
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3841 | Page

Y.Tulasi Rami Reddy 1, K.Gopinath 2

1. M.Tech Student In CSE Department, Kottam College Of Engineering, Kurnool (India) 518218,
2. Associate Professor in IT Department, KSRM College Engineering, Kadapa (India) 516003

Abstract: we are introduced the cooperative caching in

wireless networks ,where the nodes may be mobile and

exchange information in apeer-to-peer fashion. We

consider both cases of nodes with large-and small-sized

caches. For large-sized caches, we devise a strategy where

nodes, independent of each other, decide whether to cache

some content and for how long. In the case of small-sized

caches, we aim to design a content replacement strategy

that allows nodes to successfully store newly received

information while maintaining the good performance of the

content distribution system. Under both conditions, each

node takes decisions according to its per-ception of what

nearby users may store in their caches and with the aim of

differentiating its own cache content from the other nodes’.

The result is the creation of content diversity within the

nodes neighborhood so that a requesting user likely finds

the de-sired information nearby. We simulate our caching

algorithms indifferent ad hoc network scenarios and

compare them with other caching schemes, showing that

our solution succeeds in creating the desired content

diversity, thus leading to a resource-efficient

Information access.

Index Terms – Data cashing, mobile Nodes, mobile ad hoc

networks.

I. Introduction

 The necessary information to users on the move is

one of the most promising directions of the infotainment

business, which rapidly becomes a market reality, because

infotainment modules are deployed on cars and handheld

devices. The ubiq-uity and ease of access of third- and

fourth-generation (3Gor 4G) networks will encourage users

to constantly look for content that matches their interests.

However, by exclusivelyrelying on downloading from the

infrastructure, novel appli-cations such as mobile

multimedia are likely to overload thewireless network (as

recently happened to AT&T followingthe introduction of

the iPhone [1]). It is thus conceivable that a peer-to-peer

system could come in handy, if used in conjunction with

cellular networks, to promote content sharing using ad hoc

networking among mobile users [2]. For

highlypopularcontent, peer-to-peer distribution can, indeed,

remove bottlenecks by pushing the distribution from the

core to the edge of the network In such an environment,

however, a cache-all-you-see ap-proach is unfeasible,

because it would swamp node storage capacity with

needless data that were picked up on the go. Thus, several

techniques of efficiently caching information in wireless ad

hoc networks have been investigated in the literature; for

example, see the surveys in [3] and [4] and the related work

discussed in Section II. The solution that we propose, called

Hamlet, aims at creating content diversity within the node

neighborhood so that users likely find a copy of the

different information items nearby (regardless of the

content popularity level) and avoid flooding the network

with query messages. Although a similar concept has been

put forward in [5]–[8], the novelty in our proposal resides

in the probabilistic estimate, run by each node, of the

information presence (i.e., of the cached content) in the

node

 proximity. The estimate is performed in a cross-

layer fashion by overhearing content query and information

reply messages due to the broadcast nature of the wireless

channel. By lever- aging such a local estimate, nodes

autonomously decide what information to keep and for how

long, resulting in a distributed scheme that does not require

additional control messages. The Hamlet approach applies

to the following cases.

1.1 Large-sized caches. In this case, nodes can potentially

store a large portion (i.e., up to 50%) of the available

information items. Reduced memory usage is a desirable

(if not required) condition, because the same memory may

be shared by different services and applications that run at

nodes.

1.2 Small-sized caches. In this case, nodes have a

dedicated but limited amount of memory where to store a

small percentage (i.e., up to 10%) of the data that they

retrieve. The caching decision translates into a cache

replacement strategy that selects the information items to

be dropped among the information items just received and

Data Caching Between Mobile Nodes in Wireless Adhoc Networks

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3842 | Page

the infor- mation items that already fill up the dedicated

memory.

 We evaluate the performance of Hamlet in

different mobile network scenarios, where nodes

communicate through ad hoc connectivity. The results show

that our solution ensures a high query resolution ratio while

maintaining the traffic load very low, even for scarcely

popular content, and consistently along different network

connectivity and mobility scenarios.

II. RELATED WORK

Several papers have addressed content caching and

content replacement in wireless networks. In the following

sections, we review the works that are most related to this

paper, highlighting the differences with respect to the

Hamlet framework that we propose.

2.1. Cooperative Caching

 In [9], distributed caching strategies for ad hoc

networks are presented according to which nodes may

cache highly popular content that passes by or record the

data path and use it to redirect future requests. Among the

schemes presented in [9], the approach called HybridCache

best matches the operation it as a benchmark for Hamlet in

our comparative evaluation. In [10], a cooperative caching

technique is presented and shown to provide better

performance than HybridCache. However, the solution that

was proposed is based on the formation of an over-lay

network composed of “mediator” nodes, and it is only fitted

to static connected networks with stable links among

nodes.These assumptions, along with the significant

communication overhead needed to elect “mediator” nodes,

make this scheme unsuitable for the mobile environments

that we address. The work in [11] proposes a complete

framework for information retrieval and caching in mobile

ad hoc networks, and it is built on an underlying routing

protocol and requires the manual setting of a network wide

“cooperation zone” parameter. Note that assuming the

presence of a routing protocol can prevent the adoption of

the scheme in [11] in highly mobile networks, where

maintaining network connectivity is either impossible or

more communication expensive than the querying/caching

process. Furthermore, the need of a manual calibration of

the “cooperation zone” makes the scheme hard to configure,

because different environments are considered. Conversely,

Hamlet is self contained and is designed to self adapt to

network environments with different mobility and

connectivity features.

2.2. Content Diversity

 Similar to Hamlet, in [6], mobile nodes cache data

items other than their neighbors to improve data

accessibility. In particular, the solution in [6] aims at

caching copies of the same content farther than a given

number of hops. Such a scheme, however, requires the

maintenance of a consistent state among nodes and is

unsuitable for mobile network topologies. The concept of

caching different content within a neighborhood is also

exploited in [7], where nodes with similar interests and

mobility patterns are grouped together to improve the cache

hit rate, and in [8], where neighboring mobile nodes

implement a cooperative cache replacement strategy. In

both works, the caching management is based on

instantaneous feedback from the neighboring nodes, which

requires additional messages. The estimation of the content

presence that we propose, instead, avoids such

communication overhead.

2.3. Caching With Limited Storage Capability

 In the presence of small-sized caches, a cache

replacement technique needs to be implemented. Aside

from the scheme in [8], centralized and distributed solutions

to the cache place- ment problem, which aim at minimizing

data access costs when network nodes have limited storage

capacity, are presented in [14]. Although centralized

solutions are not feasible in ad hoc environments, the

distributed scheme in [14] makes use of cache tables,

which, in mobile networks, need to be maintained similar to

routing tables. A content replacement scheme that addresses

storage limita-tions is also proposed in [16]. It employs a

variant of the last recently used (LRU) technique, which

favors the storage of the most popular items instead of the

uniform content distribution targeted by Hamlet. In

addition, it exploits the cached item IDs provided by the

middleware to decide on whether to reply to passing-by

queries at the network layer, as well as link-layer traffic

monitoring to trigger prefetching and caching. In [17], the

popularity of content is taken into account, along with its

update rate, so that items that are more frequently updated

are more likely to be discarded. Similarly, in [18], cache

replace-ment is driven by several factors, including access

probability, update frequency, and retrieval delay.

2.4. Data Replication

 Although addressing a different problem, some

approaches to data replication are relevant to the data

caching solution that we propose. One technique of

eliminating information replicas among neighboring nodes

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3843 | Page

is introduced in [21], which, unlike Hamlet, requires

knowledge of the information access

frequency and periodic transmission of control messages to

coordinate the nodes’ caching decisions. In [5], the authors

propose a replication scheme that aims at having every

node close to a copy of the information and analyze its

convergence time.

III. System Outline And Assumptions

 Hamlet is a fully distributed caching strategy for

wireless ad hoc networks whose nodes exchange

information items in a peer-to-peer fashion. In particular,

we address a mobile ad hoc network whose nodes may be

resource-constrained devices, pedestrian users, or vehicles

on city roads. Each node runs an application to request and,

possibly, cache desired information items. Nodes in the

network retrieve information items from other users that

temporarily cache (part of) the requested items or from one

or more gateway nodes, which can store content or quickly

fetch it from the Internet. We assume a content distribution

system where the following assumptions hold: 1) A number

I of information items is available to the users, with each

item divided into a number C of chunks; 2) user nodes can

overhear queries for content and relative responses within

their radio proximity by exploiting the broadcast nature of

the wireless medium; and 3) user nodes can estimate their

distance in hops from the query source and the responding

node due to a hop-count field in the messages.

1

Fig: 1. Flow Charts of the processing of a) query and b)

information messages at user nodes

Although Hamlet can work with any system that satisfies

theafore mentioned three generic assumptions, for

concreteness ,we detail the features of the specific content

retrieval system that we will consider in the remainder of

this paper. The reference system that we assume allows

user applica-tions to request an information item i (1 ≤ i ≤ I)

that is notin their cache. Upon a request generation, the

node broadcasts a query message for the C chunks of the

information item. Queries for still missing chunks are

periodically issued until either the information item is fully

retrieved or a timeout expires. If a node receives a fresh

query that contains a request for information i’s chunks and

it caches a copy of one or more of the requested chunks, it

sends them back to the requesting node through information

messages. If the node does not cache (all of) the requested

chunks, it can rebroadcast a query for the missing chunks,

thus acting as a forwarder. Once created, an information

message is sent back to the query source. To avoid a

proliferation of information copies along the path, the only

node that is entitled to cache a new copy of the information

is the node that issued the query. Information messages are

transmitted back to the source of the request in a unicast

fashion, along the same path from which the request came.

 A node that receives the requested information has

the option to cache the received content and thus become a

provider for that content to the other nodes.

IV. Simulation Scenarios And Metrics

 We tested the performance of Hamlet through ns2

simulations under the following three different wireless

scenarios:

1) a network of vehicles that travel in a city section

(referred to as City); 2) a network of portable devices

carried by customers who walk in a mall (Mall); and 3) a

network of densely and randomly deployed nodes with

memory limitations (memory constrained nodes). The three

scenarios are characterized by different levels of node

mobility and network connectivity.In the City scenario, as

depicted in Fig. 4, vehicle movement is modeled by the

intelligent driver model with intersection management

(IDM-IM), which takes into account car-to-car interactions

and stop signs or traffic lights [27]. We simulated a rather

sparse traffic, with an average vehicle density of 15 veh/km

over a neighborhood of 6.25 km2. The mobility model

settings, forcing vehicles to stop and queue at intersections,

led to an average vehicle speed of about 7 m/s (i.e.,25

km/h). We set the radio range to 100 m in the vehicular

scenario, and by analyzing the network topology during the

simulations, we observed an average link duration of 24.7 s

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3844 | Page

and a mean of 45 disconnected node clusters concurrently

present over the road topology. The City scenario is thus

characterized by scattered connectivity and high node

mobility. The Mall scenario is represented in Fig. 4 as a

large L-shaped open space of 400 m of length on the long

side, where pedestrian users can freely walk. In this

scenario, we record an average of 128 users who walk at an

average speed of 0.5 m/s according to the random-direction

mobility model with reflections [28]. The node radio range

is set to 25 m, leading to an average link duration equal to

43 s, with a mean of ten disconnected clusters of users

present at the same time in the network. The connectivity

level in the Mall is thus significantly higher than in the

City, whereas node mobility is much lower.The memory-

constrained scenario is similar to the scenario employed for

the performance evaluation of the cache The information-

sharing application lies on top of a User Datagram Protocol

(UDP)-like transport protocol, whereas,

 at the media access control (MAC) layer, the IEEE

802.11 standard in the promiscuous mode is employed. No

routing algorithm is implemented: queries use a MAC-layer

broadcast transmission, and information messages find their

way back to the requesting node following a unicast path.

Information messages exploit the request to send/clear to

send (RTS/CTS) mechanism and MAC-level

retransmissions, whereas query messages of broadcast

nature do not use RTS/CTS and are never retransmitted.

The channel operates at 11 Mb/s, and signal propagation is

reproduced by a two-ray ground model. Simulations were

run for 10 000 s.

 In the aforementioned scenarios, our performance

evaluation hinges upon the following quite-comprehensive

set of metrics that are aimed at highlighting the benefits of

using Hamlet in a distributed scenario:

1) The ratio between solved and generated queries, called

solved-queries ratio;

2) The communication overhead;

3) The time needed to solve a query;

4) The cache occupancy.

V. Evaluation With Large-Sized Caches

 Here, we evaluate the performance of Hamlet in a

network of nodes with large storage capabilities, i.e., with

caches that can store up to 50% of all information items.

Because such characteristics are most likely found in

vehicular communication devices, tablets, or smartphones,

the network environments under study are the City and

Mall scenarios. As discussed in Section IV, in this case, the

Hamlet framework is employed to compute the caching

time for information chunks retrieved by nodes, with the

goal of improving the content distribution in the network

while keeping the resource consumption low. We first

compare Hamlet’s performance to the results obtained with

a deterministic caching strategy, called DetCache, which

simply drops cached chunks after a fixed amount of time.

 Then, we demonstrate the effectiveness of Hamlet

in the specific task of information survival. In all tests, we

assume I = 10 items, each comprising C = 30 chunks. All

items have identical popularity, i.e., all items are requested

with the same rate λ = Λ/I by all network nodes. The choice

of equal request rates derives from the observation that, in

the presence of nodes with a large-sized memory, caching

an information item does not imply discarding another

information item; thus, the caching dynamics of the

different items are independent of each other and only

depend on the absolute value of the query rate. It follows

that considering a larger set of items would not change the

results but only lead to more time-consuming simulations.

 Each query includes 20 B plus 1 B for each chunk

request, whereas information messages include a 20-B

header and carry a 1024-B information chunk. The

maximum caching time MC is set to 100 s, unless otherwise

specified. Queries for chunks that are still missing are

periodically issued every 5 s until either the information is

fully retrieved or a timeout that is set to 25 s expires.

5.1 Benchmarking Hamlet

 We set the deterministic caching time in DetCache

to 40 s, and we couple DetCache and Hamlet with both the

mitigated flooding and Eureka techniques for query

propagation. We are interested in the following two

fundamental metrics: 1) the ratio of queries that were

successfully solved by the system and 2) the amount of

query traffic that was generated. The latter metric, in

particular, provides an indication of the system

effectiveness in preserving locally rich information content:

if queries hit upon the sought information in one or two

hops, then the query traffic is obviously low. However,

whether such a wealth of information is the result of a

resource-inefficient cache-all-you-see strategy or a sensible

cooperative strategy, e.g., the approach fostered by Hamlet,

remains to be seen. Thus, additional metrics that are related

to cache occupancy Fig: 5.1 Mall: Solved –queries ratio

(top) and query traffic (bottom) with different schemes

versus content request rate.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3845 | Page

5.2 Information Survival

Fig5.3 Mall: Information survival for different

 gateway switch-off times. The smaller numbers on

the x- axis indicate the landmark time (in seconds) to which

the number of survived items refers.(computed from the

start of the simulation). Clearly, the laterthe gateways are

shut down, the higher the probability of information

survival, because the information has more time to spread

through the network. We observe that Hamlet can maintain

information presence equal to 100% if the information is

given enough time to spread, i.e., gateways are disabled

after 600 s or more, whereas DetCache loses half the items

within the first 2000 s of simulation. We could wonder

whether caching times give the edge to either Hamlet or

DetCache. However, the average caching time in Hamlet

ranges from 37 s to 45 s, depending on the gateway switch-

off times and on the specific information item considered.

These values are very close to the DetCache caching time

of 40 s, showing that Hamlet improves information survival

by better distributing content in the network and not by

simply caching them for longer periods of time.

Fig 5.2 Information survival in the Mall (top) and

VI. Evaluation With Small-Sized Caches

 We now evaluate the performance of Hamlet in a

network where a node cache can accommodate only a small

portion of the data that can be retrieved in the network. As

an example, consider a network of low-cost robots that are

equipped with sensor devices, where maps that represent

the spatial and temporal behavior of different phenomena

may be needed by the nodes and have to be cached in the

network. We thus consider the memory-constrained

scenario introduced in Section V and employ the Hamlet

framework to define a cache replacement strategy. In such a

scenario, the caching dynamics of the different information

items become strongly intertwined. Indeed, caching an item

often implies discarding different previously stored content,

and as a consequence, the availability of one item in the

proximity of a node may imply the absence of another item

in the same area. Thus, in our evaluation, it is important to

consider a large number of items, as well as to differentiate

among these items in terms of popularity. We consider an

overall pernode query rate Λ = 0.1 and sets of several

hundreds of items. We assume that popularity levels qi are

distributed according to the Zipf law, which has been

shown to fit popularity curves of content in different kinds

of networks [29]. When not stated otherwise, the Zipf

distribution exponent is set to 0.5. Such a value was

selected, because it is close to the values observed in the

real world [29], and the skewness that it introduces in the

City (bottom) scenarios. The temporal behavior of the

survived information and solved queries when the gateway

nodes are switched off at t = 200 s.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3846 | Page

Fig 6.1 Static memory-constrained nodes: Solved-queries

ratio and query traffic as the information set size varies,

with Hybrid Cache and Hamlet.

 popularity distribution is already sufficient to

make differences emerge between the caching schemes that

we study. In any case, we provide an analysis of the impact

of the Zipf exponent at the end of this section. We assume

that nodes can cache at most ten items, which correspond to

a percentage between 2% and 10% of the entire information

set, depending on the considered value of I. In addition, we

set C = 1 to account for the smaller size of information

items typically exchanged by memory-constrained nodes

and MC to 300 s, because the increased network

connectivity prolongs the reliability of information presence

estimation.

6.1. Benchmarking Hamlet

 Let us first focus on the memory-constrained

scenariooutlined in Section V with static nodes. Fig. 6.1

solved queries ratio and the overall query traffic versus the

information set size. We observe that Hamlet reacts better

to the growth of the number of items than HybridCache,

without incurring any

Fig. 6.2. Static memory-constrained nodes.

(a) Query-solving ratio, (b) time, and (c) average

networkwide cache occupancy for each item when

usingHybridCache and Hamlet, with I = 300. In (c), the red

horizontal line represents perfect fairness in cache

occupancy among different items.

penalty in terms of network load, as shown by the similar

query traffic generated by the two schemes.

Observing the performance of Hamlet and HybridCache on

a per-item basis allows a deeper understanding of the

results.

 In Fig. 6.2 (a), we show the solving ratio of the

queries for each item when I = 300. Along the x-axis, items

are ordered in decreasing order of popularity, with item 1

representing the most sought-after information and item

300 the least requested information. Unlike Hamlet,

HybridCache yields extremely skewed query solving ratios

for the different content; a similar observation also applies

to the time needed to solve queries,

Fig. 6.3. Memory-constrained mobile nodes: Query-solving

ratio for eachinformation item when using HybridCache

and Hamlet, with I = 300. Theplots refer to vm that is equal

to 1 m/s (left) and 15 m/s (right).

 We now compare the performance of HybridCache

and Hamlet in the scenario with memory-constrained

mobile nodes. We test the two schemes when I = 300 and

for an average node speed vm equal to 1 and 15 m/s.

 The solved-queries ratio recorded with

HybridCache and Hamlet on a per-item basis are shown in

Fig. 13. Comparing the left and right plots, we note that the

node mobility, even at high speed, does not seem to

significantly affect the results due to the high network

connectivity level. The spatial redistribution of content

induced by node movements negatively affects the accuracy

of Hamlet’s estimation process, which explains the slight

reduction in the solved query ratio at 15 m/s. That same

movement favors HybridCache, at least at low speed,

because it allows unpopular information to reach areas that

are far from the gateway. However, the difference between

the two schemes is evident, with Hamlet solving an average

of 20% requests more than HybridCache, when nodes move

at 15 m/s. even if it represents two thirds of the whole

information set.

 Instead, Hamlet achieves, in a completely

distributed manner, a balanced networkwide utilization of

node caches. Indeed, the results of Hamlet are very close to

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3847 | Page

the most even cache occupancy that we can have,

represented by the horizontal red line in the plot and

corresponding to the case where the total network storage

capacity is equally shared among the I items

VII. Results

Fig 1. Out Put Screen for Data Caching in Mobile nodes

Fig 2. Screen For Using Java Technology

Fig 3. Mobile nodes in wireless adhoc-networks

Fig 4. Screen from Source Host to Destination Host

Fig 5. Screen for Data Caching between Hosts 2, 3, 9

Fig 6. Using Java package function for each caching node

possition

Fig 7. Screen for No More Sub Hosts for caching the data

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3848 | Page

VIII. Conclusion

 We have introduced Hamlet, which is a caching

strategy for adhoc networks whose nodes exchange

information items in a peer-to-peer fashion. Hamlet is a

fully distributed scheme where each node, upon receiving a

requested information, determines the cache drop time of

the information or which con-tent to replace to make room

for the newly arrived information. These decisions are

made depending on the perceived “presence” of the content

in the node’s proximity, whose estimation does not cause

any additional overhead to the information sharing system.

Data caching strategy for ad hoc networks whose nodes

exchange information items in a peer-to-peer fashion. Data

caching is a fully distributed scheme where each node, upon

receiving requested information, determines the cache drop

time of the information or which content to replace for the

newly arrived information. We have developed a paradigm

of data caching techniques to support effective data access

in ad hoc networks. In particular, we have considered

memory capacity constraint of the network nodes. We have

developed efficient data caching algorithms to determine

near optimal cache placements to maximize reduction in

overall access cost. Reduction in access cost leads to

communication cost savings and hence, better bandwidth

usage and energy savings.

 However, our simulations over a wide range of

network and application parameters show that the

performance of the caching algorithms. Presents a

distributed implementation based on an approximation

algorithm for the problem of cache placement of multiple

data items under memory constraint.The result is the

creation of content diversity within the nodes neighborhood

so that a requesting user likely finds the desired information

nearby. We simulate our caching algorithms in different ad

hoc network scenarios and compare them with other

caching schemes, showing that our solution succeeds in

creating the desired content diversity, thus leading to a

resource-efficient information access. We showed that, due

to Hamlet’s caching of information that is not held by

nearby nodes, the solving prob-ability of information

queries is increased, the overhead trafficis reduced with

respect to benchmark caching strategies, and this result is

consistent in vehicular, pedestrian, and memory-constrained

scenarios. Conceivably, this paper can be extended in the

future by addressing content replication and consistency.

 The procedure for information presence estimation

that was developed in Hamlet can be used to select which

content should be replicated and at which node (even if

such a node did not request the content in the first place). In

addition, Hamlet can be coupled with solutions that can

maintain consistency among copies of the same information

item cached at different network.

References

[1] J. Wortham (2009, Sep.). Customers Angered as

iPhones Overload AT&T. The New York Times.

[Online]. Available: http://www.nytimes.

com/2009/09/03/technology/companies/03att.html

[2] A. Lindgren and P. Hui, “The quest for a killer app

for opportunistic and delay-tolerant networks,” in

Proc. ACM CHANTS, 2009, pp. 59–66.

[3] P. Padmanabhan, L. Gruenwald, A. Vallur, and M.

Atiquzzaman, “A sur- vey of data replication

techniques for mobile ad hoc network

databases,”VLDB J., vol. 17, no. 5, pp. 1143–1164,

Aug. 2008.

[4] A. Derhab and N. Badache, “Data replication

protocols for mobile ad hoc networks: A survey

and taxonomy,” IEEE Commun. Surveys Tuts., vol.

11 no. 2, pp. 33–51, Second Quarter, 2009.

[5] B.-J. Ko and D. Rubenstein, “Distributed self-

stabilizing placement of replicated resources in

emerging networks,” IEEE/ACM Trans. Netw., vol.

13, no. 3, pp. 476–487, Jun. 2005.

[6] G. Cao, L. Yin, and C. R. Das, “Cooperative cache-

based access in ad hoc networks,” Computer, vol.

37, no. 2, pp. 32–39, Feb. 2004.

[7] C.-Y. Chow, H. V. Leong, and A. T. S. Chan,

“GroCoca: Group-based peer-to-peer cooperative

caching in mobile environment,” IEEE J. Sel.

Areas Commun., vol. 25, no. 1, pp. 179–191, Jan.

2007.

[8] T. Hara, “Cooperative caching by mobile clients in

push-based informa- tion systems,” in Proc.

CIKM, 2002, pp. 186–193.

[9] L. Yin and G. Cao, “Supporting cooperative caching

in ad hoc networks,” IEEE Trans. Mobile

Comput., vol. 5, no. 1, pp. 77–89, Jan. 2006.

[10] N. Dimokas, D. Katsaros, and Y. Manolopoulos,

“Cooperative caching in wireless multimedia

sensor networks,” ACM Mobile Netw. Appl., vol.

13, no. 3/4, pp. 337–356, Aug. 2008.

[11] Y. Du, S. K. S. Gupta, and G. Varsamopoulos,

“Improving on-demand data access efficiency in

MANETs with cooperative caching,” Ad Hoc

Netw.,vol. 7, no. 3, pp. 579–598, May 2009.

[12] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A

popularity-aware content sharing scheme in

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3841-3849 ISSN: 2249-6645

www.ijmer.com 3849 | Page

VANETs,” in Proc. IEEE Int. Conf. Distrib. Comput.

Syst., Los Alamitos, CA, 2009, pp. 223–230.

[13] W. Li, E. Chan, and D. Chen, “Energy-efficient

cache replacement policies for cooperative caching

in mobile ad hoc network,” in Proc. IEEE WCNC,

Kowloon, Hong Kong, Mar. 2007, pp. 3347–3352.

AUTHORS LIST

Tulasi Rami Reddy Yeddula (M.Tech)

Received his Master’s Degree in CSE in

MKU University, Madurai and Pursuing Masters of

Technology in Computer Science & Engineering in Kottam

College of Engineering, Kurnool, affiliated to JNTU

Anantapur. His research areas of interest are Computer

Networks and Data Mining.

K.GOPINATH M.Tech (Ph.D), Completed

his B.Tech ,Computer Science in (JNTU,

Anantapur) 1999 and M.tech, Computer

Science (JNTU, Hyd) 2002 .Presently Pursuing Ph.D in

Data Mining JNTUniversity, Hyderabad . His area of intrest

are Computer Networks and Data Mining.

