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Abstract: Software systems nowadays are composed from prefabricated commercial components and connectors that offer 
complex functionality and hold in complex interactions. Unfortunately, because of the diverse assumptions made by 

developers of these products, fruitfully integrating them into a software system can be difficult often causing budget and plan 

overruns. A number of integration risks can often be determined by selecting the ‘right’ set of COTS mechanism and 

connectors that can be integrated with minimal effort. In this paper we illustrate a framework for selecting COTS software 

components and connectors ensuring their interoperability in software thorough systems. Our framework is built upon 

average definitions of both COTS mechanism and connectors and is intended for use by architect and developers through the 

design phase of a software system. We highlight the function of our framework using a difficult example from the data-

intensive systems domain. Our groundwork experience in using the framework indicates an increase in interoperability 

assessment productivity by 50% and accuracy by 20%. 

I. Introduction 
The mounting complexity of software systems 

attached with the decreasing costs of causal hardware has 

ushered forth the realization of Brook’s celebrated “buy 

versus build” meeting [1]. In the past a production 

organization spent over a million dollars to build up a 

customized payroll system over 3 years and another 2 

million dollars to preserve and grow it forth rest of its 
prepared life-cycle. Nowadays still, a business organization 

cannot afford to spend so much on a customized system that 

will take over 3 years to realize and a fortune to maintain 

and evolve. Instead they often opt to purchase a commercial 

off-the-shelf (COTS) software system (or component) that 

can accomplish the same desired capabilities. Such COTS 

systems and components persistently have diminished up-

front cost, development time, maintenance, and 

development costs. These economic considerations often 

entice organizations to piece together COTS components 

into a working software system that meets dealing 
organization’s requirements, and the system’s functional 

rations, even at the expense of altering the organization’s 

existing business processes! unluckily over the past ten 

years numerous studies [2-6] have shown that piecing 

together available open source and COTS components is 

quite contradictory from custom development.  

Instead of the traditional requirements–design–

develop–test–deploy process, COTS-based progress 

involves activities such as assessment–selection–

composition–integration–test–deploy [7-11]. overriding to 

the success of the entire process, are the assessment and 

selection of the “right set” of COTS components and 
connectors. Careful and precise execution of these behavior 

often ensures the development of a system on time, on 

resources and in line with the objectives of the project. 

There are two major mechanism within the assessment and 

selection process: (1) assessment of COTS functional and 

non-functional requirements; and(2) assessment of 

interoperability to ensure that the selected COTS 

components will suitably interact with each other. While 

the former has been addressed formerly [7-11] an efficient  

 

solution to the latter has eluded researchers. The 

first example of such an interoperability issue was accepted 

by Garlan et al. in [5] when attempting to construct a suite 

of software architectural modeling tools using a base set of 

4 reusable components. Garlan et al. termed this problem 

architectural divergence and found that it occurs due to 

(specific) assumptions that a COTS section makes about the 

structure of the application in which it is to appear that 

ultimately do not hold true.  
The best-known solution to identifying 

architectural mismatches is prototyping COTS 

communications, as they would occur in the conceived 

system. Such an move toward is extremely time-and effort-

intensive. The  approach compels developers (in the interest 

of limited resources) to either neglect the interoperability 

issue overall and hope that it will not create problems 

during the work and integration phases or it compels them 

to neglect interoperability until the number of COTS 

combinations available for selection are cut down to a 

manageable number (based on functional and quality of 

service requirements). Both these options add considerable 
risk to the project. When developers absolutely neglect 

interoperability measurement they often will be essential to 

write enormous amounts of glue-code, causing cost and 

schedule overruns. Otherwise, they risk losing a COTS 

product arrangement which is easy to integrate, but just 

“isn’t right” because of some low-priority functionality it 

did not possess. Neither of the above scenario is appealing 

to development teams. 

In addition to the above stated COTS component 

integration issues, there are issues of utilizing available 

COTS connectors that occur as well. The study of software 
architecture [12] tells us that software connectors are the 

embodiment of the relations and associations between 

software components. Therefore, ideally, when trying to 

construct the architecture of a software system, we need to 

be able to deal not only with the gathering of software 

components, but additionally the assembly of software 

connectors. This is exacerbated by the current lack of 
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considerate in many software system domains (e.g., data-

intensive systems [13]) of how to select between dissimilar 

available COTS connectors. The research literature[14, 15] 

contains many other studies that describe the enormous 
difficulty in assembling software connectors by themselves, 

let alone with COTS software components. 

In this paper, we propose an attribute-driven 

framework that addresses selection of (C)OTS components 

and connectors to make sure that they can be integrated 

within project possessions and schedule. One of the key 

contributions of our work is the classification of connectors 

to (1) “bridge the gap” between COTS components and 

ensure interoperability, and (2) satisfy systems quality of 

service (QoS) supplies. Our proposed construction 

identifies COTS component incompatibilities and 

recommends resolution strategies comparatively by using 
specific connectors and glue-code to integrate these 

components. Where component exchanges require fulfilling 

of QoS supplies the framework will propose proper 

connectors. Such incompatibility in sequence can be used to 

estimate the effort taken in COTS integration [16],which 

can then be used as a criterion when selecting COTS 

products. The framework is non-intrusive, interactive, and 

tailor able. The quantity conducted by the framework can 

be approved out as early as the commencement phase, as 

soon as the development team has known possible 

architectures and a set of COTS components and 
connectors. We have tested this framework in a classroom 

setting and in various example studies, including a 

challenging real world example from the data-intensive 

systems domain. Our early experience from using the 

framework indicates that our come near is feasible, and 

worthy of active pursuit. 

1.1 Definitions 

We adopt the SEI COTS-Based System Initiative’s 
definition [7] of a COTS product: a product that is 

• sold, leased, or licensed to the general public; 

• offered by a vendor trying to profit from it; 

• supported and evolved by the vendor, who retains the 
logical property rights; 

• available in multiple identical copies; 

• used without source code modification. 

For the purpose of this work we include open-

source products as part of the COTS domain except where 

the source code is personalized by the user (and not 

redistributed as a fix or a version upgrade). In this paper, 

we define a component generally as a unit of computation 

or data store [14]. Components may be as small as a single 

process or as large as an entire application. Connectors are 

architectural building blocks used to representation 
interactions among components and rules that govern those 

interactions [14].The rest of this paper is organized as 

follows. Inspection 2, we describe a motivating real-world 

COTS assessment and selection problem in the data-

intensive systems domain. In Section 3 we describe the 

assessment framework in detail, including the attribute 

metadata that it captures and how it applies to our example. 

In Section 4 we present observed evidence and data taken 

from a graduate software engineering course at USC that 

evaluated our framework. Section 5 identifies related works 

to our own approach and section 6 rounds out the paper 
with a view of some expectations work. 

II. Assessment and Selection Framework 
The framework is modeled using three key 

components, these are: COTS interoperability surveyor, 

COTS representation attributes, and mixing rules. Inputs to 
the framework are various COTS component definitions 

and a high-level system architecture. The output of the 

framework is an interoperability assessment report which 

includes three major analyses: 

 

 

Figure 2. COTS Interoperability evaluation framework 

1. Internal postulation mismatches, which are caused due 

to assumptions made by interacting COTS’ systems 

about all other’s internal structure [4]. 

2. Interface (or packaging) mismatches, which occur 
because of incompatible communication interfaces 

between two components. 

3. Dependency analysis, which ensure that services 

required by COTS packages used in the system are 

being provisioned (e.g. Java-based CRM solution 

requires Java Runtime Engine). 

 

In the remainder of this section we will describe 

each of the framework components in details. 

 

1.2 COTS interoperability evaluator 
To develop the COTS interoperability evaluator 

we needed to address two considerable challenges: 

1. Ensure that the effort spent in COTS interoperability 

assessment is much less than the effort spent 

performing the assessment manually. 

2. Ensure that the framework is extensible, i.e. so that it 

can be updated based on popular COTS characteristics. 

 

We tackle these challenges by developing a 

framework that is modular, automated, and where COTS 

definitions and assessment criteria can be updated on-the-

fly. Our framework allows for an organization to continue a 
reusable and frequently updated portion (COTS selector) 

remotely, and a segment which is minimally updated 

(interoperability analyzer) at client-side. This allows for a 

dedicated team to maintain definitions for COTS being 

assessed by the organization. The internal architecture of 
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the COTS interoperability surveyor component is shown in 

Figure 2. The architecture consists of the following sub-

components. COTS Definition Generator is software utility 

that allows users as well as COTS vendor to define the 
COTS components in a generally accepted standard format. 

Currently we have implemented an XML-based format; 

however, the implementation format is independent of the 

primary metadata (e.g., the COTS definition can still be 

represented using other representation formats, so long as 

suitable parsers exist). For brevity, we omit its full 

description of our existing XML format and we point the 

reader to [17] for a complete description. 

COTS Definition Repository is an online storage of 

assorted COTS definitions indexed and categorized by their 

roles and functionality they provide (database systems, 

graphic toolkits etc.). The repository is queried by different 
sub-components of the interoperability surveyor. In 

practice, this component would be collective across the 

organization to enable COTS definitions reuse. Alternately, 

such a repository could be maintained and updated by a 

third-party vendor and its access can be licensed out to 

various organizations.  

Architecting User Interface Component provide a 
graphical user interface for the developers to create the 

system deployment diagram. The component queries the 

COTS definition storehouse to obtain the definitions of 

COTS products being used in the conceived system. 

Integration Rules storage area specifies various integration 

rules that will drive the analysis results and interoperability 

assessment. The rules repository can be maintained  

COTS Representation Attributes 

 

 

 

 

 

 

 

 

 

 

                Figure 3. COTS Representation Attributes 

remotely; however it will be required to download the 

complete repository at the client-side (interoperability 

analyzer) before performing interoperability measurement. 

This reduces the number of remote queries required when 

assessing COTS architectures. Integration Analysis 

Component contains the actual algorithm for analyzing the 

system. It uses the rules specified in the combination rules 

depository along with the architecture specification to 

classify internal assumption mismatches, interface (or 

packaging) mismatches and dependency analysis. When the 

integration analysis element encounters an interface 

variance the component queries the COTS connectors 
elector component to identify if there is an existing bridge 

connector which could be used for integration of the 

components, if not it will recommend in the interoperability 

analysis report that a wrapper of the suitable type (either 

communication, or coordination or conversion) be utilized. 

The integration analysis component then provides some 

simple textual information (in human readable format) as to 

the functionality of the wrapping required to enable 

interaction between the two components. In addition the 

combination analysis component identifies mismatches 

caused due to internal assumption made by COTS 

components, and also identifies COTS component 
dependency not satisfied by the architecture. For cases 

where the COTS component definition has misplaced 

information the integration analysis component will include 

both an cheerful and a pessimistic outcome. These 

identifications are both included in the interoperability 

analysis report. COTS Connector Selector is a query 

interface used by combination analysis component to 

identify abridging connector in the event of interface 

incompatibility, or a QoS specific connector. Quality of 

Service Connector Selection Framework is inextensible 

component built for identifying quality of service specific 
connectors. One such extension discussed in this paper aids 

in the selection of highly distributed and voluminous data 

connectors. Other quality of service extensions may include 

connectors for mobile-computing environments that require 

low memory footprint, or connectors for highly reliable, 

fault-tolerant systems. To create a quality of service 

extension, a developer first identifies needed COTS 

attribute information and ensures the information is 

captured in the COTS definition repository. This 

information will typically describe the scenario 

requirements for COTS connector selection for the 

particular level of service, e.g., for data intensive systems, it 
may include the Total Volume, Number of Delivery 

Intervals and possibly the Number of Users present in the 

data transfer. The developer then can construct a simple 

web-based service that accepts the COTS connector 

definition information, and any other needed data, and then 

returns the appropriate COTS connectors to select to satisfy 

the desired level of service scenario. COTS 

Interoperability Analysis Report is output by the selector 

and contains the result of the analysis in three major 

sections: (1) internal assumptions mismatch analysis, (2) 

interface (packaging) mismatch analysis, and (3) 
dependency analysis. This is the ultimate product of the 

interoperability framework. 

1.3 COTS Representation Attributes 

The COTS Representation Attributes are a set of 

38 attributes that define COTS produce interoperability 

characteristics. COTS interoperability characteristics 

defined using these attributes are utilized by the integration 

analysis component along with incorporation assessment 
rules (described in the next section) to carry out 

interoperability analysis. These attributes have been 

consequent from the literature, as well as our clarification in 

various software integration projects. 

COTS General Atrributes (4) 
Name 
Version 
Role* (Platform, middleware,…) 
 

COTS Dependency Attributes* (4) 
Underlying Dependency* (e.g. 
JRE for Java) 
Communication Dependency* 
(e.g. database for CRM) 
Deployment Language* (e.g. 
binary, PHP script, …) 
Execution Language Support* 
(e.g. PHP for PHP interpreter) 
 

COTS Interface Atrributes* (14) 
Packaging* (source code, object modules, 
binaries…) 
Data Inputs* (e.g. procedure calls, shared data, …) 
Data Outputs* (e.g. procedure calls, shared dta, …) 
Data Protocols* (e.g. http, ftp, …) 
Data Format* (e.g. HTML, JavaScript …) 
Data Representation* (e.g. ASCII, Unicode, binary, 
…) 
Control Inputs* (e.g. procedure calls, triggers, …) 
Control Output* (e.g. procedure calls, triggers, …) 
Control Protocols* (e.g. ADODB) 
Binding* (e.g. static, compile-time dynamic, run-
time dynamic, …) 
Extensions* (plug-ins, third party extensions, …) 
Error Handling Inputs* (e.g. HTTP error codes) 
Error Handling Outputs* (e.g. HTTP error codes) 
Communication Language Support (e.g. .NET 
languages for MS Office) 
 
 
 
 

COTS Internal Assumption Attributes (16) 
Synchronization (synchronous, 
asynchronous) 
Concurrency (single-threaded, multi-
threaded) 
Distribution (single-node, multi-node) 
Dynamism (static, dynamic) 
Encapsulation (Yes, no) 
Layering (Yes, no) 
Triggering capability (yes, no) 
Backtracking (yes, no) 
Backtracking (yes, no) 
Control Unit (central control, distributed 
control, none) 
Component Priorities (yes, no) 
Preemption (yes, no) 
Reconfiguration (online, offline…) 
Reentrant (yes, no) 
Response Time (bounded, Unbounded, 
cyclic …) 
Error Handling Mechanism (rollback, 
notification, none …) 
Implementation language* (C++, Java …) 
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The two major criteria used for selecting these attributes 

were: 

1. attributes should be able to capture sufficient details on 

the major sources of COTS product mismatches 

(interface, internal assumption and dependency 

mismatches) identified - internal postulation 

mismatches, 

2. attributes should be defined at advanced so that COTS 

vendors are able to provide feature definitions without 

revealing confidential product information  

 

To date, we have surveyed about 40 COTS 
products of which 30 were open source. For the non open 

source COTS we could identify at least 34 of the38 

attributes from the publicly available information itself. We 

neglected to include many attributes such as data topology, 

control structure, and control flow because they were either 

: too detailed and required accepting of internal designs of 

COTS products for defining them, or could alternately be 

represented at a higher level by an already included 

attribute, or did not provide significant mismatches to 

warrant us including them. We have classified the attributes 

that we selected into four groups shown in Figure 
3.Attributes (or attribute sets) marked with an asterisk 

indicate that there may be multiple values for a given 

attribute (or set) for the given COTS product.  

The remainder of this section summarize attribute 

classifications. The full metaphors of all the attributes can 

be accessed at [17]. COTS general attributes (4) aid in the 

identification and querying of COTS products. The attribute 

include name, version, role and type. COTS interface 

attributes (14) define the communications supported by the 

COTS product. An interaction is defined by the exchange of 

data or control amongst machinery. COTS products may 

have multiple interface, in which case it will have multiple 
interface definition. For example: the Apache Web Server 

will have one complete interface definition for the web-

interface (interaction via HTTP), and another complete 

definition for server interface (interaction via procedure 

call). These attributes include packaging (source code 

modules, object modules, dynamic libraries, etc.), data and 

control inputs, outputs, protocols etc. When developing the 

COTS product the developer makes certain assumption 

about the internal operations of the COTS products. The 

COTS internal assumption attributes (16) confine such 

internal assumption For example developers of the Apache 
Web Server assume that the software will contain a central 

control unit which will regulate the performance of the 

system. COTS internal statement attributes include 

synchronization, concurrency, distribution and others. 

COTS dependency attributes (4) define the conveniences 

required by a COTS product i.e. software the COTS 

product requires for successful execution. For example any 

Java-based system requires the Java Runtime Environment 

(JRE) as a platform. COTS dependency attributes include 

primary and communication dependencies, deployment 

language support, and execution language support. An 

example COTS definition using the attributes specified in 
Figure 3 is shown in Table 1. 

 

1.4 Integration Assessment Rules 

The Integration review Rules are a set of rules used to 

perform the interoperability analysis. Every rule has a set of 

pre-conditions, which if true for the given planning and 
components, identifies an architectural mismatch. For 

example consider one of the architectural mismatches found 

by Gacek in [4]:“Data connectors connecting components 

that are not always active”. For the given mismatch the 

precondition are: 2 components connected via a data 

connector (only) and one of the components does not have a 

central control unit. There are similar rules for performing 

arts interface, dependency, and internal assumption 

analysis. Interface analysis discovers if there are commonly 

shared interfaces between two communicating COTS 

components, if not it includes recommendation on the type 

of “glue ware” (or “glue code”) required to integrate the 
components. 

enslavement analysis rules verify if the 

architecture satisfies all the dependencies that a COTS 

product require. Finally, for internal assumption we 

leverage upon the mismatches identified in [4] and add new 

mismatches based on newly added attributes. Currently, our 

framework is still underdevelopment and we are in the 

process of evaluating these rules for behavior such as 

completeness, correctness, tractability and scalability. We 

have perform an initial appraisal along two of these 

evaluation target (correctness and completeness) and our 
ongoing work involves solidifying means of measuring and 

evaluating our work. 

1.5 Framework Application to Motivating Example 

To answer the two questions posed in the 

motivating example section we apply our framework to 

analyze the system architecture and COTS combinations. In 

our example there are 2 major considerations when 

assessing COTS products and implementation technologies 
to identify interoperability conflicts: 

1. Interoperability conflicts when integrate the digital asset 

management system with the database. 

2. Selection of languages to develop the custom 
components so as to minimize the development effort by 

leveraging upon existing support provided by COTS 

products. 

Table 1 Definition of Apache 2.0 using COTS 

Representation Attributes 

Representation Attributes 

COTS General Attributes (4) 

Name 

Version 
Role 

Type 

Apache 

2.0 

Platform 

Third-party 

component 

Interface 

Attributes (14) 

Background 

Interface 

Web 

Interface 

Packing 

 

Data Inputs 

 

Data Outputs 

Executable Program 

Data access, 

Procedure 

Call, Trigger 

 

Data access,  
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Data Protocols 

Data Format 

Data 

Representation 
Control Inputs 

 

Control Outputs 

Control Protocols 

Procedure 

Call,  

Trigger 

  

HTTP 

N/A N/A 

Ascii, 

Unicode, 
Binary 

Ascii, 

Unicode, 
Binary 

Procedure 

call, Trigger 

 

Procedure 

call, Trigger 

Spawn 

 

Non

e 

 

Extentions Supports 

Extentions 

 

Binding 

Error Inputs 

Error Outputs 

Communication 

Language Support 

Running 

Dynamic 

Topologicall

y Dynamic 

  

Log

s 

HTTP Error 

Codes 

C, 

C++ 

 

COTS Internal Assumption Attributes (16) 

Synchronization 

Concurrency 

Distribution 

Dynamism 

Asynchronous 

Multi-threaded 

Single-node 

Dynamic 

Encapsulation 

Layering 

Triggering 

Capability 

Backtracking 

Control Unit 

Component 
Priorities 

Preemption 

Reconfiguration 

Reentrant 

Response Time 

Implementation 

Lang 

Error Handling 

Mechanism 

Encapsulated 

None 

Yes 

No 

Central 

No 

Yes 

Offline 

Yes 

Bounded 

C++ 

Notification 

COTS Dependency Attributes (4) 

Underlying 

Dependencies 

Linux, Unix, 

Windows, Solaris 

(OR) 

Communication 

Dependency 

None 

Deployment 

Language 

Binary 

ExecutionLangua

ge Support 

CGI 

                                  

The project analyst should provide the following 

information for every interaction in the proposed 

architecture: 

• data and/or control interaction, 

• Unidirectional of bidirectional interaction, and• 

which component initiates the interaction, 

For the interactions where the large volume data 

transfer connectors (C1, C2, and C3) are required, the 

analyst will define attributes specific for that QoS 

(described further in this section). Assume a scenario where 

D Space is being assessed as the digital asset management 
system, and MySQL as the database server. The 

architecting component user interface will automatically 

retrieve the definitions for D Space and MySQL and pass 

the architecture, interaction and definition information to 

the integration analysis component for assessment. The 

integration analysis component will apply the rules (from 

integration rules repository) using COTS attributes and 

based on the deployment architecture definition to identify:  

a. Common interfaces supported by MySQL and D 

Space, bridging connectors and the type of glue 

code(communication, conversion, synchronization or a 

combination thereof) required [15]. 

b. Internal assumption mismatches between 

MySQL and D Space  

c. Verification that the COTS dependencies have 

been satisfied in the given architecture.  

d. Recommended languages for the query manager 

and data recovery component that will simplify developing 

glue-code between COTS and custom components. 

In the event that the two interacting components 

(D Space and MySQL) do not share common interfaces, it 

will recognize (using the COTS connectors elector) a 

connector that can enable announcement between the two 

components (JDBC-MySQL driver)and output the fallout in 

the report. The project analyst can use these findings to 

estimate the effort required to test (for internal assumption 

mismatches) and integrate the COTS and custom apparatus 
[16]. Development  

teams can run such evaluation on all their COTS 

and custom combinations; and use the exertion results as an 

input to their COTS evaluation table [10] to facilitate the 

COTS component collection decision. External users, when 

selecting COTS products and implementation technologies 

to develop application can run our framework by keeping 
COTS and technologies selected by JPL and ESA constant 

and varying their choices of COTS harvest to identify the 

set which will require minimal integration effort.  

To deal with the range of connectors to support 

large-volume data transfer between JPL and ESA (as shown 

in Figure 1), and the external users, we employ a specific 

level of service extension that we have constructed for 

large-scale, data-intensive systems. The extension was 
particularly motivated by our experience developing such 

systems at JPL. A careful, detailed description of this level 

of service extension is beyond the scope of this paper: for 

more information on its internal architecture, motivation 

and objectives the reader is directed to [13]. However for 
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the purposes of our COTS assessment and selection 

framework, we will explain the data-intensive level of 

service extension’s high level architecture focusing on two 

of its critical phases: connector classification, and selection. 
The inputs to the data-intensive level of service extension 

are called Distribution Connector Profiles, or DCPs. DCPs 

capture metadata describing connector Data Access, 

Distribution and Streaming information abstracted from 

Mehta et al.’s [15] connector taxonomy.  

The profiles also contain information critical to 

data distribution including Delivery Intervals, Number of 

Users and Total Volume (in total, there are eight core 
dimensions of data distributions we are focusing on). To 

generate DCPs, an architect can manually classify a set of 

COTS distribution connectors: or the DCPs can be 

generated using some automated process. For our 

motivating example, we assume that the production of 

DCPs has already been performed offline, and we assume 

the presence of a knowledge base of DCPs resultant from 

the arrangement. The connectors profiled for the knowledge 

base take account of connectors C1, C2, and C3shown in 

Figure 1. Connector selection starts after the system 

architecture has been arrived upon and after data allocation 
scenarios (e.g., constraints on the DCP metadata) have been 

identified by the user(s) of the system. In our example, 

there are three distinct distribution scenarios to consider 

(represented below inhuman readable form and then 

following in constraint query format): 

S1. Distribution of data from JPL scientists to ESA 

scientists 

S2. Distribution of data from ESA scientists to JPL 

scientists 

S3. Distribution of JPL and ESA data to the 

outside community 

The three scenarios can be expressed as the 

following constraint queries against the DCP metadata: 

 

 

 

 

For instance, S1 represent the user preference of the 

ESA scientists who would like to receive their JPL 
colleagues’ data. S1 describe a allotment scenario in which 

the producer of data (the JPL scientists) are conveyance 

over 100 GB of data using a wide-area network (WAN) to 2 

regulars of data (the ESA scientists), using 4 escape 

intervals where each interval consists of 25 GB of data. In 

S1, from the perspective of the producer of data (JPL 

scientists),there is a single user type, the ESA scientists. 

QueriesS2 and S3 are formulated similarly. Using S1-S3 as 

selection criteria, “candidate” connectors are chosen based 

on their DCP metadata at hand in the DCP knowledge base 

using a conventional database attribute matching 

approaches. After candidate connector filtering, the 

distribution connectors are assessed for architectural 

mismatches that may result from their combined use in 

support of the given circulation scenario.  

This appraisal is conducted using an conservatory 

to Gacek’s [4] simple pair-wise mismatch algorithm that 

compares two architectural elements (in this case, 

distribution connectors) along the metadata values provided 

by the DCP. For every value, our algorithm detects 

potential mismatch areas and decides whether the (set of) 

mismatches identified are severe enough to avoid connector 

combination, otherwise, selects suitable connectors that 
could be used together. For example there may be a 

divergence in the Number of Users dimension of two of the 

freedom connectors from the JPL and ESA system, C1 and 

C2 If C2 supports fewer users than connector C1, then C2 

may become the restricted access in the distribution. The 

detected mismatches are labeled using a simple, but 

adaptable set of divergence levels, such as severe, or 

allowable. A severe mismatch may prevent combination of 

two otherwise matched connectors, while an allowable label 

may still allow their combination. 

 The levels are tailor able and meant to be profiled 

to suit each respective user of our framework. Relating back 

to our motivating example, the algorithm may decide based 

on the DCP metadata, that connectors C1and C2 should be 

combined, and to combine the Grid FTP [18] connector 

with an HTTP based custom COTS data connector. 

Additionally, the level of service extension may conclude 

that connectorC3 can be implemented using an available 

OTS peer to-peer distribution connector, such as Bit torrent. 

III. Empirical Results 
In bounce semester of 2006 we conducted an conduct 

experiment in a graduate software engineering course at 

USC using our assessment framework. The course focus on 

software classification development [19] requested by a 
real-world client. Over the last few years the course has 

twisted systems for e-services, explore (medicine and 

software), as well as commercial selling domains. Graduate 

students enrolled in the track form teams of about 5 

members to design and implement a software system within 

a24-week time period. During this period the project 

progresses through inception, elaboration, manufacture and 

transition phases. Our experiment was conducted close to 

the end of the elaboration phase, when the team propose a 

system architecture that would meet the system 

requirements. We asked 6 teams, whose architectures 

included at least 3 or more COTS components to use our 
framework on their personal projects and measured results 

in four areas: 

1. Accuracy of interface incompatibilities notorious by the 

framework considered as 1 – (number of interface 

incompatibilities missed by the team / total number of 

interface incompatibilities). Interface measurement results 

produced by our framework were verified later through a 

survey when the teams actually integrated the COTS 

products. Results in this area price the completeness and 

correctness of our interface assessment rules. 

2. Accuracy of dependency identified by the framework 
calculated as 1 – (number of dependencies missed by the 

(Total Volume > 100 GB)  (Number Of Users = 2)                 
(S1) 

(Num Delivery Intervals = 4)   (Volume Per Interval = 25 
GB) 

  (Num User Types = 1)   (Geographic Distribution = 
WAN) 

(Total Volume = 1GB)   (Number Of Users = 4) 

  (Geographic Distribution = WAN)   (Num User Types 
= 1) (S2) 

(Total Volume = 101 GB)   (Number Of Users > 10,000) 

  

(Geographic Distribution = WAN)   (Num User Types = 

2)      (S3) 
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team / total number of dependencies). Addiction assessment 

results produced by our framework were also later verified 

through a survey after the project was implemented. These 

results evaluate the completeness and correctness of our 
interface dependency rules. 

3. Effort spent in assessing the architectures using the 

framework contrasting to the effort spent in assessing the 

architectures manually by an comparable team. These 

results demonstrate the competence of using our framework 

to perform interoperability assessment as opposed to 

performing a manual assessment. 

4. Effort spent in performing arts the actual integration after 

using the framework as opposed to effort spent by an 

equivalent team. 

 Results here validate the overall utility of our 

framework Equivalent teams were chosen from past CSCI 
577 projects such that they had analogous COTS products, 

similar architectures, and whose team-members had similar 

years of experience in project enlargement. 

Upon performing autonomous T-test [20] for the 

metrics above we recorded the results shown in Table2. Our 

results indicate that the framework increases dependency 

assessment accuracy and interface assessment accuracy by 

more than 20% and reduces both assessment effort and 

integration effort by approximately 50%. These results are 

significant at the alpha = 5% level. 

Table 2. Empirical assessment of our framework 

Groups Mean Std-Dev. P-Value 

Interface Assessment Accuracy 

Before using 

the 

framework 

76.9% 14.4 0.0029 

After using 

the 

framework 

100% 0 

Dependency Assessment Accuracy 

Before using 

the 

framework 

79.3% 17.9 0.017 

After using 

the 

framework 

100% 0 

Effort spent in performing architecture 

assessment 

Projects 

using the 

framework 

1.53 1.71 0.053 

Equivalent 

projects 

5 hrs 3.46 

Effort spent when integrating the COTS 

products 

Projects 

using the 
framework 

9.5 2.17 0.0003 

Equivalent 

projects 

18.2 3.37 

 

 

 

IV. Conclusion and Future Work  
This paper presents a construction that enables 

evaluation and selection of COTS workings and connectors 

early in the software development lifecycle. The skeleton 

does not eliminate detailed testing and prototyping for 

evaluating COTS interoperability, however it does provide 

an analysis of interface compatibilities and dependency. 

The framework recommends connectors to be used or glue 

code required and early indications of probable 

incompatibilities during system integration. Moreover, 

since the framework is automated it enables evaluation of 

large number of architectures and COTS combinations, 

increasing the trade-off space for COTS component and 
connector selection. Currently we have completed a tool 

prototype to enable such examination and are in the process 

of developing a fully functional tool suite. We are also 

planning experiment to gather empirical data to further test 

the utility of the framework across a larger sample size and 

in different development environments. It is also important 

to note that attribute for frameworks such as ours must be 

periodically updated based on prevailing COTS 

characteristics. 

 

References 

[1] F. Brooks, "No Silver Bullet: Essence and Accidents 

of Software Engineering," Computer, vol. 20, pp. 10-

19,1987. 

[2] A. Abd-Allah, "Composing Heterogeneous Software 

Architectures," Ph.D. Thesis, Univ. Southern 

California,1996. 

[3] L. Davis, et al., "The Impact of Component 

Architectures on Interoperability," J. Systems and 

Software, 2002. 

[4] C. Gacek, "Detecting Architectural Mismatch During 
Systems Composition", Ph.D. Thesis, Univ. Southern 

California, 1998. 

[5] D. Garlan, et al., "Architectural Mismatch or Why it’ 

shard to build systems out of existing parts," In Proc. 

ICSE, 1995. 

[6] D. Yakimovich, "A Comprehensive Reuse Model for 

COTS Software Products", Ph.D. Thesis, University 

of Maryland College Park, 2001. 

[7] C. Albert, et al., "Evolutionary Process for Integrating 

COTS-Based Systems (EPIC)," CMU/SEI Technical 

Report CMU/SEI-2002-TR-005, 2002. 
[8] K. Ballurio, et al., "Risk Reduction in COTS Software 

Selection with BASIS," In Proc. ICCBSS, 2003. 

[9] B. Boehm, et al., "Compostable Process Elements for 

COTS-Based Applications," In Proc. 5th Intl. 

Workshop on Economics-Driven Software 

Engineering Research, Oregon, 2003. 

[10] S. Comella-Dorda, et al., "A Process for COTS 

Software Product Evaluation," In Proc. ICCBSS, 

Orlando, Florida, 2002. 

[11] Y. Yang, et al., "Value-Based Processes for COTS 

Based Systems," IEEE Software, vol. 22, pp. 54-

62,2005. 
[12] M. Shaw, et al., Software architecture: perspectives on 

an emerging discipline. Upper Saddle River, N.J.: 

Prentice Hall, 1996. 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.4, July-Aug. 2012 pp-2521-2528             ISSN: 2249-6645 

www.ijmer.com                                                                      2528 | Page 

[13] C. Mattmann, "Software Connectors for Highly 

Distributed and Voluminous Data-intensive Systems, 

“In Proc. ASE, Tokyo, Japan, 2006. 

[14] N. Medvidovic, et al., "A Classification and 
Comparison Framework for Software Architecture 

Description Languages," IEEE TSE, vol. 26, pp. 70-

93, 2000. 

[15] N. Mehta, et al., "Towards a Taxonomy of Software 

Connectors," In Proc. ICSE, Limerick, Ireland, 2000. 

[16] C. Abts, "Extending the COCOMO II Software Cost 

Model to Estimate Effort and Schedule for Software 

Systems Using Commercial-Off-The-Shelf (COTS) 

Software Components: The COCOTS Model", Ph.D. 

Thesis, Univ. Southern California, 2004. 

[17] J. Bhuta, "A Framework for Intelligent Assessment 

and Resolution of Commercial Off-The-Shelf 
(COTS)Product Incompatibilities," USC, Tech. 

Report USCCSE-2006-608, 2006. 

[18] C. Kesselman, et al., "The Anatomy of the Grid: 

Enabling Scalable Virtual Organizations," Intl' Journal 

of Supercomputing Applications, pp. 1-25, 2001. 

[19] B. Boehm, et al., "A stakeholder win-win approach to 

software engineering education," Annals of Software 

Engineering . vol. 6, pp. 295 - 321, 1998. 

[20] T. Dietterich, "Approximate Statistical Tests for 

Comparing Supervised Classification Learning 

Algorithms," Neural Computation, vol. 10, 1998. 
[21] E. Mancebo, et al., "A Strategy for Selecting Multiple 

Components," In Proc. ACM SAC, Santa Fe, NM, 

2005. 

[22] L. Davis, et al., "A Notation for Problematic 

Architectural Interactions," In Proc. ESEC/FSE, 2001. 

[23] R. Keshav, et al., "Towards a Taxonomy of 

Architecture Integration Strategies," In Proc. ISAW, 

1998. 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIOGRAPHIES 
G.Viswanath is born in 1982 in 
India. He is graduated in B.C.A 

from Osmania University, 

Hyderabad and post graduated in 

M.C.A from S.K. University, 

Anantapur. Presently he is doing 

post graduation in M.Tech (C.S.E) 

at MITS College, Madanapalli, 

Andhra Pradesh, India from JNTU 

Anantapur. At present working on 

Assistant professor at Sai Sakthi 

Engineering College, Kankamma Chatram, Chittoor 
District, India. 

 

N. Bala Krishna is born in 1984 

in India. He is graduated in 

B.Tech from JNTU Hyderabad. 

He is post graduated in M.Tech 

from JNTU Anantapur. He is 

currently working as a Assistant 

professor in the department of 

Computer science and engineering 

at MITS College, Madanapalli, 

Chittoor District, Andhra Pradesh, 
India. 


