
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2521 | Page

Mr. G. Viswanath
1
, Mr.N.Bala Krishna

2

1(M.Tech) Computer Science & Engineering, Madanaplle Institute Of Technology & Science,

Madanaplle, Andhra Pradesh, India
2(Asst.Professor, Dept of C.S.E Madanaplle Institute of Technology & Science, Madanaplle, Andhra Pradesh, India)

Abstract: Software systems nowadays are composed from prefabricated commercial components and connectors that offer
complex functionality and hold in complex interactions. Unfortunately, because of the diverse assumptions made by

developers of these products, fruitfully integrating them into a software system can be difficult often causing budget and plan

overruns. A number of integration risks can often be determined by selecting the ‘right’ set of COTS mechanism and

connectors that can be integrated with minimal effort. In this paper we illustrate a framework for selecting COTS software

components and connectors ensuring their interoperability in software thorough systems. Our framework is built upon

average definitions of both COTS mechanism and connectors and is intended for use by architect and developers through the

design phase of a software system. We highlight the function of our framework using a difficult example from the data-

intensive systems domain. Our groundwork experience in using the framework indicates an increase in interoperability

assessment productivity by 50% and accuracy by 20%.

I. Introduction
The mounting complexity of software systems

attached with the decreasing costs of causal hardware has

ushered forth the realization of Brook’s celebrated “buy

versus build” meeting [1]. In the past a production

organization spent over a million dollars to build up a

customized payroll system over 3 years and another 2

million dollars to preserve and grow it forth rest of its
prepared life-cycle. Nowadays still, a business organization

cannot afford to spend so much on a customized system that

will take over 3 years to realize and a fortune to maintain

and evolve. Instead they often opt to purchase a commercial

off-the-shelf (COTS) software system (or component) that

can accomplish the same desired capabilities. Such COTS

systems and components persistently have diminished up-

front cost, development time, maintenance, and

development costs. These economic considerations often

entice organizations to piece together COTS components

into a working software system that meets dealing
organization’s requirements, and the system’s functional

rations, even at the expense of altering the organization’s

existing business processes! unluckily over the past ten

years numerous studies [2-6] have shown that piecing

together available open source and COTS components is

quite contradictory from custom development.

Instead of the traditional requirements–design–

develop–test–deploy process, COTS-based progress

involves activities such as assessment–selection–

composition–integration–test–deploy [7-11]. overriding to

the success of the entire process, are the assessment and

selection of the “right set” of COTS components and
connectors. Careful and precise execution of these behavior

often ensures the development of a system on time, on

resources and in line with the objectives of the project.

There are two major mechanism within the assessment and

selection process: (1) assessment of COTS functional and

non-functional requirements; and(2) assessment of

interoperability to ensure that the selected COTS

components will suitably interact with each other. While

the former has been addressed formerly [7-11] an efficient

solution to the latter has eluded researchers. The

first example of such an interoperability issue was accepted

by Garlan et al. in [5] when attempting to construct a suite

of software architectural modeling tools using a base set of

4 reusable components. Garlan et al. termed this problem

architectural divergence and found that it occurs due to

(specific) assumptions that a COTS section makes about the

structure of the application in which it is to appear that

ultimately do not hold true.
The best-known solution to identifying

architectural mismatches is prototyping COTS

communications, as they would occur in the conceived

system. Such an move toward is extremely time-and effort-

intensive. The approach compels developers (in the interest

of limited resources) to either neglect the interoperability

issue overall and hope that it will not create problems

during the work and integration phases or it compels them

to neglect interoperability until the number of COTS

combinations available for selection are cut down to a

manageable number (based on functional and quality of

service requirements). Both these options add considerable
risk to the project. When developers absolutely neglect

interoperability measurement they often will be essential to

write enormous amounts of glue-code, causing cost and

schedule overruns. Otherwise, they risk losing a COTS

product arrangement which is easy to integrate, but just

“isn’t right” because of some low-priority functionality it

did not possess. Neither of the above scenario is appealing

to development teams.

In addition to the above stated COTS component

integration issues, there are issues of utilizing available

COTS connectors that occur as well. The study of software
architecture [12] tells us that software connectors are the

embodiment of the relations and associations between

software components. Therefore, ideally, when trying to

construct the architecture of a software system, we need to

be able to deal not only with the gathering of software

components, but additionally the assembly of software

connectors. This is exacerbated by the current lack of

Defect Proneness forecasting in component based software

development: A Generic frame work for OO Systems

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2522 | Page

considerate in many software system domains (e.g., data-

intensive systems [13]) of how to select between dissimilar

available COTS connectors. The research literature[14, 15]

contains many other studies that describe the enormous
difficulty in assembling software connectors by themselves,

let alone with COTS software components.

In this paper, we propose an attribute-driven

framework that addresses selection of (C)OTS components

and connectors to make sure that they can be integrated

within project possessions and schedule. One of the key

contributions of our work is the classification of connectors

to (1) “bridge the gap” between COTS components and

ensure interoperability, and (2) satisfy systems quality of

service (QoS) supplies. Our proposed construction

identifies COTS component incompatibilities and

recommends resolution strategies comparatively by using
specific connectors and glue-code to integrate these

components. Where component exchanges require fulfilling

of QoS supplies the framework will propose proper

connectors. Such incompatibility in sequence can be used to

estimate the effort taken in COTS integration [16],which

can then be used as a criterion when selecting COTS

products. The framework is non-intrusive, interactive, and

tailor able. The quantity conducted by the framework can

be approved out as early as the commencement phase, as

soon as the development team has known possible

architectures and a set of COTS components and
connectors. We have tested this framework in a classroom

setting and in various example studies, including a

challenging real world example from the data-intensive

systems domain. Our early experience from using the

framework indicates that our come near is feasible, and

worthy of active pursuit.

1.1 Definitions

We adopt the SEI COTS-Based System Initiative’s
definition [7] of a COTS product: a product that is

• sold, leased, or licensed to the general public;

• offered by a vendor trying to profit from it;

• supported and evolved by the vendor, who retains the
logical property rights;

• available in multiple identical copies;

• used without source code modification.

For the purpose of this work we include open-

source products as part of the COTS domain except where

the source code is personalized by the user (and not

redistributed as a fix or a version upgrade). In this paper,

we define a component generally as a unit of computation

or data store [14]. Components may be as small as a single

process or as large as an entire application. Connectors are

architectural building blocks used to representation
interactions among components and rules that govern those

interactions [14].The rest of this paper is organized as

follows. Inspection 2, we describe a motivating real-world

COTS assessment and selection problem in the data-

intensive systems domain. In Section 3 we describe the

assessment framework in detail, including the attribute

metadata that it captures and how it applies to our example.

In Section 4 we present observed evidence and data taken

from a graduate software engineering course at USC that

evaluated our framework. Section 5 identifies related works

to our own approach and section 6 rounds out the paper
with a view of some expectations work.

II. Assessment and Selection Framework
The framework is modeled using three key

components, these are: COTS interoperability surveyor,

COTS representation attributes, and mixing rules. Inputs to
the framework are various COTS component definitions

and a high-level system architecture. The output of the

framework is an interoperability assessment report which

includes three major analyses:

Figure 2. COTS Interoperability evaluation framework

1. Internal postulation mismatches, which are caused due

to assumptions made by interacting COTS’ systems

about all other’s internal structure [4].

2. Interface (or packaging) mismatches, which occur
because of incompatible communication interfaces

between two components.

3. Dependency analysis, which ensure that services

required by COTS packages used in the system are

being provisioned (e.g. Java-based CRM solution

requires Java Runtime Engine).

In the remainder of this section we will describe

each of the framework components in details.

1.2 COTS interoperability evaluator
To develop the COTS interoperability evaluator

we needed to address two considerable challenges:

1. Ensure that the effort spent in COTS interoperability

assessment is much less than the effort spent

performing the assessment manually.

2. Ensure that the framework is extensible, i.e. so that it

can be updated based on popular COTS characteristics.

We tackle these challenges by developing a

framework that is modular, automated, and where COTS

definitions and assessment criteria can be updated on-the-

fly. Our framework allows for an organization to continue a
reusable and frequently updated portion (COTS selector)

remotely, and a segment which is minimally updated

(interoperability analyzer) at client-side. This allows for a

dedicated team to maintain definitions for COTS being

assessed by the organization. The internal architecture of

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2523 | Page

the COTS interoperability surveyor component is shown in

Figure 2. The architecture consists of the following sub-

components. COTS Definition Generator is software utility

that allows users as well as COTS vendor to define the
COTS components in a generally accepted standard format.

Currently we have implemented an XML-based format;

however, the implementation format is independent of the

primary metadata (e.g., the COTS definition can still be

represented using other representation formats, so long as

suitable parsers exist). For brevity, we omit its full

description of our existing XML format and we point the

reader to [17] for a complete description.

COTS Definition Repository is an online storage of

assorted COTS definitions indexed and categorized by their

roles and functionality they provide (database systems,

graphic toolkits etc.). The repository is queried by different
sub-components of the interoperability surveyor. In

practice, this component would be collective across the

organization to enable COTS definitions reuse. Alternately,

such a repository could be maintained and updated by a

third-party vendor and its access can be licensed out to

various organizations.

Architecting User Interface Component provide a
graphical user interface for the developers to create the

system deployment diagram. The component queries the

COTS definition storehouse to obtain the definitions of

COTS products being used in the conceived system.

Integration Rules storage area specifies various integration

rules that will drive the analysis results and interoperability

assessment. The rules repository can be maintained

COTS Representation Attributes

 Figure 3. COTS Representation Attributes

remotely; however it will be required to download the

complete repository at the client-side (interoperability

analyzer) before performing interoperability measurement.

This reduces the number of remote queries required when

assessing COTS architectures. Integration Analysis

Component contains the actual algorithm for analyzing the

system. It uses the rules specified in the combination rules

depository along with the architecture specification to

classify internal assumption mismatches, interface (or

packaging) mismatches and dependency analysis. When the

integration analysis element encounters an interface

variance the component queries the COTS connectors
elector component to identify if there is an existing bridge

connector which could be used for integration of the

components, if not it will recommend in the interoperability

analysis report that a wrapper of the suitable type (either

communication, or coordination or conversion) be utilized.

The integration analysis component then provides some

simple textual information (in human readable format) as to

the functionality of the wrapping required to enable

interaction between the two components. In addition the

combination analysis component identifies mismatches

caused due to internal assumption made by COTS

components, and also identifies COTS component
dependency not satisfied by the architecture. For cases

where the COTS component definition has misplaced

information the integration analysis component will include

both an cheerful and a pessimistic outcome. These

identifications are both included in the interoperability

analysis report. COTS Connector Selector is a query

interface used by combination analysis component to

identify abridging connector in the event of interface

incompatibility, or a QoS specific connector. Quality of

Service Connector Selection Framework is inextensible

component built for identifying quality of service specific
connectors. One such extension discussed in this paper aids

in the selection of highly distributed and voluminous data

connectors. Other quality of service extensions may include

connectors for mobile-computing environments that require

low memory footprint, or connectors for highly reliable,

fault-tolerant systems. To create a quality of service

extension, a developer first identifies needed COTS

attribute information and ensures the information is

captured in the COTS definition repository. This

information will typically describe the scenario

requirements for COTS connector selection for the

particular level of service, e.g., for data intensive systems, it
may include the Total Volume, Number of Delivery

Intervals and possibly the Number of Users present in the

data transfer. The developer then can construct a simple

web-based service that accepts the COTS connector

definition information, and any other needed data, and then

returns the appropriate COTS connectors to select to satisfy

the desired level of service scenario. COTS

Interoperability Analysis Report is output by the selector

and contains the result of the analysis in three major

sections: (1) internal assumptions mismatch analysis, (2)

interface (packaging) mismatch analysis, and (3)
dependency analysis. This is the ultimate product of the

interoperability framework.

1.3 COTS Representation Attributes

The COTS Representation Attributes are a set of

38 attributes that define COTS produce interoperability

characteristics. COTS interoperability characteristics

defined using these attributes are utilized by the integration

analysis component along with incorporation assessment
rules (described in the next section) to carry out

interoperability analysis. These attributes have been

consequent from the literature, as well as our clarification in

various software integration projects.

COTS General Atrributes (4)
Name
Version
Role* (Platform, middleware,…)

COTS Dependency Attributes* (4)
Underlying Dependency* (e.g.
JRE for Java)
Communication Dependency*
(e.g. database for CRM)
Deployment Language* (e.g.
binary, PHP script, …)
Execution Language Support*
(e.g. PHP for PHP interpreter)

COTS Interface Atrributes* (14)
Packaging* (source code, object modules,
binaries…)
Data Inputs* (e.g. procedure calls, shared data, …)
Data Outputs* (e.g. procedure calls, shared dta, …)
Data Protocols* (e.g. http, ftp, …)
Data Format* (e.g. HTML, JavaScript …)
Data Representation* (e.g. ASCII, Unicode, binary,
…)
Control Inputs* (e.g. procedure calls, triggers, …)
Control Output* (e.g. procedure calls, triggers, …)
Control Protocols* (e.g. ADODB)
Binding* (e.g. static, compile-time dynamic, run-
time dynamic, …)
Extensions* (plug-ins, third party extensions, …)
Error Handling Inputs* (e.g. HTTP error codes)
Error Handling Outputs* (e.g. HTTP error codes)
Communication Language Support (e.g. .NET
languages for MS Office)

COTS Internal Assumption Attributes (16)
Synchronization (synchronous,
asynchronous)
Concurrency (single-threaded, multi-
threaded)
Distribution (single-node, multi-node)
Dynamism (static, dynamic)
Encapsulation (Yes, no)
Layering (Yes, no)
Triggering capability (yes, no)
Backtracking (yes, no)
Backtracking (yes, no)
Control Unit (central control, distributed
control, none)
Component Priorities (yes, no)
Preemption (yes, no)
Reconfiguration (online, offline…)
Reentrant (yes, no)
Response Time (bounded, Unbounded,
cyclic …)
Error Handling Mechanism (rollback,
notification, none …)
Implementation language* (C++, Java …)

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2524 | Page

The two major criteria used for selecting these attributes

were:

1. attributes should be able to capture sufficient details on

the major sources of COTS product mismatches

(interface, internal assumption and dependency

mismatches) identified - internal postulation

mismatches,

2. attributes should be defined at advanced so that COTS

vendors are able to provide feature definitions without

revealing confidential product information

To date, we have surveyed about 40 COTS
products of which 30 were open source. For the non open

source COTS we could identify at least 34 of the38

attributes from the publicly available information itself. We

neglected to include many attributes such as data topology,

control structure, and control flow because they were either

: too detailed and required accepting of internal designs of

COTS products for defining them, or could alternately be

represented at a higher level by an already included

attribute, or did not provide significant mismatches to

warrant us including them. We have classified the attributes

that we selected into four groups shown in Figure
3.Attributes (or attribute sets) marked with an asterisk

indicate that there may be multiple values for a given

attribute (or set) for the given COTS product.

The remainder of this section summarize attribute

classifications. The full metaphors of all the attributes can

be accessed at [17]. COTS general attributes (4) aid in the

identification and querying of COTS products. The attribute

include name, version, role and type. COTS interface

attributes (14) define the communications supported by the

COTS product. An interaction is defined by the exchange of

data or control amongst machinery. COTS products may

have multiple interface, in which case it will have multiple
interface definition. For example: the Apache Web Server

will have one complete interface definition for the web-

interface (interaction via HTTP), and another complete

definition for server interface (interaction via procedure

call). These attributes include packaging (source code

modules, object modules, dynamic libraries, etc.), data and

control inputs, outputs, protocols etc. When developing the

COTS product the developer makes certain assumption

about the internal operations of the COTS products. The

COTS internal assumption attributes (16) confine such

internal assumption For example developers of the Apache
Web Server assume that the software will contain a central

control unit which will regulate the performance of the

system. COTS internal statement attributes include

synchronization, concurrency, distribution and others.

COTS dependency attributes (4) define the conveniences

required by a COTS product i.e. software the COTS

product requires for successful execution. For example any

Java-based system requires the Java Runtime Environment

(JRE) as a platform. COTS dependency attributes include

primary and communication dependencies, deployment

language support, and execution language support. An

example COTS definition using the attributes specified in
Figure 3 is shown in Table 1.

1.4 Integration Assessment Rules

The Integration review Rules are a set of rules used to

perform the interoperability analysis. Every rule has a set of

pre-conditions, which if true for the given planning and
components, identifies an architectural mismatch. For

example consider one of the architectural mismatches found

by Gacek in [4]:“Data connectors connecting components

that are not always active”. For the given mismatch the

precondition are: 2 components connected via a data

connector (only) and one of the components does not have a

central control unit. There are similar rules for performing

arts interface, dependency, and internal assumption

analysis. Interface analysis discovers if there are commonly

shared interfaces between two communicating COTS

components, if not it includes recommendation on the type

of “glue ware” (or “glue code”) required to integrate the
components.

enslavement analysis rules verify if the

architecture satisfies all the dependencies that a COTS

product require. Finally, for internal assumption we

leverage upon the mismatches identified in [4] and add new

mismatches based on newly added attributes. Currently, our

framework is still underdevelopment and we are in the

process of evaluating these rules for behavior such as

completeness, correctness, tractability and scalability. We

have perform an initial appraisal along two of these

evaluation target (correctness and completeness) and our
ongoing work involves solidifying means of measuring and

evaluating our work.

1.5 Framework Application to Motivating Example

To answer the two questions posed in the

motivating example section we apply our framework to

analyze the system architecture and COTS combinations. In

our example there are 2 major considerations when

assessing COTS products and implementation technologies
to identify interoperability conflicts:

1. Interoperability conflicts when integrate the digital asset

management system with the database.

2. Selection of languages to develop the custom
components so as to minimize the development effort by

leveraging upon existing support provided by COTS

products.

Table 1 Definition of Apache 2.0 using COTS

Representation Attributes

Representation Attributes

COTS General Attributes (4)

Name

Version
Role

Type

Apache

2.0

Platform

Third-party

component

Interface

Attributes (14)

Background

Interface

Web

Interface

Packing

Data Inputs

Data Outputs

Executable Program

Data access,

Procedure

Call, Trigger

Data access,

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2525 | Page

Data Protocols

Data Format

Data

Representation
Control Inputs

Control Outputs

Control Protocols

Procedure

Call,

Trigger

HTTP

N/A N/A

Ascii,

Unicode,
Binary

Ascii,

Unicode,
Binary

Procedure

call, Trigger

Procedure

call, Trigger

Spawn

Non

e

Extentions Supports

Extentions

Binding

Error Inputs

Error Outputs

Communication

Language Support

Running

Dynamic

Topologicall

y Dynamic

Log

s

HTTP Error

Codes

C,

C++

COTS Internal Assumption Attributes (16)

Synchronization

Concurrency

Distribution

Dynamism

Asynchronous

Multi-threaded

Single-node

Dynamic

Encapsulation

Layering

Triggering

Capability

Backtracking

Control Unit

Component
Priorities

Preemption

Reconfiguration

Reentrant

Response Time

Implementation

Lang

Error Handling

Mechanism

Encapsulated

None

Yes

No

Central

No

Yes

Offline

Yes

Bounded

C++

Notification

COTS Dependency Attributes (4)

Underlying

Dependencies

Linux, Unix,

Windows, Solaris

(OR)

Communication

Dependency

None

Deployment

Language

Binary

ExecutionLangua

ge Support

CGI

The project analyst should provide the following

information for every interaction in the proposed

architecture:

• data and/or control interaction,

• Unidirectional of bidirectional interaction, and•

which component initiates the interaction,

For the interactions where the large volume data

transfer connectors (C1, C2, and C3) are required, the

analyst will define attributes specific for that QoS

(described further in this section). Assume a scenario where

D Space is being assessed as the digital asset management
system, and MySQL as the database server. The

architecting component user interface will automatically

retrieve the definitions for D Space and MySQL and pass

the architecture, interaction and definition information to

the integration analysis component for assessment. The

integration analysis component will apply the rules (from

integration rules repository) using COTS attributes and

based on the deployment architecture definition to identify:

a. Common interfaces supported by MySQL and D

Space, bridging connectors and the type of glue

code(communication, conversion, synchronization or a

combination thereof) required [15].

b. Internal assumption mismatches between

MySQL and D Space

c. Verification that the COTS dependencies have

been satisfied in the given architecture.

d. Recommended languages for the query manager

and data recovery component that will simplify developing

glue-code between COTS and custom components.

In the event that the two interacting components

(D Space and MySQL) do not share common interfaces, it

will recognize (using the COTS connectors elector) a

connector that can enable announcement between the two

components (JDBC-MySQL driver)and output the fallout in

the report. The project analyst can use these findings to

estimate the effort required to test (for internal assumption

mismatches) and integrate the COTS and custom apparatus
[16]. Development

teams can run such evaluation on all their COTS

and custom combinations; and use the exertion results as an

input to their COTS evaluation table [10] to facilitate the

COTS component collection decision. External users, when

selecting COTS products and implementation technologies

to develop application can run our framework by keeping
COTS and technologies selected by JPL and ESA constant

and varying their choices of COTS harvest to identify the

set which will require minimal integration effort.

To deal with the range of connectors to support

large-volume data transfer between JPL and ESA (as shown

in Figure 1), and the external users, we employ a specific

level of service extension that we have constructed for

large-scale, data-intensive systems. The extension was
particularly motivated by our experience developing such

systems at JPL. A careful, detailed description of this level

of service extension is beyond the scope of this paper: for

more information on its internal architecture, motivation

and objectives the reader is directed to [13]. However for

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2526 | Page

the purposes of our COTS assessment and selection

framework, we will explain the data-intensive level of

service extension’s high level architecture focusing on two

of its critical phases: connector classification, and selection.
The inputs to the data-intensive level of service extension

are called Distribution Connector Profiles, or DCPs. DCPs

capture metadata describing connector Data Access,

Distribution and Streaming information abstracted from

Mehta et al.’s [15] connector taxonomy.

The profiles also contain information critical to

data distribution including Delivery Intervals, Number of

Users and Total Volume (in total, there are eight core
dimensions of data distributions we are focusing on). To

generate DCPs, an architect can manually classify a set of

COTS distribution connectors: or the DCPs can be

generated using some automated process. For our

motivating example, we assume that the production of

DCPs has already been performed offline, and we assume

the presence of a knowledge base of DCPs resultant from

the arrangement. The connectors profiled for the knowledge

base take account of connectors C1, C2, and C3shown in

Figure 1. Connector selection starts after the system

architecture has been arrived upon and after data allocation
scenarios (e.g., constraints on the DCP metadata) have been

identified by the user(s) of the system. In our example,

there are three distinct distribution scenarios to consider

(represented below inhuman readable form and then

following in constraint query format):

S1. Distribution of data from JPL scientists to ESA

scientists

S2. Distribution of data from ESA scientists to JPL

scientists

S3. Distribution of JPL and ESA data to the

outside community

The three scenarios can be expressed as the

following constraint queries against the DCP metadata:

For instance, S1 represent the user preference of the

ESA scientists who would like to receive their JPL
colleagues’ data. S1 describe a allotment scenario in which

the producer of data (the JPL scientists) are conveyance

over 100 GB of data using a wide-area network (WAN) to 2

regulars of data (the ESA scientists), using 4 escape

intervals where each interval consists of 25 GB of data. In

S1, from the perspective of the producer of data (JPL

scientists),there is a single user type, the ESA scientists.

QueriesS2 and S3 are formulated similarly. Using S1-S3 as

selection criteria, “candidate” connectors are chosen based

on their DCP metadata at hand in the DCP knowledge base

using a conventional database attribute matching

approaches. After candidate connector filtering, the

distribution connectors are assessed for architectural

mismatches that may result from their combined use in

support of the given circulation scenario.

This appraisal is conducted using an conservatory

to Gacek’s [4] simple pair-wise mismatch algorithm that

compares two architectural elements (in this case,

distribution connectors) along the metadata values provided

by the DCP. For every value, our algorithm detects

potential mismatch areas and decides whether the (set of)

mismatches identified are severe enough to avoid connector

combination, otherwise, selects suitable connectors that
could be used together. For example there may be a

divergence in the Number of Users dimension of two of the

freedom connectors from the JPL and ESA system, C1 and

C2 If C2 supports fewer users than connector C1, then C2

may become the restricted access in the distribution. The

detected mismatches are labeled using a simple, but

adaptable set of divergence levels, such as severe, or

allowable. A severe mismatch may prevent combination of

two otherwise matched connectors, while an allowable label

may still allow their combination.

 The levels are tailor able and meant to be profiled

to suit each respective user of our framework. Relating back

to our motivating example, the algorithm may decide based

on the DCP metadata, that connectors C1and C2 should be

combined, and to combine the Grid FTP [18] connector

with an HTTP based custom COTS data connector.

Additionally, the level of service extension may conclude

that connectorC3 can be implemented using an available

OTS peer to-peer distribution connector, such as Bit torrent.

III. Empirical Results
In bounce semester of 2006 we conducted an conduct

experiment in a graduate software engineering course at

USC using our assessment framework. The course focus on

software classification development [19] requested by a
real-world client. Over the last few years the course has

twisted systems for e-services, explore (medicine and

software), as well as commercial selling domains. Graduate

students enrolled in the track form teams of about 5

members to design and implement a software system within

a24-week time period. During this period the project

progresses through inception, elaboration, manufacture and

transition phases. Our experiment was conducted close to

the end of the elaboration phase, when the team propose a

system architecture that would meet the system

requirements. We asked 6 teams, whose architectures

included at least 3 or more COTS components to use our
framework on their personal projects and measured results

in four areas:

1. Accuracy of interface incompatibilities notorious by the

framework considered as 1 – (number of interface

incompatibilities missed by the team / total number of

interface incompatibilities). Interface measurement results

produced by our framework were verified later through a

survey when the teams actually integrated the COTS

products. Results in this area price the completeness and

correctness of our interface assessment rules.

2. Accuracy of dependency identified by the framework
calculated as 1 – (number of dependencies missed by the

(Total Volume > 100 GB)  (Number Of Users = 2) 
(S1)

(Num Delivery Intervals = 4)  (Volume Per Interval = 25
GB)

 (Num User Types = 1)  (Geographic Distribution =
WAN)

(Total Volume = 1GB)  (Number Of Users = 4)

 (Geographic Distribution = WAN)  (Num User Types
= 1) (S2)

(Total Volume = 101 GB)  (Number Of Users > 10,000)



(Geographic Distribution = WAN)  (Num User Types =

2) (S3)

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2527 | Page

team / total number of dependencies). Addiction assessment

results produced by our framework were also later verified

through a survey after the project was implemented. These

results evaluate the completeness and correctness of our
interface dependency rules.

3. Effort spent in assessing the architectures using the

framework contrasting to the effort spent in assessing the

architectures manually by an comparable team. These

results demonstrate the competence of using our framework

to perform interoperability assessment as opposed to

performing a manual assessment.

4. Effort spent in performing arts the actual integration after

using the framework as opposed to effort spent by an

equivalent team.

 Results here validate the overall utility of our

framework Equivalent teams were chosen from past CSCI
577 projects such that they had analogous COTS products,

similar architectures, and whose team-members had similar

years of experience in project enlargement.

Upon performing autonomous T-test [20] for the

metrics above we recorded the results shown in Table2. Our

results indicate that the framework increases dependency

assessment accuracy and interface assessment accuracy by

more than 20% and reduces both assessment effort and

integration effort by approximately 50%. These results are

significant at the alpha = 5% level.

Table 2. Empirical assessment of our framework

Groups Mean Std-Dev. P-Value

Interface Assessment Accuracy

Before using

the

framework

76.9% 14.4 0.0029

After using

the

framework

100% 0

Dependency Assessment Accuracy

Before using

the

framework

79.3% 17.9 0.017

After using

the

framework

100% 0

Effort spent in performing architecture

assessment

Projects

using the

framework

1.53 1.71 0.053

Equivalent

projects

5 hrs 3.46

Effort spent when integrating the COTS

products

Projects

using the
framework

9.5 2.17 0.0003

Equivalent

projects

18.2 3.37

IV. Conclusion and Future Work
This paper presents a construction that enables

evaluation and selection of COTS workings and connectors

early in the software development lifecycle. The skeleton

does not eliminate detailed testing and prototyping for

evaluating COTS interoperability, however it does provide

an analysis of interface compatibilities and dependency.

The framework recommends connectors to be used or glue

code required and early indications of probable

incompatibilities during system integration. Moreover,

since the framework is automated it enables evaluation of

large number of architectures and COTS combinations,

increasing the trade-off space for COTS component and
connector selection. Currently we have completed a tool

prototype to enable such examination and are in the process

of developing a fully functional tool suite. We are also

planning experiment to gather empirical data to further test

the utility of the framework across a larger sample size and

in different development environments. It is also important

to note that attribute for frameworks such as ours must be

periodically updated based on prevailing COTS

characteristics.

References

[1] F. Brooks, "No Silver Bullet: Essence and Accidents

of Software Engineering," Computer, vol. 20, pp. 10-

19,1987.

[2] A. Abd-Allah, "Composing Heterogeneous Software

Architectures," Ph.D. Thesis, Univ. Southern

California,1996.

[3] L. Davis, et al., "The Impact of Component

Architectures on Interoperability," J. Systems and

Software, 2002.

[4] C. Gacek, "Detecting Architectural Mismatch During
Systems Composition", Ph.D. Thesis, Univ. Southern

California, 1998.

[5] D. Garlan, et al., "Architectural Mismatch or Why it’

shard to build systems out of existing parts," In Proc.

ICSE, 1995.

[6] D. Yakimovich, "A Comprehensive Reuse Model for

COTS Software Products", Ph.D. Thesis, University

of Maryland College Park, 2001.

[7] C. Albert, et al., "Evolutionary Process for Integrating

COTS-Based Systems (EPIC)," CMU/SEI Technical

Report CMU/SEI-2002-TR-005, 2002.
[8] K. Ballurio, et al., "Risk Reduction in COTS Software

Selection with BASIS," In Proc. ICCBSS, 2003.

[9] B. Boehm, et al., "Compostable Process Elements for

COTS-Based Applications," In Proc. 5th Intl.

Workshop on Economics-Driven Software

Engineering Research, Oregon, 2003.

[10] S. Comella-Dorda, et al., "A Process for COTS

Software Product Evaluation," In Proc. ICCBSS,

Orlando, Florida, 2002.

[11] Y. Yang, et al., "Value-Based Processes for COTS

Based Systems," IEEE Software, vol. 22, pp. 54-

62,2005.
[12] M. Shaw, et al., Software architecture: perspectives on

an emerging discipline. Upper Saddle River, N.J.:

Prentice Hall, 1996.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528 ISSN: 2249-6645

www.ijmer.com 2528 | Page

[13] C. Mattmann, "Software Connectors for Highly

Distributed and Voluminous Data-intensive Systems,

“In Proc. ASE, Tokyo, Japan, 2006.

[14] N. Medvidovic, et al., "A Classification and
Comparison Framework for Software Architecture

Description Languages," IEEE TSE, vol. 26, pp. 70-

93, 2000.

[15] N. Mehta, et al., "Towards a Taxonomy of Software

Connectors," In Proc. ICSE, Limerick, Ireland, 2000.

[16] C. Abts, "Extending the COCOMO II Software Cost

Model to Estimate Effort and Schedule for Software

Systems Using Commercial-Off-The-Shelf (COTS)

Software Components: The COCOTS Model", Ph.D.

Thesis, Univ. Southern California, 2004.

[17] J. Bhuta, "A Framework for Intelligent Assessment

and Resolution of Commercial Off-The-Shelf
(COTS)Product Incompatibilities," USC, Tech.

Report USCCSE-2006-608, 2006.

[18] C. Kesselman, et al., "The Anatomy of the Grid:

Enabling Scalable Virtual Organizations," Intl' Journal

of Supercomputing Applications, pp. 1-25, 2001.

[19] B. Boehm, et al., "A stakeholder win-win approach to

software engineering education," Annals of Software

Engineering . vol. 6, pp. 295 - 321, 1998.

[20] T. Dietterich, "Approximate Statistical Tests for

Comparing Supervised Classification Learning

Algorithms," Neural Computation, vol. 10, 1998.
[21] E. Mancebo, et al., "A Strategy for Selecting Multiple

Components," In Proc. ACM SAC, Santa Fe, NM,

2005.

[22] L. Davis, et al., "A Notation for Problematic

Architectural Interactions," In Proc. ESEC/FSE, 2001.

[23] R. Keshav, et al., "Towards a Taxonomy of

Architecture Integration Strategies," In Proc. ISAW,

1998.

BIOGRAPHIES
G.Viswanath is born in 1982 in
India. He is graduated in B.C.A

from Osmania University,

Hyderabad and post graduated in

M.C.A from S.K. University,

Anantapur. Presently he is doing

post graduation in M.Tech (C.S.E)

at MITS College, Madanapalli,

Andhra Pradesh, India from JNTU

Anantapur. At present working on

Assistant professor at Sai Sakthi

Engineering College, Kankamma Chatram, Chittoor
District, India.

N. Bala Krishna is born in 1984

in India. He is graduated in

B.Tech from JNTU Hyderabad.

He is post graduated in M.Tech

from JNTU Anantapur. He is

currently working as a Assistant

professor in the department of

Computer science and engineering

at MITS College, Madanapalli,

Chittoor District, Andhra Pradesh,
India.

