses are obtained. Joint 
compliance is considered as a torsional spring in our pseudo-

rigid body model. Here the joint is approximated as a narrow 

rectangular cross-sectioned element, whose spring constant is 

given as [23] (EnIn)/ln , where En is the elastic modulus, In is 

the moment of inertia of narrow cross-section which is equal 

to bt3, for rectangle. Here, b,t,ln are respectively width, 

thickness and length of the section. 

III. Results and Discussion 

The parameters of the manipulator considered in the 

present analysis are depicted in Table-1. The material chosen 

is steel with density =7800kg/m3 and elastic modulus E= 
2.1x105N/mm2.  This data is needed during the finite element 

modelling. 

 
Table-1.Dimensional Parameters of Manipulator[24]: 

Parameter Dimension 

(mm) 

Length of each link 400 

Thickness of each link 6 

Width of each link 23 

Side length of the moving platform 80 

Side length of the fixed platform 900 

Thickness of the moving & fixed 

platform 
25 

Length of the narrow cross-section 40 

Thickness of the narrow cross-section 1.5 

Width of the narrow cross-section 23 

 

Table-2 shows the input configuration of the manipulator in 
terms of the base and mobile platform coordinates. 

Table-2.The 3-RRR planar parallel manipulator configuration 

Base 

Joints 

A1 

x          y 

A2 

x          y 

A3 

x             y 

(mm) 0 0 0 900 450 779 

Mobile 

joints 

(mm) 

C1 

x          y 

C2 

x          y 

C3 

x             y 

414 230 493 244 441 305 

 

First, the genetic algorithm with uniform crossover 

and mutation used in finding forward kinematic solution has a 

crossover rate of 0.999 and mutation rate of 0.001. The high 

crossover rate ensures that maximum global search. The 

population size is taken as 40, and the outputs are tested by 

varying the number of generations. The variable ranges 

considered in the present task are shown in Table-3. 

Table-3.The upper and lower bounds of the design variables. 

Design variables Variable limits 

Cartesian coordinate moving 

platform (x) 

[0 – 600 mm] 

Cartesian coordinate moving 
platform (y) 

[0 – 600 mm] 

Angle of the moving 

platform ( ) 

[-3600 - 3600] 

 

During neural network analysis, initially an inverse 

kinematics problem is solved by geometric method for a 

range of Cartesian coordinates of the end-effector  X, Y and  
chosen according to X=[445,450 mm], Y=[255,262 mm] and 

=[-10o  10o]. Now RBF neural network model is trained with 
the output of the above inverse kinematics solution as input 

data, while the corresponding Cartesian coordinates are 

treated as target data. The number of training patterns taken 

here are 1008 and the spread constant employed is 1.0. Table-
4 shows the comparison forward kinematic solution with 

genetic algorithms and neural networks.  

Table-4. Forward kinematic solution using Genetic 

Algorithms and Neural networks 

Method No.of 

Iterations 

X 

(mm) 

Y 

(mm) 
 

(deg) 

GA 5000 449.85 260.41 9.50 

6000 451.61 259.82 9.50 

Neural 

networks 

1008 448.94 257.64 10.18 

1008 451.81 259.34 9.78 

It is observed that the results obtained from genetic 
algorithms and neural networks are very close to each other. 

Fig.5 shows the fitness variation with number of iterations in 

genetic algorithms.  
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Fig.5 Fitness Vs number of generations 

The performance curve for neural network is shown in Fig.6. 

 

 
Fig.6 Graph of Training Performance in neural network 

The constant orientated workspace is plotted for 

different angles of the moving platform as shown in Fig.7 and 

it is observed that the area of the workspace decreases when  
varies from 0o to 30o. The dexterity of a mechanism can be 

considered as its ability to perform small displacements of its 

end effector at a specified pose of its workspace. It is based on 

the condition number of the homogeneous Jacobian matrix 

here the inverse condition number is mapped on a constant 

orientation workspace to determine the dexterity of the 

manipulator as shown in Fig.8. It is well known that as 

inverse condition number is equal to 1 represents a perfect 

isotropic dexterity and 0 represents singular configuration. 

Here in Fig.8 all the values around the boundary of the 
workspace are close to zero, indicating the singularity regions. 

In order to verify and examine the static performance, a finite 

element model is prepared. The analysis is carried out using 

the ANSYS (V13) software. 
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Fig.7 Constant orientation work spaces at X=450mm, and 

Y=259.81mm 

 
Fig.8 Inverse condition number mapping on constant 

orientation workspace 

The distributions for the scaled minimum stiffness 

are illustrated in Fig.9. It can be observed that, the distribution 

of stiffness in a x–y plane the lowest value of minimum 

stiffness occurs around the boundary of the workspace, where 

the manipulator approaches direct singularities. 

 

 
Fig.9 Distribution of minimum stiffness on constant 

orientation workspace 

The finite element model is built based on the 

original geometrical prototype dimensions, as shown in 

Fig.10, 

 
Fig.10 ANSYS image of the model 

2-D BEAM188 elements with realistic parameters 

for limbs and four-node SHELL181 element for moving 

platform and at each joint combination14 (spring constant) are 
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adopted to mesh the model. Forces are applied on the actuated 

joints so as to get a deformation on the moving platform. The 

displacements of the model at each node are carefully 

examined. The analysis results are close to the theoretical 
outputs as shown in Table-5.  

Table-5.Displacement of the end-effector at each node 

 

S.No 

Displacements at the end-effector 

(mm) 

Theoretical ANSYS 

1 0.0010 0.0022 

2 0.0014 0.0023 

3 0.0000 0.0021 

And also the stiffness at one platform pose (i.e., 

x=450mm, y=259.81mm, =10o) of the moving platform is 
presented. Here, it is observed that the trace of the Jacobian 

matrix of the rigid body model as -0.123. The manipulator 

stiffness is estimated from the nodal displacements and 

corresponding reaction forces in the finite element model. 

Using ANSYS software, it is found to be 0.1007x109 N/mm, 
which is quite larger than 0.816x105 N/mm as obtained from 

conventional rigid body model with Jacobian matrix. The 

discrepancy of stiffness may be due to mismatch of the 

degrees of freedom in the elements under consideration for 

meshing. 

 

IV. Conclusions 
This paper has presented forward kinematic solutions for rigid 

body model using genetic algorithms and neural networks and 
also a constant orientation workspace is calculated. Within 

this workspace, Jacobian and stiffness analysis are conducted 

and to know the performance of the manipulator the inverse 

condition number and minimum stiffness values are plotted. 

Finally at one particular platform pose, finite element model 

is developed in ANSYS and displacements of the end-effector 

and stiffness index values are estimated.  
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