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Abstract: The present paper is the first part of investigations devoted to analysis of lossy transmission lines terminated by
nonlinear parallel connected GC loads and in series connected L-load (cf. Fig. 1). First we formulate boundary conditions
for lossy transmission line system on the base of Kirchhoff’s law. Then we reduce the mixed problem for the hyperbolic
system (Telegrapher equations) to an initial value problem for a neutral system on the boundary. We show that only
oscillating solutions are characteristic for this case. Finally we analyze the arising nonlinearities.
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I. INTRODUCTION

The transmission line theory is based on the Telegrapher equations, which from mathematical point of view
presents a first order hyperbolic system of partial differential equations with unknown functions voltage and current. The
subject of transmission lines has grown in importance because of the many applications (cf. [1]-[9]).

In the previous our papers we have considered lossless and lossy transmission lines terminated by various
configuration of nonlinear (or linear) loads — in series connected, parallel connected and so on (cf. [10]-[16]). The main
purpose of the present paper is to consider a lossless transmission line terminated by nonlinear GCL-loads placed in the
following way: GC-loads are parallel connected and a L-load is in series connected (cf. Fig. 1).

The first difficulty is to derive the boundary conditions as a consequence of Kirchhoff’s law (cf. Fig.1) and to
formulate the mixed problem for the hyperbolic system. The second one is to reduce the mixed problem for the hyperbolic
system to an initial value problem for neutral equations on the boundary. The third one is to introduce a suitable operator
whose fixed point is an oscillatory solution of the problem stated. In the second part of the present paper by means of by
fixed point method [17] we obtain an existence-uniqueness of an oscillatory solution.

The paper consists of four sections. In Section II on the base of Kirchhoff’s law we derive boundary conditions and
then formulate the mixed problem for the hyperbolic system or transmission line system. In Section I11 we reduce the mixed
problem to an initial value problem on the boundary. In Section IV we analyse the arising nonlinearities and make some
estimates which we use in the second part of the present paper.
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Fig. 1. Lossy transmission line terminated by circuits consisting of RC-elements in series connected to L-element

I1. DERIVATION OF THE BOUNDARY CONDITIONS AND FORMULATION OF THE MIXED PROBLEM
In order to obtain the boundary conditions we have to take into account that if A is the length of the transmission

line then, T = A/(1/VLC)=AVLC where L is per unit length inductance and C — per unit-length capacitance
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In accordance of Kirchhoff’s V-law (cf. Fig. 1) we have to collect the currents of the elements G, and C, after

that to collect the voltage of G,C, with the voltage of L, (p=01). But we deal with nonlinear elements, that is,

Rp(i):irn(p)i”,(pzo,l) and Lp(i)zilgmi“ L L) =i.Ly(0) = i.ﬁlgmi“, C,p(U)=uC,y(u);
n=1 n=0 n=0

diy()  dGLy) dif L dhp®)
d  dt _dt(Lp(l)H di J’(p_o'l)'
dC,(u) d(uC,(u) du dC, (u) ~
. dt "dt[c"(u)” du J (p=0D).

One can formulate boundary conditions corresponding to Fig. 1: for x=0 (ig, +ic, =igyc, =1(0,1))

dUGoCo

dt

dCq (Ugycy) .
l: GoCo — :_I(Olt)_GO (UG()C())I

+Co(Ugycy)
dug,c, 0~0

(1)

{i(o,t)W (0, )~ Ugyey 1)+ Eo (1)

di(0,1)
digyc, dt

+Lo (IO, t))}

And forx=A (ig, +ig, =igg =i(A1)):

d Ugyc;
dt

dC, (ug,,) .
l: G1C1 & ZI(Avt)_Gl(uGlCl)

+Cy(Ugyc,)
dug,c, 1

@)
dL, (i(A, 1))

lee]

di(A,t)

[i(A,t) +L, (A, t))} = U(A D) g ()~ Ey (1),

Here we consider the following lossy transmission line system:

c Y A0Y | ayix =0
ot 2 ?
aY , UY | pik =0
OX ’

L +
ot

() e ={xt)e 2 : (x,t)e [0,A]x[0,00)}

Where u(x,t) and i(x,t) are the unknown voltage and current, while L, C, R and G are prescribed specific

parameters of the line and A > 0 is its length.
For the above system (3) might be formulated the following mixed problem: to find u(x,t) and i(x,t) in IT such

that the following initial conditions
u(x0) =u (), i(x0) =is (x), x & [0,A] @
And boundary conditions (1) and (2) to be satisfied.

I1l. REDUCING THE MIXED PROBLEM TO AN INITIAL VALUE PROBLEM ON THE BOUNDARY
First we present (3) in the form:
ou(x,t) +l aJi(x,t) G

+—=u(x,t)=0
ot C ox C (5)
oi(x,1) +£ ou(x,t) +Bi(x,t):0
ot L ox L

And then write it in a matrix form
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VY AU L k=0 (6)
ot X
Where
ou(x,t) ou(x,t) 0 i E 0
C C
U(xt) = y(x,t), MY _| ot | VY | x| A= . B= _
i(x,1) ot Bi(x,t) ox Bi(x,t) 1 0 0 R
ot X L L
. . . - . -4 1/C
In order to transform the matrix A in a diagonal form we have to solve the characteristic equation; L alT 0 whose
rootsare A4, =1/+/LC, 1, =-1/+/LC . For the eigen-vectors we obtain the following systems:
1 1 1 1
— L+—&,=0 —— & +=&,=0
,_LC 1 L 2 ,_LC 1 L 2
1 1 And 1 1 .
Sh-F=5=0 Sht =6 =0
C 1 LC 2 C 1 LC 2
Hence (59,20 )= (VS VL) (£@.&2)=(-vC VL)
B
Denote by A the matrix formed by eigen-vectors H = Ve L and its inverse one H ! = 2\c 2Jc . It is known
-Jc L 1 1
2JL 2L
1/JLC 0
that A®" = HAH %, where A®" = .
0 -1/4JLC
Introduce new variables Z = HU, (or U = H'Z)
V(xt) Jo JL u(xt)
Z= , H= , U=, .
1(x,t) -Jc JL i(x,t)
Then
(x,t) =vCulxt)+JLi(x1t)
_ ()
1(x,t) = —J/C u(x,t) + VL i(x,t)
or
1 1
u(x,t)=——=V(x,t)———=1(x,t)
2Jc 2Jc -
. 1 1
i(x,t)=——=V (X, t)+——= 1 (x,1).
2JL 2L
Replacing U (x,t) = H *Z(x,t) in (6) we obtain
-1 -1
a(Hat Z)+ Aa(H Z)+ B(H ‘1z)= 0.

Since H ! is a constant matrix we have
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H—l%JF(AH )aZ(x 0 (BH ‘l)Z(x t)=0.

After multiplication from the left by H we obtain % +H (AH ‘1)g—§ +H (BH ‘l)Z =0,ie.

oz oz
AP 4 (HBH Mz =0. 9
A e ©)
But
vy g JLllc Ol 2k __2J_ 2lC L) 20 C L
|-VE VL[ R 2 |Y_G.R E(EJ
L1l 241 zJ_ 2 C L) 2\Cc L

Applying Heaviside condition % :% we obtain

S I oV (x,t)

R0
ot JLC x |,|L {V(X,t)}_ﬂ
R
0 —
L

+ =| . (10)
al(x,t) 0 1 ja(xt) 1(x,t) 0

ot JLC OX

The new initial conditions we obtain from (4):
V(x,0) = v/C u(x,0) + /L i(x,0) = VC ug(x) + /L ig(x) =V (), x[0,A] (11)

1(%,0) = —/C u(x,0) + /L i(x,0) =—vC Uy (x) + VL ig(x) = 15(x), x[0,A]. (12)

One can simplify (10) by the substitution:

R
W(x,t) = eftV(x,t)

R
It)=el 1(x1)

Or
_R
V(x,t)=e L W(x,t)
R '
I(x,t)=e L J(x,t)
Substituting in (8) we obtain
R R

u(x,t) = ie_ftW(x,t) —Le_ftJ (x,1)

2Jc 2Jc
Ry 1 R
e LW t)+—=e L J(xt).

1
2JL 2L

Then with respect to the variables W(x,t) and J(x,t) (10) looks like:

(13)

(14)
i(x,1) =

OW (x,t) . 1 OW(x,t)
a  Jlc
axt) 1 alxt) _

ot JLC  OX

:O,

(15)

WWW.ijmer.com 1413 | Page



International Journal of Modern Engineering Research (IJMER)
WWWw.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645

The mixed problem for (1) - (4) can be reduced to an initial value problem for a neutral system. The neutral system
is a nonlinear one in view of the nonlinear characteristics of the RGLC-elements.
From now on we propose two manners to obtain a neutral system for unknown voltage and current functions.

First manner: The solution of (15) is a pair of functions W (x,t) = ®y, (x—vt) and J(x,t) = @, (x+vt), where ®,, and ®,
are arbitrary smooth functions. From (14) we obtain

Ry

u(x,t) :L[GDW (x=vt)— D, (x+vt)]

NRE (16)
-t
i(x,t):%[@w (x=vt)+ @ (x+vt)}
Hence
R
Oy (x-vt) =" (VT u(x )+ L i(x 1) -
R
o, (x+vt)=eb (VL i(x,t)—C u(x.b)
For x=A we obtain
R
Dy (A-vt) =gl [JE U(A, 1) +/L i(A,t)] )

R
O, (A+vt) =gl [JI i(A,t)—\/C_u(A,t)]

Letusput A—vt=—-wvt'=>t=t+A/v=t+T (T = A/v) and then replacing t by t'+T in the first equation of (18) we get

B('('+T)
D, (—vt')=el [JE u(A,t'+T)+\/L_i(A,t'+T)].

For the second equation of (18) we put
A+vt=vt"=t=t"-A/v=t"-T (T =A/v) And then we have

R
O, ) =et O WLIAL-T)Cu(ALt=T)].

So we obtain
R
D, (—vt) = el™? [JE U(At+T)+ /L i(At +T)] (19)
R
<DJ(Vt)=eE(H)[x/Ii(A,t—T)—\/C_u(A,t—T)]. (20)

From (16) by x = 0 we have

R

00, =& [0y (-v1)-, ()]

2JC

_Ry

i(0,t) = % [y (—vt)+ @, ()]

Substituting ®,,, (—vt) and @, (vt) from (19) and (20) into (21) we obtain:

(21)

u(o,t) =%{eR(fT) (\/g u(At+T)+VL i(A,t+T))_e@(\/I i(A,t—T)—JEu(A,t—T))]
i(0,t) =ﬁ[eR(tL+T)(\/E u(At+T)+/L i(A,t+T))+eR(tL7T)(\/E i(At-T)-+C u(A,t—T))].
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Substitute the above expressions into the boundary conditions (1), (2) we have
R(t+T) R(t-T)
Qugey ) e & (u(At+T)+Zpi(At+T))+e & (Zgi(At-T)-u(At-T)) GolUgycy)
dt 57 dCyq (Ugyc,) dCq (Ugyey) ,
) ———00 U007
dugyc, dugyc,

1 d R(t+T) R(t-T)
——[e Lo (u(At+T)+Zg i(At+T))+e L (Z, i(A,t—T)—u(A,t—T))]=

R(t+T) R(t-T)
[e Lo (u(At+T)+Zgi(At+T))-e L (Z, i(A,t—T)—u(A,t—T))]—ZuGOQO(t)+2EO(t)

i

2dL, (i(0,1)) / dig,c,

duG]_Cl (t) _ I(A’ t) - Gl (uG]_Cl)
dt dC, (Ugyc, )/ dugyc, ,

di(A,t) _ ~U(A D +ugc, (1) - El(t)
dt dLy (i(A, 1)/ digyc,

Letus put z=t+T .Then we arrive at a system that we cannot formulate an initial value problem.

Second manner
We proceed from (14) and obtain

R R R R
1 —t 1 —t 1 —t 1 —t
u(0,t)=——=e LW(0,t)———=e - J(0O,t) u(A,t)=——=e LW(A,t)———=e L J(A1)
2JC 2Jc And 2Jc 2Jc
R R R R
i(0,0) =——e LW(O,)+——e L'3(0,1) (A= —e CW(A D) +——e L I(AL).
2JL 2L 2JL 2JL
Substituting in (2.1) and (2.2) we obtain
R R
dugyc, (1) _e W) +e L I(0,t)—24L LGy (Ugyep (t))
dt 2JL dCy(ugyc, )/ gy,
R, R,
R R
R L Zoe LW(0,t)—Zpe L J(0,t) — 2v/Lug.c. (t) + 2/LE, (t
ie'—W(O,t)+e'—J(0,t) _%o 0.1) o€ .( ) i Goco (1) o();
t dLo (i(0,1))/ dig,c,
R R
dug, (1) _e TWA+e LI -2/ Gl(uelcl(t))
dt 2JLdC, (ug,c, )/ dugye,
R R
R R —Zpe CW(AD +Zge U I(A)+ 2 ug e (8) - 24/LE,(t
da e '—tW(A,t)+e '—tJ(A,t) 0 (A1) (A1) Lugyc, (t) - 1()
dt dLy (i(A, 1)/ dig,

But

W(O,t) =W(A,t+T), JO,t+T)=J(A,t) = W(O,t-T)=W(A,1), J(0,t) = IJ(A,t-T).
We choose W(0,t) =W (t), J(t) = J(A,t) to be unknown functions and then the above system becomes
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R R
Qlyey ® € “W(D+e L I(t-T)~2vLG0 Uy, )

dt 2L dCq(Ugycy )/ dugyg,

R R
R, R e T)J Zye LW()-Ze U 3@-T)- 2J_uGOCO(t)+2J_EO(t)
dt -

d e LW(t) +e LT
dLO (i(0,1))/ dig,c,
(22)

R R
Qg & & W(E-T)+e & In)-2VL 61U, )

dt 2JL dCy (ugc,)/ dugye,

)
—le Lt W(E-T)+e L J(t)|=
dLl(l(A t))/dlGlcl

R

—=(t-T)
d { Rt LA } ~Zse b W(t-T)+Zee b J(t)+2\/_uelcl(t) 2\/_E1(t)
dt

We notice that if (22) has a periodic solution
(oo W (). UG, (1,3 ®)

R R
-t ——t
Then functions e - W(t), e L J(t) are oscillatory ones and vanishing exponentially at infinity. Therefore we put

R R
~ ——t —~ ——t
W(t)=e LW(t), J(t)=e L J(t) and then we can state the problem for existence-uniqueness of an oscillatory solution

vanishing at infinity of the following system (we denote by W (t), J (t) again by W (t), J(t)) and obtain:
dugycy () _ W (t)+I(t-T)~2VLGy (Ugyc, (1)

te[T;0);
dt 2L dCy(Ugyc, )/ dugyc,
W) dIE-T)  ZoW®O-ZpI(-T)- 2L ugye, (1) +2VL Eo®) oo
dt dt dL (i(0, 1))/ digyc, C )
dug, (1) W(t-T)+J(t)-2/LG 1o )
dt 2JLdCy (ugye, )/ dugy,
dIM) __dw(E-T) -ZoW(-T)+Zq 30+ 24 Luge, () - 2VLE, (1) U
dt dt dL, (i(A, 1)/ dig,c, Y
T T dW(t)  dWy(t) dit) ddg(t)
Ugyco (T) =Ugycy s Uge, (T) =Ugey s WH=Wo (1), 3 (1) =3,(1), i dot s gt te[0,T].
IV. ANALYSIS OF THE ARISING NONLINEARITIES
First we precise the definition domains of the functions:
dC,(u) d(C,(u)u)
= —F— (p=0))
dt dt
c Co P, .
Where C , (u) = d , ¢,>0,0,>0,he[23] are constants and|u| < g, < min{®,,®,}. We have to

\/1 u/®, \/q> —u

show an interval for u Where

ép(u)zu.Cp(u):c h/d

u

Has a strictly positive lower bound.
First we calculate the derivatives
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dCp(u) @ 1 d2C,(u)  CpR®, 14h Li2h
dpu _ ph p((bp—u) o dup2 _ ph P ; ( —u) =
s S R

S (o (R e

((Dp —u) h

Since |u| < ¢y < min{®,, @, } < min LU S dép(u) >0
- o h—1 °'h—1 '[thederivative du

Then min{ép(U)ZUE[—%¢0} mln{cpv_ﬂ, p\/_L/q)_é%H \/Pq\)/_JF(ZO C, >0.

Further on we have

|d6p(u)| 2c,H®, ||1+h20h ) ZCpQ/_[h( )|u|1+h)]S
e S e N h? @, —go "

_ 20,4, [n (@, ¢0)+¢01+h] 2¢, 0@ (hed , + g ) <o

h2 h’ p_¢0 +2h h2 h’ ¢0 +2h N p'

For —¢y <u < gy <min L,cDO,ch it follows
h+1

dCo(u)  CpY Py o _N-1)s ¢ P @ _h—1¢ _¢o
du - 1+h p h 1+h p h 0)]=%>p
(@, —u) (@, o)1

Therefore

Cply®p hd, +(h-D)gy é

min{ép(u): u e[—¢0,¢0]}=6p(—¢0)=

h (cD +¢0)1+% ;
|d26p(u)|<ch/CD_p‘—2h2®p+(2h2+h+1)1‘<cph 2h?® +(2h2+h+1)¢ _~0
‘ d 2 ‘_ h2 1 - h2 1 _Cp '
u P (@5 -0

m m
For the I-V characteristics we assume R, (i) =Y"r{"i",(p=01) and L, (i)=Y I{Pi" then
n=1 n=0

L,()=i.L,(0)= i.ilgmi".

dL dL
For L o (1) we get—— (I) d(l) L ()—|an(p) "1+ZI(p)|”—Z(n+l)l(p) n
Assumptions (C):
4T HTo 4T
|u(0,t)|gwg¢o; |U(A’t)|gw_ b0 ||(0 t)| M<101 |i(A,t)|SMSIO.
2 2 27, 2Z
. . di, () o !
Assumptions (L): [i|<Ij < = T =Y (n+1PMi" > LD >0,
n=1
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dL _ _
5 () <Z(n +DIP1" = L), d"() < Zn(n +)IP1 =D
1 1 n=1

m m
Assumptions (G): G (iRoLO )= Z gr(10) (i Rolg )", Gy (ry) = Z gr(11) (i RlLl)n-
n=1 n=1

V. CONCLUSION
Here we have investigated lossy transmission lines terminated by circuits different from parallel or in series

connected RGLC-elements. It turned out that in this case one obtains more number of equations which leads to more
complicated boundary conditions at both ends of the line. First difficulty is to find independent unknown functions —
voltages and currents and to obtain a system of neutral differential equations. We show that just oscillatory solutions are
specific for the lossy transmission lines and in the second part of the paper we formulate conditions for existence-uniqueness
of an oscillatory solution. They can be easily applied to concrete problem because they are explicit type conditions — just
inequalities between specific parameters of the line and characteristics of the circuit.
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