
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1548-1551 ISSN: 2249-6645

www.ijmer.com 1548 | P a g e

ABDULLA SHAIK
Department Of IT, RTMNU,

Nuva College Of Engineering & Technology,

Nagpur. Maharashtra 440015, India

Abstract: Scheduling is the method by which threads,

processes or data flows are given access to system

resources. This is usually done to load balance a system

effectively or achieve a target quality of service. Different

CPU scheduling algorithms have different properties, and

the choice of a particular algorithm may favor one class of

processes over another. A typical scheduler is designed to

select one or more primary performance criteria and rank

them in order of importance. One problem in selecting a set

of performance criteria is that they often conflict with each

other. For example, increased processor utilization is usually

achieved by increasing the number of active processes, but

then response time decreases. It is desirable to maximize

CPU utilization and throughput and to minimize turnaround

time, waiting time, and response time. In most cases, we

optimize the average measure. However, under some

circumstances, it is desirable to optimize the minimum or

maximum values rather than the average.

Round robin scheduling is similar to FCFS

scheduling, except that CPU bursts are assigned with limits

called time quantum. The performance of RR is sensitive to

the time quantum selected. If the quantum is large enough,

then RR reduces to the FCFS algorithm; If it is very small,

then each process gets 1/nth of the processor time and share

the CPU equally. The major problem in RR scheduling is

that how the time quantum is decides? If any process require

more time then the problem arrives that process must wait

for long time to complete the execution. To overcome this

problem in RR scheduling algorithm we come across with

idea that the time quantum is decides based on the burst time

needed for process. The percentage of CPU resource is

decided based on burst time and the reaming process is

similar to RR scheduling but difference is that allocation

will be done based on newly calculated time quantum of

process.

Keywords: Burst time, scheduling, time quantum, waiting

time, execution time.

I. Introduction

If you look at any process, you'll notice that it spends

some time executing instructions (computing) and then

makes some I/O request, for example to read or write data to

a file or to get input from a user. After that, it executes more

instructions and then, again, waits on I/O. The period of

computation between I/O requests is called the CPU burst.

Compute-intensive processes, conversely, spend

more time running instructions and less time on I/O. Most

interactive processes, in fact, spend the vast bulk of their

existence doing nothing but waiting on data. If you consider

Mac OS system, In which 44 processes running. This

includes a few browser windows, a word processor,

spreadsheet, several shell windows, Photoshop, iTunes, and

various monitors and utilities. Most of the time, these

processes collectively are using less than 3% of the CPU.

This is not surprising since most of these programs are

waiting for user input, a network message, or sleeping and

waking up periodically to check some state.

The base idea in multiprogramming is that kept

CPU always busy. For this we use scheduling. This is the

method by which threads, processes or data flows are given

access to system resources. This is usually done to load

balance a system effectively or achieve a target quality of

service. The need for a scheduling algorithm arises from the

requirement for most modern systems to perform

multitasking and multiplexing.

RR scheduling involves extensive overhead,

especially with a small time unit. Balanced throughput

between FCFS and SJF, shorter jobs are completed faster

than in FCFS and longer processes are completed faster than

in SJF. Poor average response time, waiting time is

dependent on number of processes, and not average process

length. Because of high waiting times, deadlines are rarely

met in a pure RR system. Starvation can never occur, since

no priority is given. Order of time unit allocation is based

upon process arrival time, similar to FCFS. Round robin

scheduling is similar to FCFS scheduling, except that CPU

bursts are assigned with limits called time quantum. When a

process is given the CPU, a timer is set for whatever value

has been set for a time quantum. If the process finishes its

burst before the time quantum timer expires, then it is

swapped out of the CPU just like the normal FCFS

algorithm. If the timer goes off first, then the process is

swapped out of the CPU and moved to the back end of the

ready queue. The ready queue is maintained as a circular

queue, so when all processes have had a turn, then the

scheduler gives the first process another turn, and so on.

Most modern systems use time quantum between 10 and

100 milliseconds, and context switch times on the order of

10 microseconds, so the overhead is small relative to the

time quantum. The major problem in RR scheduling is that

how the time quantum is decides? If any process require

more time then the problem arrives that process must wait

for long time to complete the execution. To overcome this

problem in RR scheduling algorithm we come across with

idea that the time quantum is decides based on the burst time

needed for process. The percentage of CPU resource is

decided based on burst time and the reaming process is

similar to RR scheduling but difference is that allocation

will be done based on newly calculated time quantum of

process. The processing is similar to SJF with RR

scheduling model.

Shortest Time Quantum Scheduling Algorithm

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1548-1551 ISSN: 2249-6645

www.ijmer.com 1549 | P a g e

II. Shortest Time Quantum Scheduling Algorithm

The degree of multiprogramming is decided based

on number of process/programs running simultaneously at a

time. This can be improve are maintain by proper

scheduling of multiple process in CPU. For that we are

having different scheduling schemes one of them is FCFS

the alternative of the FCFS is given in RR scheduling

algorithm. Round robin scheduling is similar to FCFS

scheduling, except that CPU bursts are assigned with limits

called time quantum. When a process is given the CPU, a

timer is set for whatever value has been set for a time

quantum. . Most modern systems use time quantum between

10 and 100 milliseconds, and context switch times on the

order of 10 microseconds, so the overhead is small relative

to the time quantum. The major problem in RR scheduling is

that how the time quantum is fixed for all the process. If the

process is having burst time is low or high but the time

quantum is same for all. As per RR algorithm low burst

time process completes its execution first. To overcome this

problem in RR scheduling algorithm we come across with

idea that the time quantum is decides based on the burst

time. It mean that based on time burst time quantum is

decided so the time quantum is not fix for all process. The

percentage of CPU resource is decided based on burst time

and the reaming process is similar to RR scheduling but

difference is that allocation will be done based on newly

calculated time quantum of process.

III. Processing

Round Robin scheduling is similar to FCFS

scheduling, except that CPU bursts are assigned with limits

called time quantum. When a process is given the CPU, a

timer is set for whatever value has been set for a time

quantum. Let first see how the shortest job scheduling is

work. The Shortest job first scheduling algorithm gives

minimum average waiting time for a given set of processes.

The problems in SJF are: Only optimal if all jobs/process

are available simultaneously. Usually run times are not

known.

First-Come-First-Served algorithm is the simplest

scheduling algorithm is the simplest scheduling algorithm.

Processes are dispatched according to their arrival time on

the ready queue. Being a no preemptive discipline, once a

process has a CPU, it runs to completion.

Let consider example:

Process Burst time

P1 53

P2 17

P3 68

P4 24

P1 P2 P3 P4

0 53 70 138 162

As per the FCFS algorithm the order of executing process is

based on arrival. And once the process starts execution it is

not suspended.

To overcome this problem in FCFS the Round

Robin Scheduling algorithm is proposed. Each process gets

a small unit of CPU time (time quantum). Then put back in

Ready queue. The RR Scheduling algorithm is Preemptive.

When interrupted, go to end of FIFO queue. Good for multi-

user time-sharing - fast response time. Sometimes, OS just

says "carry on". Sometimes don't even need 1 time quantum

since process leaves voluntarily.

Example:

Process Burst time

P1 53

P2 17

P3 68

P4 24

Say time quantum = 20:

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Setting the time quantum size

If quantum too small, too much admin, not enough work.

As quantum goes to infinity, this goes to straight FIFO non-

preemptive.

Want:

context switch << time slice

average CPU burst <= time slice

(some, but not too many > time slice)

Shortest Time Quantum Scheduling Algorithm:

 By considering the above example the process P2

is having burst time =17 and p3 is having burst time =68.

But both are having the time quantum 20ms for process P1

and P3. But the process P3 is having much more burst time

then compare to P2. It need more time to execute quickly.

Example:

Process Burst time

P1 53

P2 17

P3 68

P4 24

The total burst time needed for all the process The total

execution time=P1+P2+P3+P4

=53+17+68+24

= 162

We fix minimum time quantum is 0.5 for increase the

processing.

For each unit of CPU process need

= CPU %/ total execution time

=100/162

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1548-1551 ISSN: 2249-6645

www.ijmer.com 1550 | P a g e

=0.617(>0.5)

The smallest Bust time require by process P2=17

Now we calculate the time quantum for each process

Time quantum of P1=51*0.617=32ms (ceil)

Time quantum of P2=17*0.617=11ms (ceil)

Time quantum of P3=68*0.617=42ms (ceil)

Time quantum of P4=24*0.617=15ms (ceil)

P1 P2 P3 P4 P1 P2 P3 P4

0 32 43 85 100 119 125 149 162

According to the Traditional RR scheduling based on time

quantum. But here we are applying the way is shortest time

quantum.

Now the actual way of processing is done as per shortest

quantum

So

Time quantum of P1=51*0.617=32ms (ceil)

Time quantum of P2=17*0.617=11ms (ceil)

Time quantum of P3=68*0.617=42ms (ceil)

Time quantum of P4=24*0.617=15ms (ceil)

P2 P4 P1 P3 P2 P4 P1 P3

0 11 26 58 100 106 115 138 162

Example:

Process Burst time

P1 5

P2 10

P3 5

The total burst time needed for all the process The total

execution time=P1+P2+P3

=5+10+5

= 20

For each unit of CPU process need

=20/100

=0.2(<0.5)

Here we fix minimum time quantum is 0.5 for increase the

processing according to that the time quantum for each

process

Time quantum of P1=5*0.5=3ms (ceil)

Time quantum of P2=10*0.5=5ms (ceil)

Time quantum of P3=5*0.5=3ms (ceil)

P1 P3 P2 P1 P3 P2

0 3 6 11 13 15 20

IV. Compression with other algorithms
The efficiency will be calculated based on average waiting

time.

As per the examples consider

Process Burst time

P1 53

P2 17

P3 68

P4 24

As per FCFS Scheduling Algorithm processing is done in

order

P1 P2 P3 P4

0 53 70 138 162

Avg. waiting time= (0+53+70+138)/4 = 65.25ms

As per SJF Scheduling Algorithm processing is done in

order

P2 P4 P1 P3

0 17 41 94 162

Avg. waiting time= (0+17+41+94)/4 = 38ms

As per RR Scheduling Algorithm processing is done in

order

Say time quantum = 20:

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154

162

Waiting time of p1= 121-(20+20)= 81ms

Waiting time of p2= 20ms

Waiting time of p3= 134-(20+20)= 94ms

Waiting time of p4= 117-20= 97ms

Avg. waiting time= (81+20+94+97)/4 = 72.25ms

As per STQ Scheduling Algorithm processing is done in

order we fix minimum time quantum is 0.5 for increase the

processing.

For each unit of CPU process need

= CPU %/ total execution time

=100/162

=0.617(>0.5)

Now we calculate the time quantum for each process

Time quantum of P1=51*0.617=32ms (ceil)

Time quantum of P2=17*0.617=11ms (ceil)

Time quantum of P3=68*0.617=42ms (ceil)

Time quantum of P4=24*0.617=15ms (ceil)

P2 P4 P1 P3 P2 P4 P1 P3

0 11 26 58 100 106 115 138 162

Waiting time of p1= 115-32= 83ms

Waiting time of p2= 100-11=89ms

Waiting time of p3= 138-42= 96ms

Waiting time of p4= 106-15= 91ms

Avg. waiting time= (83+89+96+91)/4 = 89.75ms

The average waiting time is much more compare to

the other algorithms but the CPU resources are given to all

the process besed on the brust time. So that the high brust

time process like IO bound process are also complete the

execution similar to the CPU bound process. And this

algorithm never enters in to the CPU bound process. The

major advantage is that the waiting time of individual are

the average waiting time is much more nearer to the Round

Rabin algorithm.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1548-1551 ISSN: 2249-6645

www.ijmer.com 1551 | P a g e

V. Conclusion

The degree of multiprogramming is decided based

on number of process/programs running simultaneously at a

time. This can be improve are maintain by proper

scheduling of multiple process in CPU. For that we are

having different scheduling schemes one of them is FCFS

the alternative of the FCFS is given in RR scheduling

algorithm. RR Scheduling algorithm is work based on fixed

time quantum. Most modern systems use time quantum

between 10 and 100 milliseconds, and context switch times

on the order of 10 microseconds. The major problem in RR

scheduling is that how the time quantum is fixed for all the

process. If the process is having burst time is low or high but

the time quantum is same for all. As per RR algorithm low

burst time process completes its execution first. To

overcome this problem in RR scheduling algorithm we

come across with idea that the different process having

different time quantum and minimum is 0.5% of CPU. Time

quantum is decides based on the burst time. The percentage

of CPU resource allocated on the basis of shortest time

quantum first. The processing is similar to SJF with RR

scheduling model. This combination will give the new kind

of processing of programs.

Acknowledgments

 I am grateful to My Brothers Dr. Khaleel Basha

Shaik and Dr. Nazer Shaik , Dr Ajay Shenkar Singh and P.

Manoj Kumar for giving guideline their valuable time to me.

Finally last but not the least Mr. A. Hasheem Babu, Mr.

Mohammad Shaik and Mr.John Saida other my friends for

their insightful comments.

References
[1] Advanced Concepts In Operating Systems :Distributed

Database And Multiprocessor Operating Systems, Singhal

Mukesh, Shivaratri Niranjan G, Tata Mcgraw Hill

Publishing Co. Ltd, 2008.

[2] Modern Operating Systems, Tanenbaum Andrew S, 3rd

Edition, Pearson Education, 2008.

[3] Operating Systems Deitel H M , Deitel P J, Choffnesd R, 4th

edition, Pearson Education, 2009

[4] Operating Systems: Internals And Design Principles,

Stallings William, 6th Edition, Pearson Education, 2009.

[5] Design Of The Unix Operating System, Bach Maurice J, Phi

Learning Pvt Ltd. 2008

[6] Minix Book Operating Systems: Design And

Implementation, Tanenbaum Andrew S, Woodhull Albert S,

3rd Edition, Pearson Education, 2009

[7] Operating System Principles Silberschatz Abraham, Galvin

Peter Baer, Gagne Greg, 7th Edition, Wiley India, 2008.

[8] Operating Systems, Godbole Achyut S, 2nd edition, Tata

Mcgraw Hill Publishing Co. Ltd. 2009

[9] Operating Systems : A Concept-Based Approach,

Dhamdhere D M, 2nd edition, Tata Mcgraw Hill Publishing

Co. Ltd. 2006.

[10] Operating Systens, Madnick Stuart E,Donovan John J, Tata

Mcgraw Hill Publishing Co. Ltd. 2008

[11] Systems Programming And Operating Systems, Dhamdhere

D M, 2nd edition, Tata Mcgraw Hill Publishing Co. Ltd.

2008

[12] Inside the Linux 2.6 Completely Fair Scheduler: Providing

fair access to CPUs since 2.6.23, M. Tim Jones, IBM

developerWorks, December 15, 2009

[13] Token-ordered LRU: an effective page replacement policy

and its implementation in Linux systems,Los Alamos

National Laboratory, Los Alamos, NM 87545, USA

[14] CFLRU: A Replacement Algorithm for Flash Memory,seon-

yeong park,dawoon jung,CASES,October 23-35,2006

[15] A Comparison of Page Replacement Algorithms,Amit S.

Chavan, Kartik R. Nayak, Keval D. Vora, Manish D. Purohit

and Pramila M. Chawan,IACSIT International Journal of

Engineering and Technology, Vol.3, No.2, April 2011

[16]Generalized page replacement algorithms in a relational data

base, R. G. Casey, I. Osman ,SIGFIDET '74 Proceedings of

the 1974 ACM SIGFIDET ,Pages 101 - 124

Abdulla Shaik working as Assistant

professor in Department of MCA,

Nuva College of Engineering and

Technology. Previously worked as

lecturer in Joginapally B R

Engineering College, Hyderabad. He

completed his MCA in 2008,

M.Tech(CSE) in 2010 from Acharya

Nagarjuna university, Guntur with distinction. His interested

in research he has publish Five international papers in area

of software engineering, Operating Systems, Data Structures

and the Software Testing Methodologies. And he is

contributed as assistant for Prof. Dr. Ajay senkar Sing and

P.Manoj Kumar to complete their research papers.

