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Abstract: The non-homogeneous cubic equation with three unknowns represented by the diophantine equation

X3+Y3=7"ZW? s analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations
between the solutions and special numbers are exhibited.
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Notations:
tmn :Polygonal number of rank n withsize m

Sp :Star number of rank n
Pr, @ Pronic number of rank n
jn : Jacobsthal lucas number of rank n

Jn  :Jacobsthal number of rank N

CP, ., : Centered Polygonal number of rank n with size m.
G,  :Gnomonic number of rank n
Ky, :Kyneanumber of rank n

I. Introduction
The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-14]
for cubic equations with four unknowns. This communication concerns with yet another interesting equation

X3 4+Y3 =7"ZW? representing non-homogeneous cubic with four unknowns for determining its infinitely many non-
zero integral points. Various relations between the solutions and special polygonal numbers, centered polygonal numbers,
Jacobsthal numbers and kynea numbers are exhibited.

Il. Method of Analysis
The cubic equation with four unknowns to be solved for its distinct non-zero integral solution is
X34y =7 2w’ 1)
Introduction of the transformations,
X=U+V,y=u-Vv,z=2U )
in (1) leads to
u? +3v =7"w? ©)

We present below different methods of solving (3) and thus, in view of (2), different patterns of solutions
to (1) are obtained

Pattern: 1.1

Let w=a’ +3b? (4)
write 7 as

7=02+iV3)(2-iV3) ©)

Using (4) and (5) in (3) and applying the method of factorization, define

(U +i/3v) = (2+i/3)" (a +i+/3b)? ©)
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Since the complex number raised to any integer power is also a complex number, we write

(2+iv/3)”" = A +i/3B,
e A = [2+ W3 + (2-1V3)"]

1 : [a\2n (o i [ay2n
Bl_2i—\/§[(2+l\/§) (2 |\/§) ]

Using (7) in (6) and equating the real and imaginary parts, we have
u=A(a?-3b?)- B, (6ab)

v = A (2ab) + B, (a* —3b2)}

Using (8) in (2), we get

x(a,b) = A (a® —3b® + 2ab) + B,(a’ —3b* — 6ab)
y(a,b) = A (a® —3b* —2ab) — B, (6ab +a* —3b?)
z(a,b) = A (2a® - 6b*) — B, (12ab)

Thus, (4) and (9) represent the non-trivial integral solutions of (1)

Properties: 1.2

() x(2" 1) = A (ky, —2) +B,(3J,, —6], +6(-1)" —2)
(iw(2"1) = j,, +2

(i) z(n,n +1) = —A (CPR,,, +16t,, —8t,; +5)— B, (24t,,)
Pattern: 2.1

Write7as 7

_ (5+iV3)(5-iv3)
4

And (5+i43)™ = A, +i4/3B,
wrere, A, = Z[(6+13) +(6-+3)"]

1 H 2n 3 2n
Bz—m[(S-l-l\/g) 5-iv3)™"]

Using (4), (10), (11) in (3) and employing the method of factorization, we have

U+i3y = 2%(A2 +i3B,)(a? —3b? + 2i+/3ab)

Equating real and imaginary parts, we get

U= ;n [A, (a2 —30%) — B, (6ab)]
V= ;n [A, (2ab) + B, (a2 —3b%)]

Thus, taking @ =2" A and b = 2" B the non-zero distinct integral solutions to (1) are given by

X(A,B) = A, (A* —3B* +2AB) + B, (A* —3B* —6AB)
Y(AB)=A,(A*-3B*-2AB)-B,(A*-3B* + 6AB)
Z(AB)=A,(2A* —6B*)-B,(12AB)

W (A, B) = 22" (A% +3B?)

Properties:2.2
(Hw(2" 1) =[33 5, +1[Jz +2]
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(")y(lv n) = Az[_2t5,n _3Prn+3t4,n +l] - Bz[_sn +3t4,n + 2]
(iii)x(n+1Ln) = A[4Pr —4t, +1]-B,[4t,, +4Pr —1]

Pattern:3.1
Introduce the linear transformations

u=a+3T,v=a-T (13)

Let w=a? +12b? (14)
Write 7 as

7:(4+i\/ﬁ(4—i 12)

(15)
4

and (4+iv12)%" = (A, +i12B,) (16)

Where A, =%[(4+i\/17))2" +(@-iV12)"]

1 . .
B, =—— |(4+i/12))*" — (4 —ir12)*"
2= o A W)~ (a-ivi2)”
Using (14), (15) and (16) and employing the method of factorization, define
20 +IVI2T = = [A, +iVI2B,)(@% ~12b° +i2/12ab)

2
Equating real and imaginary parts, we have

o= #[Ag(a2 —12b%) - B,(24ab)]

1 (17

22n
Substituting (17) in (13), we get

u= %[As(a2 —12b” +12ab) — B,(24ab —6a° + 72b*)

T = —-[A,(2ab) + B,(a® —12b?)

(18)
V= %[As(a2 —12b® — 4ab) — B, (24ab + 2a* — 24b*)]
Replacing a by A2™ andb B2™ | the corresponding integral solutions are given by
X(A,B) = 2[A,(2A* —24B* +8AB) — B, (48AB — 4A* + 48B%)]
y(AB) =2[A,(16AB) - B, (—-8A% +96B?)]
z(A/B) = 4[A3(A2 —12B% +12AB) — B, (24AB — 6A% +72B%)]
W(A, B) = 2°"?(A* +12B?)
Properties: 3.2
(Hx(n,1) =2[A,(CP,, +6Pr —6t,  —25)—B,(-t,, +45Pr,—45t, +48)]
(i)y(n+1,n) = A,(32Pr,) -16B,(t,,, +8Pr,—8t,  +1)
(i)wW(2" D) = juq +93,,.5 -2
Note: .3.3

Replacing (13) by U= —3T and V=a+T (29)
And repeating the process as in pattern.3 the corresponding non-zero distinct integral solutions to (1) are obtain as

X(A B) = 2[A,(2A% —24B* —8AB) + B, (—48AB + A* —12B?)]
y(A, B) = 2[A,(-16AB) — B, (3A* —36B?)]
(A, B) = 4[A,(A* —12B® —12AB) — B, (24AB + A* -12B%)]
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w(A, B) = 22"?(A® +12B?)

Properties: 3.4

(H)x(n,1) = A, (t,,, —13Pr +13t, , —48) + B, (ts, —95Pr, +95t,  —24)
(i)y(n,1) = A,(-32Pr, +32t, ) + 6B, (12t,,, —1)

(iii)z(n,1) = A, (t,,, —45Pr, +45t, —48)-B,(CR,, +95Pr —95t, —49)

Pattern:4.1
Instead of (15) we write 7 as

(10 +i+/12)(10 - ir/12)

7= (20)
16
And (10+i+12)®" = (A, +i/12B,) @1)
Where A, = %[(10+ iV12)7" + (10— iv12)”
1 . i
= ———[10+i+12)* — (10— iv12)>"
- \/ﬁ[( )7 = ( )

Using (14) (20) and (21) and equating real and imaginary parts, we have

o= 24““ —[A,(a® —12b%) - B, (24ab)]
(22)

T= ZW[A4 (2ab) + B, (a* —12b*)]

Substituting (22) in (13), we get
u=——[A,(a’*-12b* +12ab) — B, (24ab—6a* + 72b*)]

24n+1

v=——[A,(a’ —12b* —4ab) — B, (24ab + 2a* — 24b?)]

24n+1

To get a integer solution replacing a by 2™ A and b by 2" B

X(A,B) = 2[A,(2A? —24B* +8AB) — B, (48AB — 4A” +48B%)]
y(A,B) = 2[A, (16AB) — B, (-8A* +96B?)]

2(A B) = 4[A,(A* -12B* +12AB) — B, (24AB —6A* + 72B?)]
w(A B) = 2% (A? +12B?)

Properties: 4.2

i x(2" 1) =4A,(ky, +2j, -11-2(-1)")+8B, (ky, —14j, —11+14(-1)")
(i) y(nd) = A, (32t3’n —32t4'n) -B, (—16t4'n +192)

i) z(n+1,n) =4[A, (t4’n +7G, +8)—-B, (CF’le’n +CP,,, +78t,, -8)]

Note: 4.3
Using (19) and repeating the process as in pattern.4, the non-zero distinct integral solutions to (1) are given by

X(A, B) = 2[A, (2A? — 24B2 —8AB) — B, (48AB + 4A% — 48B?)]
y(A B) = 2[A, (-16AB) — B, (8A’ —96B)]

2(A B) = 4[A, (A’ —12B° —12AB) — B, (24AB + 6A% — 72B?)]
W(A, B) = 22 (A% +12B2)
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Properties:4.4
(Hx(n1) = A [4(t,, —3Pr +2t, -12)]-8B,[CP, , +10Pr, —11t, —13]

(i)y(n+1,n) =-64At, +16B,(t;, +8t,, —1)
(ii)z(n+1,n) =-4A(CP,,, +13t,, —1) +24B,(t,,, +2t, )

Pattern: 5.1
(3) can be written as
3v 7"w+u
. = = B,q =0 (23)
7"wW—u v q

Which is equivalent to the system of equations
pu+3vg—7"wp=0 (24)
qu—pv+7"gw=0 (25)

Applying the cross-multiplication method, we get
u=7"39" - p*)

v=-=2*7"pq
w=—-p?®—3q

2

Thus, the corresponding non zero distinct integral solutions to (1) are given by
x=7"(39" - p* —2pq)

y=7"(3d° - p* +2pq)

2=2%7"(39" - p)

w=-p*-3q°

Properties: 5.2

()7 [x(7",1)] is a difference of two square

@@)x@7" D)+ y(7",1) =0(mod 7)
@@)6*7"[x(7",7")— y(7",7™)] is a nasty number
(iv)z(7",7") is a perfect square

VW™ 1) =, +2)

Pattern: 5.3
(23) can be written as

v o 7"w+u
7"w-u 3v

P (26)
q

Repeating the process as in pattern.5, the non-zero distinct integral solutions to (1) are obtain as
x=7"(9" -3p” ~2paq), y=7"(9* -3p* +2pq)

z2=2*7"(q% -3p?), w=—(3p°+q°)

Properties: 5.4

(()x(n)) =-7"(CP,, —=Pr,+t, —2)

(iy@n)=7(CpP,, -t,, —4)

(iii)z(n,n+1) = 2*7(-2t,, + G, +2)
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I11. Conclusion

To conclude, one may search for other pattern of solutions and their corresponding properties
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