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Abstract: Missing data is a problem encountered in almost evety dallection activity but particularly in samplersey.
The missing data naturally occurs in sample surveys when, sminall sampling units refuse or unable to participat¢he
survey or when data for specific items on a questionnein@pleted for an otherwise cooperating unit are missing.
Imputation is a methodology, which uses available data tool for the replacement of missing observationgutation
methods used to fill the non responses and lead, unfieitdeonditions, to suitable inference. This artisleggests some
imputation methods and discusses the properties of theln estimators. Numerical study is performed over two
populations using the expressions of bias and m.s.efficigmcy compared with existing estimators.

I. Introduction

In literature, several imputation techniques are desdr some of them are better over others. Rubin (1976
addressed three concepts: OAR (observed at random), WAssing at random), and PD (parametric distributidihe
defined that if the probability of the observed migsiess pattern, given the observed and unobservedidatanot depend
on the value of the unobserved data, then data #&B.Mhe observed data are observed at random (OARYy i€ach
possible value of the missing data and the parangetiee conditional probability of the observed pattefrmissing data
given the missing data and the observed data, is the fa all possible values of the observed data. zEeiand Basu
(1996) have distinguished the meaning of MAR and MGAR very nice way. In what follows MCAR (missing cdetely
at random) is used.

Little and Rubin (1987) define three differentsdas of missingness. They defined the key terms used ussiisg
missingness in the literature. Data missingYosre observed at random (OAR) if missingnes® @ not a function ok.
Phrased another way, X determines missingness &¥nthe data are not OAR. Data missing Y®are missing at random
(MAR) if missingness orY is not a function of. Phrased another way, Yfdetermines missingness ¥nthe data are not
MAR. Data are Missing Completely at Random (MCAR) ifssingness orY is unrelated taX or Y. In other words
MCAR=0AR + MAR. If the data are MCAR or at least RAthen the missing data mechanism is considered “iglectab
Otherwise, the missing data mechanism is considem@u-gnorable.”

There are different ways and means to control non-resgpdne way of dealing with the problem of non-oase
is to make more efforts to collect information by takim sub-sample of units not responding at the firstngitteAnother
way of dealing with the problem of non-response isstingate the probability of responding informants daittbeing at
home at a specified point of time and weighting rsswith the inverse of this probability. A techniquwedeal with the
problem of non-response was developed by Hansen analitd (1946). They assumed that the populationvgdd into
two classes, eesponse claswho respond in the first attempt andan-responselasswho did not.

A questionnaire contains many questions that we ¢aths. When item non-response occurs, substantial
information about the non-respondent is usually abkgl&rom other items on the questionnaire. Many imjputamethods
in literature use selection of these items as auxilianyable in assigning values to tifenon-respondent for itept Rao
and Sitter (1995), Singh and Horn (2000), Ahmedl.e(2906) and Shukla and Thakur (2008) have giveplieations of
various imputation procedures.

Let the variabléY is of main interest an® be an auxiliary variable correlated wittand the population meaX of
auxiliary variable is unknown. A large preliminarimple random sample (without replacemeSt)of " units is drawn
from the populatiorQ = (L 2,...,N) to estimateX and a secondary sami8ef sizen (n < n' ) drawn as a sub-sample
of the sampleS' to estimate the population mean of main variabket the samples containsn, responding units and
n, :(n—nl) non-responding units. Using the concept of postiitaion, sample may be divided into two groups:
responding R ) and non-respondingR, ).

The sample may be considered as stratified into twasetanamely eesponse clasandnon-response clasthen
the procedure is known g®st-stratification Sukhatme (1984) advocates that post-stratificgiimeedure is as precise as
the stratified sampling under proportional allocatié the sample size is large enough. Estimation problersample
surveys, in the setup of post-stratification, underreaponse situation is studied due to Shukla and D{##84 and 2008).

Shukla et al. (2009) have also given the concepttilization of )_(2 (population mean of non-response groupXpfin
imputation for missing observations of auxiliary infation due to non-response.
Now it may be consider the population has two tyddéadividuals likeN; as number of respondentR() andN,

non-respondentsR, ), Thus the totaN units of the population will compridé; andN,, respectively, such thét = N;+N,.
The population proportions of units in tif¢ and R, groups are expressed\&= N,/N andW, = N, /N such that\,+W,=1.

Further, letY and X be the population means dfand X respectively. For every unitl] R, the valuey; is observed
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available. However, for the unit§] R,, the y,’s are missing and imputed values are to be deriVee.i" value X of
auxiliary variate is used as a source of imputatiomfimsing data when[] R, . This is to assume that for samfiehe data
X, ={)<1 i DS} are known. The following notations are used in thigqy:

Xn,Y,: the sample mean of andY respectively irf§ X, )_/1: the sample mean oKandY respectively iR ;

SZ,SZ: the population mean squares ok andY respectively;,C, , C,: the coefficient of variation ofX andY
respectively;0: Correlation Coefficient in population betweghandY respectively.

Further, consider few more symbolic representations:
(1Y [ 1  (N-nfa-w) _(N=-n)Jn-n)'N nn?(N -n')(N -1)
L=E —|= + , M= , Q= .
n) [nW  (N-nW; nn*(N -1)(N -n’) n'N(N -n)(n-n,)-2nn¢(N -n')(N -1)
Under this setup as describe above in case of simplemasampling without replacement and assum¥gs known, some

well known imputation methods are given below:
1.1. Mean Method of Imputation:

Y, if 10OR
For y definey, as Y, =4— ] ) ..(1.1)
Y, if I0R
Using above, the imputation-based estimator of popnniatiean\_( is: §/m =%Zyi =§/r ..(1.2)
Lemma 1.1: The bias and mean squared error is given(byB(ym) =0 ...(1.3)
11
i) VIy_)=|=-—|S ..(1.4
(i) V(,) [r Njy (4

1.2. Ratio Method of Imputation:

F d X, defi oo TR b=y /3 (L.5)

or Y and X ,definey, as: y, =4 . ) ) where b= i (1.

i’ in if i1 Rz iOR y/in X

. . . . — 1 — (%) _—

Under this, the imputation-based estimator is; = —z y., = y{_ J: Y ear ...(1.6)
n ios Xr
where y, :}Zy‘ X :EZX‘ and X :lzx.
I itr I ‘or N ‘os
Lemma 1.2: The bias and mean squared erroygf; is given by:(i) B()‘/RAT) =Y 1 —lj (Cf —prCx) ..(L.7)
rn
1 1 11 Y
iy MY, )=|=—— |S?+| =—= |S! +R’S* - 2R S whereR == ..(1.8
() (yRAT) (n N} y (r n}[ y Rl X Rl xy] Rl X ( )

1.3. Compromised Method of Imputation:
Singh and Horn (2000) proposed Compromised imputatioceglure as given below:
y = {(an/r)y, + (1—a)6xl if 10R

(1-a)ox if i0R
wherea is a suitably chosen constant, such that the resultargnce of the estimator is optimum. The imputatioseda

...(1.9)

estimator, for this case, Estimator of population mea@g’gw = {ay, + (1—(7)?/r )_(”} ...(1.10)

r

Lemma 1.3:The bias, mean squared error and minimum mean squaceéem =1- 0 gV of Yoo IS given by

X

0 B(low):\?(l—a)(l—lj c:-rcc.,) SERE)

rn

WWW.ijmer.com 3562 | Page



International Journal of Modern Engineering ReseftiiER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-356713 ISSN: 2249-6645
(il M(yCOMP):{(l —il]s; +(1 —1)[35 +RS -ZRSW]} (1 l]a Y .(112)
n rn r

(i) M (Voo oo = H%-%H;l—%]p}& - (113)

1.4. Ahmed’'s Methods:
Y, if 10OR

A =J_ —  — - ...(1.14
B Y=y e k(X ekl -x) i ioRr (.14
(n-r)
Under this method, the point estimator¥fis: t= S/r + kl(y —;()+ kz(;(—;(,) ...(1.15)
Lemma 1.4:The bias, variance and minimum variancekat= k, = ZXZY of t, is given by(i) B[t7] =0 ...(1.16)
11
M M) ( j$ 25{'&( }f'&( ]}%{K{ j lé(r—nﬂ . (1.17)
1 1
iy V(t,),, =(r Njg(l 0°) ..(1.18)
Y, if 10R
VX + %
(B) ¥s y,(x n-r j ro_ . ...(1.19)
= i if i0R
Ox +[1-g)x n-r
under this setup, the point estimatonofis : t. = L 20)
’ O Gx +(1-6)x
Lemma 1.5:The bias, mean squared error and minimum mean squaceéed, = o €, of t, is given by
11 ,
0 B(t,)= [r nj Y (6°c? -6,0C,C,) ..(1.21)
iy Mt,) :\?ZHE— 1) 92(1 1) :—2.91(1—1};0@} ..(1.22)
r N rn rn
1 1 1 1)\S,
in M) =(1-1L ...(1.23
o b (22225 =
Y if 10R
Qy, = v X ..(1.24
©) Yy 1 _ny,X _ it i0R (1.24)
( ) HZX +(l_62)x
. oy X
Under this method, the point estimator¥fis : t, = —————— ...(1.25)
6,x+(1-86,)X
Lemma 1.6:The bias, mean squared error and minimum mean squacece, = p% of t, is given by
1 1 2
0 B(t,)= (n Nj Y (6°cz -g,0C.C,) ...(1.26)
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@yMm(t,) =Y Krl :que{l 1} 2.9(1 1),0CC } ..(1.27)
1 1 1 1)\S
iy M (¢ B T [~ I T B ...(1.28
("I) (9)mm (r st‘( [n N) Si ( )
Y, if i0R
dyy, = ¥ X ..(1.29
@Y=y 1 | _nyX o f i0R (1.29)
(n-r)6,x +(-6,)x

_ o o y, X

under this, the point estimator of population m&ais: =7+ (1.30)

6,x +(1-6,)X
Lemma 1.7:The bias, mean squared error and minimum mean squacecely = L, 1S given by
1 1)\S/pomo
0 Bft,)= (F Nj Y (¢:cz -6,0C,C,) ..(1.31)
" w1_1 2 20~ 2
@i M(t,) =Y [——WJ[CY +6:C? - 26,0C,C, | ..(1.32)
r
1 1)\ 2
(i) ML), :[?-ng(l-p ) 133)
Il. Large Sample Approximations:

Let y,=Y(l+e); x =X(1+e,); X =X(1+e,) and X = X(L+€,), which implies the resultg —%—1;

X X
e =%—1; g, ==-1and e _Y_l Now by using the concept of two-phase sampling &ednmechanism of

S5 XX

andn’ [see Rao and Sitter (1995)] we have:

-eleieln]-e 5]
E(ef>:{[¥}z nl ({2 ) e (-2 )

E(e'i){i— jcz' E(ee)=E(ee,/n)= EHMJ

Y X

MCAR, for givenn,

nl} ) Y§Y =0; similarly, E(e,) = E(e,) = E(¢ )= 0;

1
VR
-
|
\_/
O
xX N
m
wm,\,
N
1
N\
Sk
|
| =
Ne——
(@]
X N

[
:[L—%}pCC Elee)= (i 1JprCx,Eee (nl—%] C.C,: Elee)= G niJc
e)=

{3 shel{2 4

[ll.  Proposed Different Imputation Methods
Let Y, denotes thé" available observation for th8 imputation. We suggest the following imputation noekst

Vji

y if iOR
(1) yv7i = g, + (;( _;(n)'l'(l_W)k()q _)7(1)] If ID%

1
1 (1_
where h andk are suitably chosen constants, such that the varinagesultant estimator is minimum. Under this
=y, +h{x =% J+kfx. - x,) (3:2)

..(3.1)
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Y, if iIOR
@ You =9 Y, (x (1—vv1)+vv1§<1)_w t i0R ..(3.3)
1-w)| ox.+@-6)x
where @ is suitably chosen constant, such that the varidreessultant estimator is minimum. Under this
— y1 Xn
S & S — ...(3.4)
" Ox +(1-6)x,
Y if 10R
3) V,, =1 vy X ..(35
3) Yoo Y, _ X _w it i0R (3.5)
(1-W)| gx. +(1-)x
where ¢ is suitably chosen constant, such that the variareceeultant estimator is minimum.
Under this, the point estimator of population m&ris
T, =—Y% ..(36)
% +(1-g)x
Y if 10R
@) Yo =9 Y, ..(3.7)

X w if i0R
(L-W)| gx. +(1-)x
where {{/ is suitably chosen constant, such that the varianeerdbultant estimator is minimum. Under this, the point
estimator of population mea¥ is
oYX
10~ = - — (38)
wx +{1-y)x
IV. Bias and M.S.E of Proposed Methods:

Let B(.) andM(.) denote the bias and mean squared eNo8(E) of an estimator under a given sampling design.

The properties of estimators are derived in the fatig theorems respectively.

Theorem 4.1:
(1) The estimatofT,, in terms of€,,€,,e, ande, is:
T, =Y(1+e)+hX(e —¢)+kX(e, -e,) ..(4.1)

Proof. T, =y, + h(?(l - >‘<n)+ k(x -x) =Y(1+e)+hX(e -¢ )+kX(e, -¢,)
(2) The estimatofl, , is unbiased i.e. B[TW] =0 ..(4.2)
Proof: B(Tw): E[TV7 —\_(] =Y-Y=0

(3) The variance off, is

Vn)=(L-3 s+ (52t s -avm s )+ - fles: -ams) (43)
Proof: V(T,,)=E[T,, —\_(]2 = E[\_(e1 + h?(e'3 —e3)+ k?(e3 —ez)]2
= El\_(zef +hX (e -e) +k*X (e, —¢,) +2nYX(e, -e e
+ 2hk§2(e'3 —es)(es —e2)+ 2k\_(§(e3 —ez)eJ
= EI.\_(zel2 + hzfz(e's2 +€ —2e3e;) +k*X (e +e2 - 2ee))

+ 2h\_(Y(ele'3 -ee, )+ 2hk X (e3 e —€ —ee tee ) + 2k\_(Y(e1e3 -ee, )]
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— _i 2 E_E i 2Q2 _ _1 2Q2 _
(222 s s s)o{ - s -avss )

(4) The minimum variance of th§,, is

v =KL —%)—(L —§+%)p2} s

Proof: By differentiating (4.3) with respect to andk then equate to zero

SV =0 =h=p>

X

d S,
d —_— = = —r
an dk [V(Tw)] 0 =k P SX

After replacing value oh andk in (4.3), we obtained

vl :KL—%]—(L—%+%]/)Z} s

Theorem 4.2:
(5) The estimatofT , in terms ofe,,e,, €

T.=Y[1+e +6 e - -ee +ae +(1-2)ee +& ~(1-6)e)]
Proof: T, = —i;( = = — Vy(l+el)(1+_e3)
ex +(1-6)x. OX(1+e)+(1-0)X(1+e)
=Y(i+e)i+e)ite +6 -&)"
=Y(i+e)i+e )1+ e +(1-6)e,)?
=Y(+e)i+e )i- -(1-0)e +{&e, + (-0} -....)
=Y[1+e +6( e e -ee, +ee +(1-20)e,e, + & - (1-6)e’ )|

3

ande, is:

(6) The bias of the estimatdr,, is
B(T,,) = \_((L —%j(ezci -64C,C,)

Proof: B(T,,) =E[T,, -¥| =VE[ 1+e+6( & - —ee +ee+(1-26)ee, + & - (1-6)e)-1]
:\_((L —%(9205 -6,C,C,)

n

(7) Mean squared error ol is

M(T,,) :\_KZKL —i,jcvz +(|_ —%J(ezci ~264C,C, )}

n
Proof. M(T,,)=E[T,, —\_(]2 =Y'E[ 1+e +4( ¢ —¢ —ee, +ee +(1-20)ee +0¢ -(1-6)e) -1’

= \_(ZKL —i,chz +(L —ij(ezc; ~26 ,C,C, )}
n n

(8) The minimum m.s.e. ofl 4 is

1 1 C

M(T,.) =||L-=|-|L-=1|p*| S whenf=p—
ML, =| (Lo )L 2 )| s wnen =8

Proof: By differentiating (4.7) with respect 8 then equate to zero

d _ _ C,
@[M(Tva)] =0 :H_pc

X
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After replacing value of in (4.7), we obtained

w2

Theorem 4.3:
(9) TheestimatorT,, in terms ofe ,e,,e, ande, is:

T.=Yli+e +4le -e +ee —ae )+ 2plee, + e + {1+ ple

: _ ?/1;(' _ \_(Y(l+ el)(1+ e‘s) v : . P!
Proof. T, Tl g  Xre)rf-g)Xhre) Yi+e)i+e)i+e +pe -g¢€)

=Y(1+e)i+e )i+ ge, +(1-g)e) =V(i+e )i+ e)i-ge - (- gl +{pe, + (1-p)e) -..)"
=Y[i+e +¢(e -e +e€ —ee) -1+ 2p)ee, +pe +(1+ gl )|
(10) The bias of the estimatdr,, is
=v[ 12 e -
B(Tvg)_Y(n n + NJ(¢2CX ¢2pCvi)
Proof: B(Tvg): E['I'V9 —V]
=YE[l+e +¢(e -e +ae —ae) -1+ 2p)ee, + e +(1+p)el)-1]
=v[ 12 Lgece -
_Y(n n + N\J(¢2Cx ¢2pCYCX)

(11) Mean squared error of,,, is

v’ _i 2 1_3 i 22 _
M(Tvg)_Y |:[L n,JCv +(n n + NJ(¢2CX 2¢zmvcx ):| ---(4-11)
Proof: M (Tvg) = E[TV9 —\_(]2

(4.9)

...(4.10)

-VElre +4 (6 -6, ree ~ae (2P +ge + 1+ gle )1
=\_(2E[ef +¢§(e‘§ vl - 2e3e'3)+ 2,(e€, -elee)]

v P B NN ) e
-y _[L n,jq{n n,+Nj(¢zcx 2¢2chcx)}

(12) The minimum m.s.e. ofl4 is

i 1) (1 2.1 C
MI(T,.), =|L-|=|-|=—-—+—|p° |’ when¢ = p—~ ..(4.12
[ (V9)]M|n i (n’} (n nr ij :|SV ¢ pC ( )
Proof: By differentiating (4.11) with respect @ then equate to zero

d - oY
d_¢[M(Tv9)] =0 :>¢_pr

After replacing value off in (4.11), we obtained

R N e

Theorem 4.4:
(13) TheestimatorT,,, in terms ofe ,e,,e, ande, is:

)

T =\_([1+ e +41/(e'3 —e, +tee —ee +ye +yes —es —eze;)]

_ _ Y, X YX(+e)i+e) = ‘ . N\
Proof: T, = s 1 =3 ~=Y(+e)l+e)ite +ye —ye
yx +0-g)x  @x+e)+@-yg)X[+e) (re)re) )

..(4.13)

WWW.ijmer.com 3567 | Page



International Journal of Modern Engineering ReseftiiER)
www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-356713 ISSN: 2249-6645

=Y(i+re)ire Yirye +(1-gle)  =Yl+e)ive Ji-ye - -p)e +we + -y} -.)
:\_([l+ e, +¢/(e; -e +ee —ee +ye +0e:-€:-ee,
(14) The bias of the estimatdt,,, is
Ny 1 11 2 1
T = L_* 2 o 2 _ L—i R a4
B(T,., V{W( N)CX Zd{ - N)Cx t/f[ o ijqcx] (4.14)

)=E [TVlo —\_(] =\7E[1+ e +¢/(e; -e,+ee —ee, +yYe +ye: —¢€; —eze;)—l]

Proof: B(TVlO
S 1 1 1 2.1

=Y|¢?* | L-—|C:-2¢9| =—— |C; ~¢| L-—+— |pC,C
(w{e-lei-a2-2ei-ufi-2+Lacc

n

(15) Mean squared error of,,; is

M(T,.,) =\72KL —%}Cﬁ +[L —%%)(wici - 24pC,C, )} .(4.15)

Proof: M (Tvm) = E[TVlO —\_(]2

:\_(zE[1+ e +¢/3(e'3 -e +ee —ee, +We’ +ye; —e; —eze;)—ll2

=\_(ZE[ef +y’ (e'§ +e - 2e2e‘3)+ 2y(ee, -ee, )]

=VZKL—3JCS +(L—3,+iJ(w;Ci ~2¢4C,C, )}

n n N
(16) The minimum m.s.e. ofl,;, is
...(4.16)

X

[M (TVlO)]Min :[(L_%)‘(L‘%*'%jpz}sfwhenlﬂ :pg_Y

Proof: By differentiating (4.15) with respect #¢ then equate to zero

X
After replacing value off/ in (4.15), we obtained

ML =|(L-2)- (-2 L)

V. Comparisons
In this section we derived the conditions under whith suggested estimators are superior to the Ahmed et al

Aty

d _ =&
M[M(Tvm)] =0 :l//_pc

(2006).
(1) Db, = min[M (t,)]— min[M (TW)]

ieiod
(

pd
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:>p<im = - 1+Q<p<+\/ﬁ

whereQ >1 = nrf(N-n')(N-1)>n'N(N-n)(n-n)-2nrf (N -n')(N-1)
(2) D, =min[M (t,)] - min[m (T,, )]

(2t e i

(TVB) is better thart,, if

D, >0 = i—i—L+i, S - i—L,oS2 >0
n, N i Ln ]
520t e oo
n
ji_i_L+i,sj—i—LpZSj >0 = p* <=
n N n n, 1
nl
:>,02< (Nz_n)(n_n1)nl>| -l p<+ ﬂ
nn*(N -1)(N -n') M

whereM <1=>(N-n)(n-n)n'N <nrf(N-1)(N-n’)
(3)D, =min[M (t,)] - min[m (T,,)]

{a-d e

,_1 (N=-n)n-n)n'N 1 [1 1
=p <2 nnf(N—l)(N—n') =>p<t > M =- > -M<p<+ > -M
where M <% =2N-n)(n-n)n'N< nrf(N-2)(N-n')

(4) D, =min[M (t,, )]~ min[Mm (T, )]

LA S Co
oA RN S

('l;m) is better thart

|
TN
s

if D, >0

10!
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{1_1_“1}
n N n' nn?(N - n’)(N -1)
2 n'N(N -n)n-n,)-2nn?(N - n")(N -1)

1

aid
n N n'
=>p0<xJ1+Q =-J1+Q<p<+,1+Q

whereQ >1 =nrf(N-n)(N-1) >nN(N-n)(n-n)-2nrf(N-n)(N-1)

=p°< = p*<l+

VI.  Numerical lllustrations
We consider two populations A and B, first one is #itificial population of siz& = 200 [source Shukla et al.
(2009a)] and another one is from Ahmed et al. (20086) thie following parameters:
Table 6.1 Parameters of Populations A and B

Population N % X SYZ S? o C, C,
A 200 42.485 18.515 199.0598 48.537b6 0.8652 0.3763 3320.
B 8306 253.75 343.316 338006 86201} 0.5222381 2.7043@.29116

Let n'= 60, n = 40, n,= 35 for populatiorA andn'= 2000, n = 500, N, = 450 for populatiorB respectively. Then

the bias and M.S.E of suggested estimators (using Xpeegsions of bias and m.s.e. of Section 5) and atkisting
estimators with Ahmed et al. (2006) methods are gindable 6.2 and 6.3 for populatidnandB respectively.
Table 6.2 Bias and MSE for Population A and B

Population A Population B
Estimators
Bias MSE Bias MSE
T,, 0 2.338387 0 458.4694
T, -0.000001 1.841686 0.000003 561.7505
T, 0.000001 2.882792 0.000001 478.9972
Tow -0.025350 2.338387 -0.347570 458.4694
Table 6.3 Bias and MSE for Population A and B for Amed et al. (2006)
Population A Population B
Estimators
Bias MSE Bias MSE
Y, 0 4.692124 0 710.4302
Venr 0.005080 4.908211 0.22994 768.7752
Yeour 0.003879 4.188044 0.050411 689.9429
t, 0 1.179736 0 516.6780
t, -0.000001 4.159944 0.000003 689.9452
t, -0.000006 1.711916 0.000002 537.1631
t, -0.000008 1.179736 0.000003 516.6780
The sampling efficiency of suggested estimators ovenéd et al. (2006) is defined as:
OptM(T,,
= pd ( “)] ;1= 78910 ...(6.1)
opm(t )]
The efficiency for populatioA and populatiorB are given in table 6.4
Table 6.4 Efficiency for Population A and B over Almed et al. (2006)
Efficiency Population A Population B
E, 1.982128 0.887341
E, 0.442719 0.814196
E, 1.683957 0.891717
E, 1.982128 0.887341
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VII. Discussion
The idea of two-phase sampling is used while considetiiregauxiliary population mean is unknown and nummber
of available observations are considered as randonbl@rf@ome strategies are suggested in Section 3 aedtthetor of
population mean derived. Properties of derived edtins like bias and m.s.e are discussed in the Sedtiofhe optimum
value of parameters of suggested estimators is obtaisedell in same section. Ahmed et al. (2006) estimatoe
considered for comparison purpose and two populaioandB considered for numerical study first one from Shudd al.
(2009) and another one is Ahmed et al. (2006). Thekagnefficiency of suggested estimator over Ahmed!.e2806) is

obtained and suggested strategy is found very clabeAkimed et al. (2006) wheX is not known.

VIIl. Conclusions
The proposed estimators are useful when some obsewvatiormissing in the sampling and population mean of

auxiliary information is unknown. For populatich proposed estimatorsl,, are found to be more efficient than the

existing estimators. For populatid@ proposed estimatorg,,,T,,,T,, and T, are found to be more efficient than the
existing estimators.
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