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ABSTRACT: Pseudo Random Number Generator (PRNG) is an algorithm for generating a sequence of numbers. Due to 

speed in number generation pseudorandom numbers are very important. The increasing application of cryptographic 

algorithms to ensure secure communications is widely used. So, Here we propose a new reseeding mixing method to extend 

the system period length and to enhance the statistical properties of pseudo random number generator (PRNG). The 

reseeding method removes the short periods which are occurred by CB-PRNG and the mixing method extends the system 

period length by Xoring with ALG. The output sequence of RM-PRNG is used as a key to the encryption and decryption 

modules. The simulation results are obtained by using Modelsim and Synthesis is observed by Xilinx ISE 10.1   
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I. INTRODUCTION 
 It is hard to imagine a well-designed cryptographic application that doesn't use random numbers. Session keys, 

initialization vectors, salts to be hashed with passwords, unique parameters in digital signature operations, and nonces in 

protocols are all assumed to be random by system designers. . Unfortunately, many cryptographic applications don't have a 

reliable source of real random bits, such as thermal noise in electrical circuits or precise timing of Geiger counter click 

[ Agn88, Ric92]. Instead, they use a cryptographic mechanism, called a Pseudo-Random Number Generator (PRNG) to 

generate these values. The PRNG collects randomness from various low-entropy input streams, and tries to generate outputs 

that are in practice indistinguishable from truly random streams. Typical PRNG consists of unpredictable input called “seed” 

value and a secret state “S”. Software approaches use machine state information like movement of the mouse, keystrokes, 

contents of memory registers, and hardware latency to create a seed value. Prngs operate by repeatedly scrambling the seed 

to generate random output. Typically, the seed is a short, random number that the PRNG expands into a longer, random-

looking bitstream. 

 A PRNG often starts in a random state and must process many seeds to reach a secure state S. Upon request, it must 

generate outputs that are indistinguishable from random numbers to an attacker who doesn’t know and cannot guess S. In 

this, it is very similar to a stream cipher. Additionally, however, a PRNG must be able to alter its secret state by repeatedly 

processing input values (seed). See Figure 1 for a high-level view of a PRNG. 

 

 
Fig 1. Model of PRNGs 

 

 Prngs are produce long period random number sequence linear prngs are very useful, some of the linear prngs are 

linear feedback shift registers (lfsrs), linear congruential generators (lcgs), and multiple recursive generators (mrgs).These 

linear prngs are good in hardware cost and throughput rate. But due to their linear structure output random numbers of these 

generators are easily predictable. To overcome the predictability problem nonlinear chaos-based prngs (CB-prngs) [8] were 

proposed, it is efficient in hardware cost, but due to quantization error there exists short periods in such nonlinear prngs.  

They produce only one bit per iteration hence throughput rate is low. And then to produce long periods and high throughput 

rate reseeding-mixing PRNG (RM-PRNG) were proposed. The RM-PRNG consists of a CB-PRNG and MRG [1], [8]. The 

reseeding method removes the short periods in the CB-PRNG and by mixing MRG with CB-PRNG the overall system 

period length increases.                    

 In this paper, we propose a encryption and decryption technology; in this technology has an encryption scheme the 

message or information is encrypted by using an encryption method, the plain text is converted into unreadable cipher text. 

An adversary that can see the cipher text should not able to determined anything about the original message. However the 

cipher text is converted to plain text (original message) by using decryption method. In this encryption and decryption 

methods are implementing an operation of the plain text and RM-PRNG key with “Xoring” operation. 

 

 

 

 

 

Design and Implementation of an Encryption and Decryption 

Using Non-Linear RM-PRNG 
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II.  RM-PRNG 
 Fig. 2 shows the schematic diagram of the RM-PRNG, which is composed of three modules: Nonlinear Module, 

Reseeding Module, and Vector Mixing Module. In a 32-b implementation, the Nonlinear Module has a controlled 32-b state 

register and a Next-State construction circuitry. The state register stores the state value (Xt) which is set to seed1 by using 

the start command. The next state construction is used to produce the next state value (Xt+1) by using recursive formula 

Xt+1=F (Xt) [1]. 

 

 
Figure 2.   Structure of RM-PRNG 

 

 For each generated state value, the reseeding control unit (RCU) in the Reseeding Module compares the values for 

checking the fixed point condition,and increases the reseeding counter (RC) at the same time. The RC will be reset and the 

reseeding operation will be activated when either the fixed point condition is detected or the RC reaches the reseeding 

period. When RC reaches the reseeding period Tr or the fixed point condition is detected then RC will be reset and the 

reseeding operation will be activated. The sate register will be loaded through the rmux, when reseeding is activated [1]. The 

value of Xt+1 is directly loaded into the state register if the reseeding is not activated. Vector Mixing Module is implemented 

by an auxiliary linear generator (ALG) and output construction. By mixing Xt+1 with the output Yt+1 from ALG in Vector 

Mixing Module, we obtain the output of the RM-PRNG (32-bit implementation). 

 

A. Nonlinear Module: We use the LGM as the next-state construction function in the Nonlinear Module so that 

Xt+1 = F (Xt) = γxt (1- Xt), t ≥ 0........... (1) 

Choosing a value 4 for not only makes the LGM Chaotic but also simplifies the implementation of (1) to merely left-shifting 

the product by 2 b. However, the state size decreases from 32 to 31 b, because the dynamics (1) are the same. This is 

equivalent to a degradation of resolution by 1 b. In addition, fixed as well as short periods exist when the LGM is digitized. 

From exhaustive runs for all of the seeds, we obtain all other periods for the 32-b LGM without reseeding. They are given in 

Table I with the longest period (18 675) and the set of short listed separately along with their total occurrences. Clearly, the 

performance of a CB-PRNG using only the Nonlinear Module is unsatisfactory. To solve the fixed points and short-period 

problem, a Reseeding Module is in order. 

 

B. Reseeding Module: The removal of the fixed points by the reseeding mechanism is obvious. When the fixed point 

condition is detected or the reseeding period is reached, the value loaded to the state register will be perturbed away from in 

the RCU by the fixed pattern according to the formula  

 

 

 

 Where subscripts ,i ,j are the bit-index, L is integer. In order to minimize the degradation of the statistical properties 

of chaos dynamics, the magnitude of the perturbation of the fixed pattern should be small compared Here, we set L=5 so that 

the maximum relative perturbation is only (2
5
-1)/232 and the degradation can be ignored [15]. Clearly, the effectiveness of 

removing short-periods depends on the reseeding period as well as the reseeding pattern. However, choosing the optimal 

reseeding period and the reseeding pattern is nontrivial. Nevertheless, several guidelines to choose a suitable combination 

had been proposed and discussed in our previous work . First, the reseeding period should avoid being the values or the 

multiples of the short periods of the unperturbed digitized LGM. Otherwise, if the 5 lsbs of equal to when the reseeding 

procedure is activated. Then no effective reseeding will be realized and the system will be trapped in the short-period cycle. 

Hence, prime numbers should be used as the reseeding period candidates. Although the average period of the reseeded 

PRNG has increased more than 100 times relative to that of the non reseeded counterpart, the period can in fact be extended 

tremendously in the Vector Mixing Module described below. 

 

C. Vector Mixing Module: The Vector Mixing Module is constructed by using ALG and output construction. In this 

module an efficient MRG which is called as DX generator  acts as the ALG. By using the following recurrence formula 

 

In output construction unit,  to obtain the  lsbs of the output 

The lsbs of Yt+1 and that of Xt+1 are mixed by using XOR operation according to the following equation 

 

To form the full 32-b output vector outt+1 the MSB of Xt+1 is added to outt+1[1:31]. 

 The DX generatator is implemented described below the implementation [of the DX generator is (the ALG) done by using 
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8-word registers, circular-left-shift (CLS), circular 3-2 counter and End Around Carry- carry look ahead adder (EAC-CLA). 

By using flip-flops the eight-word register was implemented. For generating two partial products signal Yt-7 is circular-left-

shifted 28 and 8 b  using the modules CLS-28 and CLS-8 respectively. To combine these three 31-b operands into two 31-b 

operands a circular 3-2 counter is used, which Consumes 247 gates. To evaluate Yt+1 31-b EAC-CLA is used with 348 gates. 

The schematic design of the 31-b EAC-CLA [4], [9] is shown in Figure 2(b). The schematic design of the 31-b EAC-CLA 

includes four modules they are propagation and generation (PG) generators, end-around-carry (EAC) generator, internal 

carry (IC) generator, and clas [5]. When EAC is generated by group of pgs, EAC is then fed to the IC generator and then to 

least-significant 8-b CLA. On clas, the final addition was performed. 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Structure of the DX generator. 

(b) Structure of the 31-b EAC-CLA. 

 

III.  PROPOSED ENCRYPTION AND DECRYPTION 
 In this proposed Encryption and decryption technlogy is where security engineering meets mathematics. It provides 

us with the tools that underlie most modern security protocols. It is probably the key enabling technology for protecting 

distributed systems, yet it is surprisingly hard to do right. Encryption and decryption technlogy is the practice and study of 

techniques for secure INFORMATION SHARING in the presence of ADVERSARYIES. In encryption and decryption 

technlogy, encryption is the process of encoding messages or information in such a way that hackers cannot read it. 

Encryption and decryption technology is designed around  computational hardness assumptions, making such algorithms 

hard to break in practice by any adversary.  Encryption is the process of converting plain text or information into 

unintelligible cipher text. Any adversary that can see the cipher text should not know anything about the original message. 

Decryption is the reverse, in other words, moving from the unintelligible cipher text back to plaintext. The statistical 

properties of cryptographic methods are the reason for the excellent pseudorandom testability of encryption and decryption 

technlogy processor cores. and finally the RM-PRNG key using an Encryption and decryption in as shown fig4.  

 

 
Figure 4. Encryption and decryption technology 

 

IV.  RESULTS AND SIMULATION 
 Pseudo Random Number Generator, Encryption and Decryption were designed using Verilog language in modelsim 

6.4. All the simulations are performed using modelsim 6.4 simulator. The simulated output of Pseudo Random Number 

Generator, Encryption and Decryption are shown in Figure 5&6 And also FPGA implementation of synthesis using 

Xilinx10.1 in fig7 and also FPGA result in fig8. 

 
Figure 5.   Simulation  results for RM-PRNG key 

 

 
Figure 6.  Simulation results of encryption and decryption 

http://en.wikipedia.org/wiki/Computational_hardness_assumption
http://en.wikipedia.org/wiki/Ciphertext
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Figure 7: synthsis result. 

   

 

 
Figure 8.FPGA result 

 

V.  CONCLUSION 

 We proposed a Encryption and decryption using RM-PRNG to ensure secure communication. A hardware 

implementation of RM-PRNG is to offer long periods and high throughput rate to established statistical standards for 

PRNGs. 

 The reseeding mechanism solves the short-period problem, while mixing a CB-PRNG with a long-period DX 

generator extends the period length.Hence,Simulation and Synthesis is observed by ModelSim 6. 4b and Xilinx ISE 10.1 
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