
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1540-1542 ISSN: 2249-6645

www.ijmer.com 1540 | P a g e

Dr C.S. Lamba
1
, Sanjay Kumar

2

1.Professor, Rajasthan Institute of Engineering

Jaipur, Rajasthan, India

2. Lecturer, University Campus School

Rohtak, Haryana (124001), India

Abstract: This paper is introducing a model, which are used to evaluate the expected quality of software modules during

incremental development of software system. This is not only focus on modification of existing system, but also focus to

find the methods for developing high quality of software products at reasonable cost. As we know that software modules or

software systems are being used in more and more critical areas of industries as well as public or private sectors, then quality
of software modules becomes a key factor of business success and human safety. The goal of this paper within the subject

areas are the identification of the methods and modules that were used throughout the design and verification of the use and

the quality of these methods with respect to the analysis products.
Keyword:Software development approach,

I. Introduction
It is very difficult to build high quality software with limited quality assurance budgets. The proposed model can be

used to learn fault predictors from software metrics. Fault prediction prior to software release can guide Verification and

Validation (V&V) activity and allocate scarce resources to modules which are predicted to be fault-prone.
One of the most important goals of proposed model is to detect fault prone modules as early as possible in the software

development life cycle. Design and code metrics have been successfully used for predicting fault-prone modules.

Through this model we can introduce fault prediction from software requirements and analysis. Furthermore, we

investigate the advantages of the incremental development of software fault prediction models, and we compare the

performance of these models as the volume of data and their life cycle origin (design, code, or their combination) evolution

during project development. We confirm that increasing the volume of training data improves model performance. And that,

models built from code metrics typically outperform those built using design metrics only. However, both types of models

prove to be useful as they can be constructed in different phases of the life cycle. We also demonstrate that models that

utilize a combination of design and code level metrics outperform models which use either one metric set exclusively.

II. Problem Description
The software industry is currently entering a period of maturity, in which particular informal approaches are specified more

precisely and are supported by the appropriate standards. Quality characteristics of software products are defined in

ISO/IEC9126 [1]. For each characteristic, a set of attributes which can be measured is determined.Such a definition helps in

evaluating the quality of software, but gives no guidance on how to construct a high quality software

product.Therequirements for a quality management system are defined in ISO 9001 [2].All the requirements are intended for

application within a software process in order toenhance the customer satisfaction, which is considered the primary measure

of thesoftware product quality. The quality management system, as defined by the standard,can be subject to a

certification.This paper describes a model, which we used to evaluate the expected as well asthe actual quality of a huge

software system that was developed. There are a few methods for selecting the metrics and collecting data that are

relevantfor a particular purpose, described in the literature. The best known examples are Goal Question Metric approach

[3,4,5] and the Quality Function Deployment approach[6,7]. Both of the two methods represent the viewpoint of the
software development organization. Our approach was based on a modification to Goal Question Metric approach. The

modification was needed, because our assessment was done on behalf of the customer, and not of the development company,

and it had no other goal in mind than just to evaluate the expected quality of the developed software.

Important characteristics
i. Software requirements are the foundation from which quality is measured

ii. Specified standards define development criteria that guide the manner in which the software is engineered.

iii. If the software meets only the explicit requirements, and does not meet the implicit requirements, the software quality is

suspect.

Software Quality factors:

i. Operational characteristics:-
a. Correctness - does it do what I want?

b. Reliability - does it do it accurately?

c. Efficiency - will it run efficiently on my hardware?

d. Integrity is it secure.

e. Usability - is it designed for the user?

Design of Model For Incremental Development Of Software

Modules To Evaluate The Quality Of Software Modules

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1540-1542 ISSN: 2249-6645

www.ijmer.com 1541 | P a g e

ii. Product revision:-

a. Maintainability - can I fix it ?

b. Flexibility - can I change it

c. Testability - can I test it?

iii. Product transition:-
a. Portability will I be able to use it on another machine?

b. Re usability - will I be able to reuse some of the software.

c. Interoperability - will I be able to interface it with another system.

III. Related Works
One of the oldest software development tools is flowcharting, which developed since the 1920s. The software

development methodology has emerged since the 1960s. The oldest formalized methodology for building information

systems is the Systems development life cycle. The traditional Systems development life cycle originated in the 1960s to

develop large scale functional business systems in an age of large scale business conglomerates. Information systems
activities resolved around heavy data processing and number crunching routines. [8]

Software development approaches.

Every software development methodology has more or less its own approach to software development. There is a

set of more general approaches, which are developed into several specific methodologies. These approaches are [9]:

i. Waterfall: linear framework type

ii. Prototyping: iterative framework type

iii. Incremental: combination of linear and iterative framework type

iv. Spiral: combination linear and iterative framework type

v. Rapid Application Development (RAD): Iterative Framework Type

IV. Proposed Model
 The proposed model is designed in such a way that it not only used for defect prevention rather than it also be used

for defect removal. It will evaluate the software quality through the representative user testing at the system level.

During incremental development of software modules, this model not only help to indicate the software changes to correct

failure found, but also helpful to untested new software that will be added to the software already under test.

 Requirement

Analysis & Design

Implementation

Test

Conclusion Based on SRS

Functionalities

Delivered in

Incremental or

Release

„Fault Prediction Model‟

Fault

Removal

Change Request According to

the Requirement

Maintenance

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1540-1542 ISSN: 2249-6645

www.ijmer.com 1542 | P a g e

In the above proposed model there are three

major task that are very beneficial to increase the quality

of software modules during incremental development of

software system.

These tasks are given below:
i. The functionalities delivered in increment or release

ii. Parts of the system that have to be changed

iii. Traceability that will create a links between above

two tasks.

This model is used for each increment during incremental

development:

i. To determine the requirements elicitation or

refinement, analysis and design, implementation,

integration and the system testing for current

increment

ii. While the software is developed in increment j is
being tested, increment j+1 has started. Therefore

each phase of incremental development includes

fault removal activities for previous increment (n).

Fault should be removed both from the previous

increments or releases and the current one and fault

correction may introduce new faults

iii. Changes to the requirement according to the request

based on today‟s may lead to deviation from the

original increment plan, when it comes to effort and

time plan

iv. Several development teams‟ works in parallel for
implementing the software modules, some may finish

their works before others and start working on next

increment, that should be synchronized with each

other and dependencies should be released.

v. Through each increment quality will be increases

from starting to end of software modules

Although basic idea behind this is to deliver the

final system in smaller parts and much more functionality

is delivered at the end of each increment. During the each

release of software modules many correction should also

be corrected through the proposed model, which made
integration and testing simpler.

Therefore proposed model made integration and testing

simpler and increases the quality of software module

throughout its life cycle.

Goal of Proposed Model

 The major goal of proposed model is to detect

faults as early as possible in the development life cycle.

This model helps us to better designing of modelling

algorithm in incremental development, towards

improving
i. The information contents of the training data

ii. Evaluation of software modules which would be

inject the additional knowledge regarding context in

which software is used into modelling processes.

V. Conclusion
 The key factors of the proposed model is

monitoring the functionalities and parts of the system that

have to be changed, through this controlling the quality of
software modules.

It will predict the probability of presence of

faults and estimating and preventing the faults that will

reduce the testing effort. Through works model fault

proven model is designed that are known in advance for

review, analysis and design, testing for incremental

development.

References
1. ISO/IEC 9126-1: Software engineering – Product quality.

ISO/IEC (2001)
2. ISO 9001: Quality management systems – Requirements.

ISO (2001)
3. Basili V.R., Weiss D.M.: A Methodology for Collecting

Valid Software Engineering Data,IEEE Transactions on
Software Engineering, Nov. (1984)

4. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal
Question Metric Approach. In: Encyclopedia of Software
Engineering, Wiley-Interscience, New York (1994)

5. Solingen, R., Berghout, E.: The Goal/Question/Metric

Method, McGraw-Hill (1999)
6. Fenton, N: Software Metrics: A Rigorous Approach,

Chapman and Hall (1993)
7. Haag, S., Raja, M.K., Schkade, L.L.: Quality Function

Deployment Usage in Software Development. In:
Communications of the ACM, 1 (1996) 41-49

8. Edsger Dijkstra, “Notes on Structured programming”,
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.P
DF

9. R. Pressman, “Software Engineering: A Practitioner‟s
Approach”, 6th Edition, McGraw publishing, 2007.

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

