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Abstract: Network intrusion detection system is used to 

inspect packet contents against thousands of predefined 

malicious or suspicious patterns. Because traditional 

software alone pattern matching approaches can no longer 

meet the high throughput of today’s networking, many 
hardware approaches are proposed to accelerate pattern 

matching. Among hardware approaches, memory-based 

architecture has attracted a lot of attention because of its 

easy reconfigurability and scalability. In order to 

accommodate the increasing number of attack patterns and 

meet the throughput requirement of networks, a successful 

network intrusion detection system must have a memory-

efficient pattern- matching algorithm and hardware design. 

In this paper, we propose a memory-efficient pattern-

matching algorithm which can significantly reduce the 

memory requirement. For Snort rule sets, the new 

algorithm achieves 21% of memory reduction compared 
with the traditional Aho–Corasick algorithm. In addition, 

we can gain 24% of memory reduction by integrating our 

approach to the bit-split algorithm which is the state-of-

the-art memory-based approach. 

 

Index Terms: Aho–Corasick (AC) algorithm, finite 

automata, pattern matching. 

 

I. Introduction 

The  purpose  of  a  signature-based  network  intru-sion  

detection  system  is  to  prevent  malicious  network 

attacks  by  identifying  known  attack  patterns.  Due  to  

the  in-creasing complexity of network traffic and the 

growing number of  attacks,  an  intrusion  detection  

system  must  be  efficient, flexible and scalable.The 

primary function of an intrusion detection system is to 

perform matching of attack string patterns. Because string 

matching is the most computative task in network intrusion 
detection (NIDS) systems, many hardware approaches are 

pro-posed to accelerate string matching. The hardware 

approaches may be classified into two main categories, the 

logic [5], [8], [13],[16], [21], [26] and the memory 

architectures [4], [6], [7], [11], [14], [15], [22]–[24], [27]–

[29] In terms of reconfigurability and scalability, the 

memory architecture has attracted a lot of attention because 

it allows on-the-fly pattern update on memory without 

resynthesis and  relay out  

 
Fig 1 DFA for matching “bcdf” and “pcdg”  

 

 
Fig 2 basic memory architecture 

 

The basic memory architecture works as follows. First, the 

(attack) string patterns are compiled to a finite-state 

machine (FSM) whose output is asserted when any 

substring of input strings matches the string patterns. Then, 

the corre-sponding state transition table of the FSM is 

stored in memory. For instance, Fig. 1 shows the state 

transition graph of the FSM to match two string patterns 

“bcdf” and “pcdg”, where all tran-sitions to state 0 are 

omitted. States 4 and 8 are the final states indicating the 

matching of string patterns “bcdf” and “pcdg”, 
respectively. Fig. 2 presents a simple memory architecture 

to implement the FSM. In the architecture, the memory 

address register consists of the current state and input 

character; the decoder converts the memory address to the 

corresponding memory location, which stores the next state 

and the match vector information. A “0” in the match 

vector indicates that no “suspicious” pattern is matched; 

otherwise the value in the matched vector indicates which 

pattern is matched. For example in Fig. 2, suppose the 

current state is 7 and the input character is . The decoder 

will point to the memory location which stores the next 

state 8 and the match vector 2. Here, the match vector 2 
indicates the pattern “pcdg” is matched. Due to the 

increasing number of attacks, the memory re-quired for 

implementing the corresponding FSM increases to the 

memory size, reducing the memory size has become 

Novel Pattern Matching using FSM Algorithm for Memory 

Architecture 
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imperative. Certain complicated virus string patterns can be 

represented by regular expressions. For example, the 

pattern for detecting the internet radio protocol is 

represented as “membername*session*player” For memory 

architecture, only few pre-vious works [15], [29] proposed 
to reduce the complexity of reg-ular expressions. Still, 

majority of the patterns are exact string patterns. For 

example in Snort V2.4, there are 85% of exact string 

patterns. In this paper, we focus on reducing the memory 

size of the exact string patterns. We observe that many 

string patterns are similar because of common sub-strings. 

However, when string patterns are compiled into an FSM, 

the similarity does not lead to a small FSM. Consider the 

same example in Fig. 1 where two string patterns have a 

common sub-string “cd”. Because of the common sub-

string, state 2 has “similar” state transitions to those of state 

6. Similarly, states 3 and 7 have “similar” transitions. 
However, states 2 and 6, states 3 and 7 are not equivalent 

states and cannot be merged directly. We call a state 

machine merging those non-equivalent “similar” states, 

merg_FSM. 

In this paper, we propose a state-traversal 

mechanism on a merge_FSM while achieving the same 

purposes of pattern matching. Since the number of states in 

merg_FSM can be drastically smaller than the original 

FSM, it results in a much smaller memory size. We also 

show that hardware needed to support the state-traversal 

mechanism is limited. Experimental results show that our 
algorithm achieves 21% of memory reduction compared 

with the traditional AC algorithm for total string patterns of 

Snort [24]. In addition, since our approach is 

complementary to other memory reduction approaches, we 

can obtain substantial gain even after applying to the 

existing state-of-the-art algorithms. For example, after 

integrating with the bit-split algorithm [27], we can gain 

24% of memory reduction. 

 

II. RELATED RESEARCHES 
In this section, we review several related researches in this 

area. In the past few years, many algorithms and hardware 

designs are proposed to accelerate pattern matching. The 

hard-ware approaches can be classified into two main 

categories, logic and memory architectures. The logic 

architectures mostly use on-chip logic resources of field-

programmable gate array (FPGA) to convert regular 

expression pattern into parallel state machines or 

combinatorial circuits because FPGA allows for updating 

new attack patterns. Sidhu et al. [26] proposed algorithm to 

compile regular expression patterns into combi-natorial 
circuits based on nondeterministic finite automaton (NFA). 

Hutchings et al. [13] developed a module generator that 

shared common prefixes to reduce the circuit area on 

FPGA. Moscola et al. [21] presented a content-scanning 

module on FPGA for an internet firewall. Clark et al. [8] 

improved area and throughput by adding predecoded wide 

parallel inputs to traditional NFA implementations. Baker 

et al. [5] presented a pre-decoded multiple-pipeline shift-

and-compare matcher which reduced routing complexity 

and comparator size by con-verting incoming characters 

into many bit lines. Lin et al. [16] proposed a sharing 
architecture which significantly reduces circuit areas by 

sharing common infix and suffix sub-patterns.From the 

perspectives of reconfigurability and scalability, memory 

architectures are attractive because memory is flexible and 

scalable. The Aho–Corasick (AC) algorithm [1] is the most 

popular algorithm which allows for matching multiple 

string patterns. Aldwairi et al. [2] proposed a configurable 

string matching accelerator based on a memory 
implementation of the AC FSM. Tan et al. [27] proposed 

the bit-split algorithm partitioning a large AC state machine 

into small state machines to significantly reduce the 

memory requirements. Jung et al. [14] presented an FPGA 

implementation of the bit-split string matching architecture. 

Piyachon et al. [22] proposed to reduce the memory size by 

relabeling states of AC state machine. Ad-ditionally, 

Piyachon et al. [23] proposed to use Label Transition Table 

and CAM-based Lookup Table to significantly reduce the 

memory size. Cho et al. [6], [7] proposed a hash-based 

pattern matching co-processor where memory is used to 

store the list of substrings and the state transitions. 
Dharmapurikar et al. [11] proposed a pattern matching 

algorithm which modifies the AC algorithm to consider 

multiple characters at a time. Furthermore, the content 

addressable memories (CAM) is also widely used for string 

matching because it can match the entire pattern at once 

when the pattern is shifted past the CAM. Gokhale et al. 

[12] used CAM to perform parallel search at a high speed. 

Sourdis et al. [25] applied the pre-decoded tech-nique for 

the CAM-based pattern matching to reduce the area. 

Additionally, Yu et al. [30] presented a ternary content 

address-able memory (TCAM)-based multiple-pattern 
matching which can handle complex patterns, correlated 

patterns, and patterns with negation. 

 The hash-based approach was proposed to utilize 

Bloom filter for deep packet inspection. Dharmapurikar et 

al. [10] proposed a hashing-table lookup mechanism 

utilizing parallel bloom filters to enable large number of 

fixed-length strings to be scanned in hardware. Lockwood 

et al. [19] proposed an intelligent gateway based on Bloom 

filter that provides Internet worm and virus protection in 

both local and wide area networks. 

 

III. REVIEW OF AC ALGORITHM 
 In this section, we review the AC algorithm. 

Among all memory architectures, the AC algorithm has 

been widely adopted for string matching in [2], [14], [15], 

[22], [23], [27] because the algorithm can effectively 

reduce the number of state transitions and therefore the 

memory size. Using the same example as in Figs. 1 and 3 

shows the state transition diagram derived from the AC 

algorithm where the solid lines represent the valid 

transitions while the dotted lines represent a new type of 
state transition called the failure transitions. 

The failure transition is explained as follows. 

Given a cur-rent state and an input character, the AC 

machine first checks whether there is a valid transition for 

the input character; oth-erwise, the machine jumps to the 

next state where the failure transition points. Then, the 

machine recursively considers the same input character 

until the character causes a valid transi-tion. Consider an 

example when an AC machine is in state 1 and the input 

character is . According to the AC state table in Fig. 4, 

there is no valid transition from state 1 given the input 
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Fig. 3.   State diagram of an AC machine. 

 

 

 

 

 

 

 

 

 

 

Fig4 .   AC state table 
 

 
Fig 5 .   Merging similar states 

 

character . When there is no valid transition, the AC 

machine takes a failure transition back to state 0. Then in 

the next cycle, the AC machine reconsiders the same input 

character in state 0 and finds a valid transition to state 5. 

This example shows that an AC machine may take more 

than one cycle to process an input character In Fig. 3, the 

double-circled nodes indicate the final states of patterns. In 

Fig. 3, state 4, the final state of the first string pattern 

“bcdf”, stores the match vector {P2,P1} = {01} and state 8, 

the final state of the second string pattern “pcdg”, stores the 
match vector of  {P2,P1} = {10} Except the final states, the 

other states store the match vector {P2,P1} = {00} to 

simply express those states are not final states. 

 

IV. STATE TRAVERSAL MECHANISM 

ONAMERG FSM 
In our design, we reuse those memory spaces storing zero 
vectors {00} to store useful path information called 

pathVec. First, each bit of the pathVec corresponds to a 

string pattern. Then, if there exists a path from the initial 

state to a final state, which matches a string pattern, the 

corresponding bit of the pathVec of the states on the path 

will be set to 1. Otherwise, they are set to 0. Consider the 

string pattern “bcdf” whose final state is state 4 in Fig. 7. 

The path from state 0, via states 1, 2, 3 to the final state 4 

matches the first string pattern “bcdf”. There-fore, the first 

bit of the pathVec of the states on the path, {state 0, state 1, 

state 2, state 3, and state 4}, is set to 1. Similarly, the path 
from state 0, via states 5, 6, 7 to the final state 8 matches 

the second string pattern “pcdg”. Therefore, the second bit 

of the pathVec of the states on the path, {state 0, state 5, 

state 6, state 7, and state 8}, is set to 1. In addition, we add 

an additional bit, called ifFinal, to indicate whether the 

state is a final state. For example, because states 4 and 8 are 

final states, the ifFinal bits of states 4 and 8 are set to 1, the 
others are set to 0. As shown in Fig. 7, each state stores the 

pathVec and ifFinal as the form, “pathVec_ ifFinal”. 

Compared with the original AC state machine in Fig. 3, we 

only add an additional bit to each state. We have mentioned 

that in this example, states 2 and 6, states 3 and 7 are 

similar because they have similar transitions. How-ever, 

they are not equivalent. Note that two states are equivalent 

if and only if their next states are equivalent. In Fig. 7, 

states 3 and 7 are similar but not equivalent because for the 

same input , state 3 takes a transition to state 4 while state 7 

takes a failure transition to state 0. Similarly, state 2 and 

state 6 are not equiv-alent states because their next states, 
state 3 and state 7, are not equivalent states. In our 

algorithm, we define such similar states as pseudo-

equivalent states. The definition is as follows.  

Definition: Two states are defined as pseudo-equivalent 

states if they have identical input transitions, identical 

failure transitions, and identical ifFinal bit, but different 

next states.In Fig. 7, states 2 and 6 are pseudo-equivalent 

states be-cause they have identical input transitions , 

identical failure transitions to state 0 and identical ifFinal 

bit 0. Also, state 3 and state 7 are pseudo-equivalent states. 

In our algorithm, the pseudo-equivalent states 2 and 6 are 
merged to be state 26 and states 3 and 7 are merged to be 

state 37, as shown in Fig. 8. The pathVec_ifFinal are 

updated by taking the union on the pathVec_ifFinal of the 

merged states. Therefore, the pathVec_ifFinal of states 26 

and 37 are modified to be {11_0} In addition, we need a 

register, called preReg, to trace the precedent pathVec in 

each state. The width of preReg is equal to the width of 

pathVec. Each bit of the preReg also corresponds to a 

string pattern. The preReg is updated in each state by per-

forming a bitwise AND operation on the pathVec of the 

next state and its current value. By tracing the precedent 

path entering into the merged state, we can differentiate all 
merged states. When the final state is reached, the value of 

the preReg indicates the match vector of the matched 

pattern. During the state traversal, if all the bits of the 

preReg become 0, the machine will go to the failure mode 

and choose the failure transition as in the AC algorithm. 

After any failure transition, all the bits of the preReg are 

reset to 1. the string “pcdf” is ap-plied. Initially, in state 0, 

the preReg is initialized to{P2,P1} ={11} After taking the 

input character ,P the merg_FSM goes to state 5 and 

updates the preReg by performing a bitwise AND operation 

on the pathVec {10} f state 5 and the current preReg {11} 
The resulting new value of the preReg will be {P2,P1} 

={10 AND 11}={10} Then, after taking the input character 

, the merg_FSM goes to state 26 and updates the preReg by 

performing a bitwise AND operation on the pathVec {11} 

of state 26 and the current preReg {10} The preReg 

remains{P2,p1}={11AND10} ={10} Further, after taking 

the input character , the merg_FSM goes to state 37 and 

updates the preReg by performing a bitwise AND operation 

on the pathVec {11} of state 37 and the current preReg 

{10} The preReg remains {P2P1} = {11AND10}={10} 

Finally, after taking the input character , the merg_FSM 
goes to state 4. After performing a bitwise AND operation 
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on the pathVec {01} of state 4 and the current preReg{10} 

the preReg becomes{P2P1}={01AND10}={00} According 

to our algorithm, during the state traversal, if all the bits of 

the preReg become 0, the machine will go to the failure 

mode and choose the failure transition as in the AC 
algorithm. Therefore, the machine takes the failure 

transition to state 0 instead of state 4. 

 

V. LOOP BACK IN MERGED STATES 
When certain cases of multiple sections of pseudo-

equivalent states are merged, it may create loop back 

problem in a state machine. The reason for the loop back 

problem comes from merging common sub-patterns with 

different sequences. For example, the two patterns, 
“abcdef” and “wdebcg,” have common sub-patterns, “bc” 

and “de,” which appear in different sequences. Fig. 16 

shows the corresponding state machine. Because of the 

common sub-patterns, “bc”, states 2 and 10, states 3 and 11 

are pseudo-equivalent states. And, because of the common 

sub-patterns, “de”, states 4 and 8, states 5 and 9 are also 

pseudo-equivalent states. Merging the pseudo-equivalent 

states will create a loop back transition from state 5 to state 

2, as shown in  

 
Fig. 6 Merging pseudo-equivalent states with different 
sequences. 

 The loop transition may cause false positive matching 

results. For example, the input string “abcdebcdef” will be 

mistaken as a match of the pattern “abcdef.” In other 

words, as long as the common substrings appear in 

sequence, merging the corresponding pseudo-equivalent 

states will not result in loop back transitions. Therefore, in 

our program, we record and identify the orders of common 

sub-patterns. If the common sub-patterns appear in 

sequence, the corresponding pseudo-equivalent states can 

be merged without loop back problems. Fig. 18 shows the 
pseudo code of our algorithm to find common substrings 

without the loop back problem. First, all common sub-

strings are extracted by the longest common substring 

algorithm [9]. The algorithm can report all of the common 

substrings. Then, the common substrings are labeled as 

new sequences. Next, we use the longest common 

subsequence (LCS) algorithm [20] to find all of the longest 

subsequence common to all strings. The results from the 

LCS algorithm guarantee that there will be no loop back 

transition. For example, consider the two patterns, 

“abcdefghijklm” and “abcwsghidefxyklm.” Using the 

longest common substring algorithm, we can extract all of 
the common substrings of these two patterns such as “abc”, 

“def”, “ghi” and “klm”. Then, we label the substrings 

“abc”, “def”, “ghi”, and “klm” as ,αβγδ , and , respectively. 

Therefore, the sequence of substrings in “abcdefghijklm” is 

labeled as “ ” while the sequence of substrings in 

“abcwsghidefxyklm” is labeled as “ ”. We subsequently use 

LCS algorithm to find all of the longest common 

subsequences among the two new sequences, “αβγδ ” and “ 

” and the results are “ αβδ” or “ αγδ”. Therefore,we can 

merge the subsequences of (“abc”), (“ghi”) and (“klm”) or 

the subsequences of (“abc”), (“def”) and (“klm”) without 

the loop back problem. Notice that the result of LCS may 

not be unique. 
  

VI. HARDWARE ARCHITECTURE 

Fig.7 shows our hardware module which can be configured 

for matching 16 or 32 patterns with a state machine 

containing 1024 valid transitions at most. In Fig.7,8, the 

register, called address_register, is used to store the current 

state and the input character. The valid_memory is used to 

store the information of valid_state, pathVec, and ifFinal 

corresponding to each valid transition while the 
failure_memory is used to store the failure_state 

corresponding to each failure transition. In this prototype, 

we use a hardwired circuit, called A2P, to translate the 

content of the address_register to a contiguous scope, 

called pos, to utilize the valid_memory. The circuit A2P 

can be implemented     using hardwired circuit or CAM 

[17]. In addition, the signal n_valid is high if there is no 

valid transition  corresponding to the address_register. 

Furthermore, the register 

 

 
Fig. 7. Hardware module for the new algorithm. 

 

 

 
Fig 8  Internal architecture of proposed system 
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called preReg, is used to trace the precedent pathVec in 

each state. The preReg is initiated to be 1 for all bits and is 

updated by performing a bitwise AND operation on its 

current value and the pathVec from the valid_memory. The 

ns_ctrl unit is used to determine the next state by the value 
of preReg and n_valid. If the preReg is 0 for all bits or the 

n_valid is 1, the ns_sel will output low to let the 

failure_state update the current_state register. On the other 

hand, if the preReg is not zero and the n_valid is not 1, the 

ns_sel will output high to let the valid_state update 

the current_state register.  

 

VII. EXPERIMENTAL RESULTS 
Using the version 2.4 of Snort rule set, we extract 2217 

exact string patterns containing 36 539 characters from the 

rule database. The results are compared with the methods 

of the AC algorithm and the bit-split algorithm. 

 
Fig 9  string patterns from Snort rule database 

 

The flow of our experiment is shown in Fig.9. In the first 
stage, we obtain string patterns from Snort rule database. In 

the second stage, we group 32 string patterns as a module 

based on the similarity of string patterns. Further, in the 

third stage, we use LCS to extract substrings without loop 

back problem. Because the solution of LCS may not be 

unique, we select the common substrings which have the 

largest sharing gain. The sharing gain of common 

substrings is defined as the length of common substrings 

multiplied by the number of patterns sharing the common 

substrings.  

 

Fig 10 the selection line with clk to the pesodo random 

order adjustment 

 

For example, three patterns, “1common1”, “2common2”, 

and “3common3” have the common substrings  common”. 

The sharing gain of the common substrings is because the 

substring “common” has six characters which are shared by 

three patterns. In the final stage, we merge the extracted 

common substrings and generate the transition table. Table 

I shows the results before and after integrating our 

algorithm to the AC algorithm. Columns one, two and three 
show the name of the rule set, the number of patterns, and 

the number of characters of the rule set. Columns four, five, 

and six show the number of state transitions, the number of 

states, and the memory size of the AC algorithm. Columns 

seven, eight, and nine show the results of our approach. 

Column ten shows the memory reduction compared to the 

AC algorithm. As shown in Fig. 10, the memory 

requirement includes the size of the valid memory and the 

failure memory. Because the memory requirement is 
proportional to the number of states, our algorithm has 

reduced memory size on the traditional AC algorithm. 

 

 
Fig 11 Final result of memory allocation and ram 

adjustment 

 

 Using the traditional AC algorithm, the number of 

transitions and states are 6793 and 6804, respectively. The 

memory size is 49 267 bytes. Integrating our algorithm to 

the AC algorithm, the number of transitions and states are 

reduced to 4432 and 3846, respectively. The memory size 

is reduced to 30 699 bytes, 38% of memory reduction from 
the AC algorithm. For total 2217 string patterns of Snort 

rule sets, our algorithm achieves a 21% memory reduction 

compared with the AC algorithm. Because the state-of-the-

art bit-split algorithm is based on the AC algorithm, our 

algorithm can also be integrated to the bitsplit algorithm to 

further reduce memory requirements. Applying the bit-split 

algorithm which splits the traditional AC state machine into 

4 state machines, the number of transitions and states are 

21 949 and 21 993, respectively. The size of memory is 

159 202 bytes. Integrating our algorithm to the bit-split 

algorithm, the number of transitions and states are reduced 
to 14 437 and 12 664, respectively. The size of memory is 

reduced to 98 400 bytes. The memory reduction achieves 

38%. For total 2,217 string patterns of Snort rule sets, 

integrating our algorithm to the bit-split algorithm can 

achieve 24% of memory reduction. Furthermore, we have 

synthesized the hardware module in  Fig. 19 using the 

ASIC flow of the UMC 0.18 m technology. The results are 

compared with [2], [6], [27], [28], [30] as shown in Fig 11, 

columns 2, 3, and 4 shows the number of characters, the 

memory size, and the throughput. Column 5 shows the 

memory utilization per character while column 6 shows the 

memory efficiency which is defined as the following 
equation:  

𝑴𝒆𝒎𝒐𝒓𝒚 𝒆𝒇𝒇𝒊𝒄𝒆𝒏𝒗𝒚 =
 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕𝑿𝑪𝒉𝒂𝒓.𝑵𝒖𝒎 

𝑴𝒆𝒎
 

 

VIII. CONCLUSION 
We have presented a memory-efficient pattern matching 

algorithm which can significantly reduce the number of 

states and transitions by merging pseudo-equivalent states 

while maintaining correctness of string matching. In 

addition, the new algorithm  is complementary to other 
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memory reduction approaches and provides further 

reductions in memory needs. The experiments demonstrate 

a significant reduction in memory footprint for data sets 

commonly used to evaluate IDS systems. 
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