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ABSTRACT : In recent days filters with large lengths are 

started to use. So parallel processing is essential at any 

cost.In this paper proposes new parallel FIR filter 

structures, which are beneficial to symmetric coefficients in 

terms of the hardware cost, under the condition that the 

number of taps is a multiple of 2 or 3. The proposed 

parallel FIR structures use symmetric property to  reducing 

half the number of multipliers in sub filter section at the 

expense of additional adders in preprocessing and post 

processing blocks. Exchanging multipliers with adders is 
advantageous because adders weigh less than multipliers in 

terms of silicon area; in addition, the overhead from the 

additional adders in preprocessing and post processing 

blocks stay fixed and do not increase along with the length 

of the FIR filter, whereas the number of reduced multipliers 

increases along with the length of the FIR filter. Parallel 

FIR filter is essential, especially when the length of the 

filter is large. 
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I. INTRODUCTION 
Finite impulse response (FIR) filters are the most 

popular type of filters implemented in software. This 

introduction will help you understand them both on a 

theoretical and a practical level. Filters are signal 

conditioners. Each functions by accepting an input signal, 

blocking pre-specified frequency components, and passing 
the original signal minus those components to the output. In 

a typical digital filtering application, software running on a 

digital signal processor (DSP) reads input samples from an 

A/D converter, performs the mathematical manipulations 

dictated by theory for the required filter type, and outputs 

the result via a D/A converter. 

 Some applications need the FIR filter to operate at 

high frequencies such as video processing,  whereas some 

other applications request high throughput with a low-power 

circuit such as multiple-input multiple-output (MIMO) 

systems used in cellular wireless communication. 

Furthermore, when narrow transition-  band characteristics 
are required, the much higher order in the FIR filter is 

unavoidable. For example, a 576-tap digital filter is used in 

a video ghost canceller for broadcast television, which 

reduces the effect of multipath signal echoes. 

 

II. Finite Impulse Response 
  Filters can be classified in several different groups, 

depending on what criteria are used for classification. The 

two major types of digital filters are finite impulse 
response digital filters (FIR filters) and infinite impulse 

response digital filters (IIR). 

 

 
Figure.1 Digital filtering 

 

 Both types have some advantages and 

disadvantages that should be carefully considered when 

designing a filter. Besides, it is necessary to take into 

account all fundamental characteristics of a signal to be 

filtered as these are very important when deciding which 

filter to use. In most cases, it is only one characteristic that 
really matters and it is whether it is necessary that filter has 

linear phase characteristic or not. 

Speech signal, for example, can be processed in the 

systems with non-linear phase characteristic. The phase 

characteristic of a speech signal is not of the essence and as 

such can be neglected, which results in the possibility to use 

much wider range of systems for its processing. 

.

 
Figure 2. Digital filtering 

 The process of selecting the filter's length and 
coefficients is called filter design. The goal is to set those 

parameters such that certain desired stop band and pass band 

parameters will result from running the filter. Most 

engineers utilize a program such as MATLAB to do their 

filter design. But whatever tool is used, the results of the 

design effort should be the same: 

 A frequency response plot, like the one shown in 

Figure 1, which verifies that the filter meets the desired 

specifications, including ripple and transition bandwidth. 

The longer the filter (more taps), the more finely the 

response can be tuned With the length, N, and 

coefficients, float h[N] = { ... }, decided upon, the 
implementation of the FIR filter is fairly straightforward. 

Listing 1 shows how it could be done in C. Running this 

code on a processor with a multiply-and-accumulate 

instruction (and a compiler that knows how to use it) is 

essential to achieving a large number of taps. 

A. Ideal low-pass filter  

 FIR filters are digital filters with finite impulse 
response. They are also known as non-recursive digital 

filters as they do not have the feedback (a recursive part of a 

filter), even though recursive algorithms can be used for FIR 

filter realization 

FPGA Implementation of a New Parallel FIR Filter Structures 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.5, Sep-Oct. 2012 pp-3437-3441             ISSN: 2249-6645 

www.ijmer.com                                                                       3438 | Page 

B. Window Method for FIR Filter Design 

The window method for digital filter design is fast, 

convenient, and robust, but generally suboptimal. It is easily 

understood in terms of the convolution theorem for Fourier 
transforms, making it instructive to study after the Fourier 

theorems and windows for spectrum analysis. 

  

 
 We would expect to be able to truncate it to the 

interval, for some sufficiently large , and obtain a pretty 

good FIR filter which approximates the ideal filter. This 

would be an example of using the window method with 

the rectangular window. We saw in §4.3 that such a choice 
is optimal in the least-squares sense, but it designs relatively 

poor audio filters. Choosing other windows corresponds to 

tapering the ideal impulse response to zero instead of 

truncating it. Tapering better preserves the shape of the 

desired frequency response, as we will see. By choosing the 

window carefully, we can manage various trade-offs so as to 

maximize the filter-design quality in a given application. 

Window functions are always time limited. The window 

method always designs a finite-impulse-response (FIR) 

digital filter (as opposed to an infinite-impulse-

response (IIR) digital filter). By the dual of the convolution 
theorem, point wise multiplication in the time domain 

corresponds to convolution in the frequency domain.  

 

C. FIR And IIR Digital Filter Design 

Based on combining ever increasing computer 

 processing speed with higher sample rate 

processors, Digital Signal Processors (DSP’s) continue to 

receive a great deal of attention in technical literature and 

new product design.  The following section on digital filter 

design reflects the importance of understanding and utilizing 

this technology to provide precision stand alone digital or 

integrated analog/digital product solutions. By utilizing 
DSP’s capable of sequencing and reproducing hundreds to 

thousands of discrete elements, design models can simulate 

large hardware structures at relatively low cost.  DSP 

techniques can perform functions such as  Fast-Fourier 

Transforms (FFT), delay equalization, programmable gain, 

modulation, encoding/decoding, and filtering.    

• Filter weighting functions (coefficients) can be calculated 

on the fly, reducing memory requirements  

• Algorithms can be dynamically modified as a function of 

signal input.  

DSP represents a subset of signal-processing 
activities that utilize A/D converters to turn analog signals 

into streams of digital data.  A stand-alone digital filter 

requires an A/D converter (with associated anti-alias filter), 

a DSP chip and a PROM or software driver.  An extensive 

sequence of multiplication’s and additions can then be 

performed on the digital data.  In some applications, the 

designer may also want to place a D/A converter, 

accompanied by a reconstruction filter, on the output of the 

DSP to create an analog equivalent signal.  A digital filter 

solution offering a 90 dB attenuation floor and a 20 kHz 

bandwidth can consist of up to 10 circuits occupying several 
square inches of circuit-board space and costing hundreds of 

dollars.   

Digital filters process digitized or sampled signals.  

A digital filter computes a quantized time-domain 

representation of the convolution of the sampled input time 

function and a representation of the weighting function of 
the filter.  They are realized by an extended sequence of 

multiplications and additions carried out at a uniformly 

spaced sample interval.  Simply said, the digitized input 

signal is mathematically influenced by the DSP program.  

These signals are passed through structures that shift the 

clocked data into summers (adders), delay blocks and 

multipliers.  These structures change the mathematical 

values in a predetermined way; the resulting data represents 

the filtered or transformed signal. It is important to note that 

distortion and noise can be introduced into digital filters 

simply by the conversion of analog signals into digital data, 

also by the digital filtering process itself and lastly by 
conversion of processed data back into analog.  

 When fixed-point processing is used, additional 

noise and distortion may be added during the filtering 

process because the filter consists of large numbers of 

multiplications and  additions, which produce errors, 

creating truncation noise.  Increasing the bit resolution 

beyond 16-bits will reduce this filter noise.  

Instead of using a commercial DSP with software 

algorithms, a digital hardware filter can also be constructed 

from logic elements such as registers and gates, or an 

integrated hardware block such as an FPGA (Field 
Programmable Gate Array).  Digital hardware filters are 

desirable for high bandwidth applications; the trade-offs are 

limited design flexibility and higher cost. 

(1) Fixed-Point DSP and FIR (Finite Impulse 

Response) Implementations: Fixed-Point DSP processors 

account for a majority of the DSP applications because of 

their smaller size and lower cost.  The Fixed-Point math 

requires programmers to pay significant attention to the 

number of coefficients utilized in each algorithm when 

multiplying and accumulating digital data to prevent 

distortion caused by register overflow and a decrease of the 

signal-to-noise ratio caused by truncation noise.  The 
structure of these algorithms uses a repetitive delay-and-add 

format that can be represented as “DIRECT  

FORM-I STRUCTURE”, 

 

 
Figure 3 Transposed direct form FIR Filter 

FIR (Finite Impulse Response) filters are 

implemented using a finite number “n“ delay taps on a delay 

line and “n“ computation coefficients to compute the 

algorithm (filter) function.  The above structure is  non-

recursive, a repetitive delay-and-add format, and is most 

often used to produce FIR filters.  This structure depends 

upon each sample of new and present value data. FIR filters 
can create transfer function  that have no equivalent in linear 

circuit technology.   

 

III. Window Technique: 

https://ccrma.stanford.edu/~jos/sasp/FIR_Digital_Filter_Design.html
https://ccrma.stanford.edu/~jos/filters/
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https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Theorems.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Theorems.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Theorems.html
https://ccrma.stanford.edu/~jos/mdft/Example_Applications_DFT.html
https://ccrma.stanford.edu/~jos/filters/FIR_Digital_Filters.html
https://ccrma.stanford.edu/~jos/sasp/Optimal_but_poor_if.html#sec:toptlsf
http://mathworld.wolfram.com/LeastSquaresFitting.html
https://ccrma.stanford.edu/~jos/filters/Frequency_Response_I.html
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https://ccrma.stanford.edu/~jos/mdft/Dual_Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Dual_Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Dual_Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Convolution.html
https://ccrma.stanford.edu/~jos/mdft/
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The simplest technique is known as “Windowed” 

filters.  This technique is based on designing a filter using 

well-known frequency domain transition functions called 

“windows”.  The use of windows often involves a choice of 
the lesser of two evils.  Some windows, such as the 

Rectangular, yield fast roll-off in the frequency domain, but 

have limited attenuation in the stop-band along with poor 

group delay characteristics.  Other windows like the 

Blackman, have better stop-band attenuation and group 

delay, but have a wide transition-band (the band-width 

between the corner frequency and the frequency  attenuation 

floor).  Windowed filters are easy to use, are scalable (give 

the same results no matter what the corner frequency is) and 

can be computed on-the-fly by the DSP.  

  

        IV. The Equiripple Technique 

An Equiripple or Remez Exchange (Parks-

McClellan) design technique provides  an alternative to 

windowing by allowing the designer to achieve the desired 

frequency response with the fewest number of coefficients.  

This is achieved by an iterative process of comparing a 

selected coefficient set to the actual frequency response 

specified until the solution is obtained that requires the 

fewest number of coefficients.  Though the efficiency of this 

technique is obviously very desirable, there are some 
concerns.  

•  For equiripple algorithms some values may converge to a 

false result or not converge at all.  Therefore, all coefficient 

sets must be pre-tested off-line for every corner frequency 

value.  

•  Application specific solutions (programs) that require 

signal tracking or dynamically changing performance 

parameters are typically better suited for windowing since 

convergence is not a concern with windowing.  

•  Equiripple designs are based on optimization theory and 

require an enormous amount of computation effort.  With 
the availability of today’s desktop computers, the 

computational intensity requirement is not a problem, but 

combined with the possibility of convergence failure; 

equiripple filters typically cannot be designed on-the-fly 

within the DSP.  

  Analog filters beyond 10 poles are very difficult 

to realize and tend to be noisy 

 

V. Digital to Analog Conversion (D/A) 

        As with input signals to A/D converters, waveforms 

created by D/A converters also exhibit errors.  For each 

input digital data point, the D/A holds the corresponding 

value until the next sample period.  Therefore, the output 

waveform exists as a sequence of steps.  This output, a kind 

of  “sample-and-hold” – is known as a “first-order hold.”  In 

non-reconfigurable filters, these coefficients are constant 

and shift operation is done by hardwiring. The long tree of 

adders in multiplier implementation increases switching 

activity and physical capacitance and then power 

consumption.  

 
Fig.4 Implementation of coefficient  

 
Fig.5 Parallel FIR filter architecture 

VI. Proposed Reconfigurable Fir Filter 

Architecture 
            To utilize the symmetry of coefficients, the main 

idea behind the proposed structures is actually pretty 

intuitive, to manipulate the polyphase decomposition to earn 

as many subfilter blocks as possible which contain 

symmetric coefficients so that half the number of 

multiplications in the single subfilter block can be reused for 

the multiplications of whole taps, which is similar to the fact 

that a set of symmetric coefficients would only require half 

the filter length of multiplications in a single FIR filter. 

Therefore, for an N-tap 4-parallel FIR filter the total amount 

of saved multipliers would be the number of subfilter blocks 
that contain symmetric coefficients times half the number of 

multiplications in a single subfilter block decomposition to 

earn as many subfilter blocks as possible which contain 

symmetric coefficients so that half the number of 

multiplications in the single subfilter block can be reused for 

the multiplications of whole taps, which is similar to the fact 

that a set of symmetric coefficients would only require half 

the filter length of multiplications in a single FIR filter. 

Therefore, for an N-tap 3-parallel FIR filter the total amount 

of saved multipliers would be the number of subfilter blocks 

that contain symmetric coefficients times half the number of 
multiplications in a single subfilter block . As can be seen 

from the example above, two of three subfilter blocks from 

the proposed two-parallel FIR filter structure,H0+H1 and 

H0-H1, are with symmetric coefficients now, as (8), which 

means the subfilter block can be realized by Fig. 4, with 

only half the amount of multipliers required. Each output of 

multipliers responds to two taps. Note that the transposed 

direct-form FIR filter is employed. Compared to 

the existing FFA two-parallel FIR filter structure, the 

proposed FFA structure leads to one more subfilter block 

which contains symmetric coefficients. However, it comes 

with the price of the increase of amount of adders in 
preprocessing and postprocessing blocks. In this case, two 

additional adders are required for  L==2.Add/Sub control 

block. This block uses the sign bit of each sub-coefficient, 

and control the add/sub block. To implement the 

multiplication by zero for each subcoefficient, the 

multiplexer blocks are followed by AND gates, which is 

controlled by Mux control block. Three full add/sub bocks 

are used to combine the partial products of subcoefficients.  
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Figure. 6  Proposed parallel FIR filter architecture using 

four input. 

   VII.   IMPLEMENTATION OF ALGORITHM 
 A primary objective of this project was to develop 

a synthesizable model for the AES128 encryption algorithm.  

Synthesis is the process of converting the register transfer 

level (RTL) representation of a design into an optimized 

gate-level netlist.  This is a major step in ASIC design flow 

that takes an RTL model closer to a low-level hardware 

implementation. 

 
Figure7 .Simulated output. 

 

A. Synthesis Timing Result 

 The synthesis tool optimizes the combinational 

paths in a design.  In General, four types of combinational 

paths can exist in any design: [3] 

1- Input port of the design under test to input of one 

internal flip-flip 

2- Output of an internal flip-flip to input of another flip-

flip 

3- Output of an internal flip-flip to output port of the 
design under test 

4- A combinational path connecting the input and output 

ports of the design under test 

The last DC command in the script developed in previous 

section, instructs the tool to report the path with the worst 

timing.  In this case, the path with the worst timing is a 

combinational path of type two.  The delay associated with 

this path is the summation of delays of all combinational 

gates in the path plus the Clock-To-Q delay of the 

originating flip-flop, which was calculated as 24.09ns. 

 

 
Figure 8.RTL Schematic report 

 

  By considering the setup time of the 

destination flip-flop in this path, which is 0.85ns, the 

40MHz clock signal satisfies the worst combinational path 

delay.  The delays of combinational gates, setup time of flip-

flops and Clock-To-Q values are derived from the LSI_10k 

library file that was used for the mapping step during 
synthesis 

 

B.  Synthesis Area Result 

 The synthesis area report shows the total number of 

cells and nets in the netlist. It also uses the area parameter 

associated with each cell in the LSI_10K library file, to 

calculate the total combinational and sequential area of the 

netlist.  The total area of the gate level netlist is unknown 

since it depends on total area of the interconnects, which 

itself is a function of the wiring load model used in physical 

design.  The total cell area in the netlist is reported as 22978 

units, which is the sum of combinational and sequential 
areas.  

 
Figure 9.Flow summary report 

 

 To enforce the synthesis tool to create the most 

compact netlist, the area of the gate level netlist was 

constrained to zero during the synthesis process.  As a 

result, the only constraint violation, which is expected, is 

related to the area as shown bellow: 

 

C. Performance Report 

 
Figure10 .Fmax. summary report for slow corner. 

 

VIII. CONCLUSION 

 The proposed new structure exploits the nature of 

even symmetric coefficients and save a significant amount 

of multipliers at the expense of additional adders. Since 

multipliers outweigh adders in hardware cost, it is profitable 

to exchange multipliers with adders. Moreover, the number 
of increased adders stays still when the length of FIR filter 

becomes large, whereas the number of reduced multipliers 

increases along with the length of FIR filter. Consequently, 

the larger the length of FIR filters is, the more the proposed 

structures can save from the existing FFA structures, with 

respect to the hardware cost. Overall this paper proved that 

for larger filter length area consumption of proposed filter is 

far better than any other existing method.  
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