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ABSTRACT: If  A is a  con  s – EP   matrix, then  the weighted  generalized  inverse  of A ( with respect  to  the given  

matrices M,N)  is a  matrix  which  satisfies  A A = A,  A   =   and  that   MA  and  that    are  

symmetric   under   certain   conditions  on   M,N.  

 It  is   shown  that  the weighted   generalized  inverse  exists  if   and  only  if   A N , in which case 

the  inverse  is   . When  M.N are  identity  matrices, this reduces  to the  well known  result  that  the weighted  

generalized  inverse  of  a con-s-k-EP  matrix  when  it exists, must be   . 
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I. Introduction 

  Let    be  the  space   of  nxn  complex   matrices  of  order n. let    be  the space  of  all  complex  n  

tuples. For   A    

Let  , ,   , , , R(A), N(A)  and    denote   the conjugate, transpose, conjugate  transpose, 

secondary  transpose ,  conjugate  secondary  transpose, Moore Penrose  inverse  range  space,  null  space  and  rank  of  A  

respectively.  A solution X of the equation   AXA = A   is called generalized inverse of A and is denoted by   . If  A    

  then  the unique solution  of the  equations  A XA =A ,  XAX = X  = AX ,   is  called  

the  Moore-Penrose inverse  of  A  and  is  denoted  by  . A matrix A is called   con s – if  A r   and 

N(A) = N( VK) (or) R(A)=R(KV ). Throughout  this  paper  let “  be  the  fixed  product  of  disjoint  transposition  

in  = { 1,2,….n} and  k be the  associated  permutation  matrix . 

 Let us define the function k (x)=
      1 2

, ,...,
k k k n

x x x  

 A matrix A = (     is  s - k -  symmetric if  

=  for i.j = 1,2,…..n . A matrix   A    is said to be   

Con –s-k- EP   if it satisfies the condition  

 = 0     = 0 or equivalently N(A) =N( VK). In  addition  to that  A is  con-s-k-EP    

is con-EP or AVK is  con-EP and A is     con-s-k-EP  is con-s-k-EPr  moreover A is said  to be con-s-k-EPr if  A 

is con-s-k-EP and of  rank r. For further properties of con-s-k-EP matrices one may refer [1]. 

 

Definition 1.1 

Let A, M, N   . The weighted Moore – Penrose inverse of A (with respect to M, N   denoted by ) is 

defined to be nxn   matrix   satisfying 

(i) A A = A 

(ii)      A  =  

(iii)  = MA  

(iv)  = AN 

Con S – Ep Matrices and Its Weighted Generalized 

Inverse 
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In case  M,N are  identity  matrices  then the  matrix   satisfying (i) – (iv) is simply  the Moore  Penrose  inverse ( 

denoted  by  ) of A  

 

Theorem 1.2 

Let A be an nxn con-s-k-EP matrix. Then the following assertions are equivalent: 

(i) The Moore - Penrose  inverse  of  A  exists 

(ii) The Moore - Penrose inverse of A   exists and equals . 

(iii) A          

(iv)  A A A 

(v) Any   two  rows  of  A  are either  identical or disjoint ( ie, there is  no column with a in both the  rows) 

(vi) Any two columns of are either identical or disjoint. 

(vii) The number of ones in any 2x2 sub matrix of A is not 3. 

(viii) Any 2x2 submatrix of A admits a Moore Penrose inverse. 

(ix) There  exist  permutation  matrix  P.Q such  that  

 

            0          0 0   

   0        0 0 

                                       

   0  0           0 

   0  0              0        0 

 

 

 

 

 

 

Where    ………  are matrices (not necessarily square) of all ones. 

(x) There exists  permutation  matrices   Such that  

 

   

                Where C, D satisfy  

(xi)  The  main  purpose  of  the  present  paper  is to  generalize  some aspects of  theorem 1.2 to the  weighted  case.  

The proof techniques are new and may be used to obtain results for matrices over more general structures. Thus 

most of our statements are valid for matrices over a   distributive lattice. Whereas some require the structure of a 

completely ordered   set. Such generalizations will be clear from the proofs. However, we have chosen to present 

the results only in the setting of  con-s-k-EP  matrices. In the next  section  we  consider  the question  of the 

existence  of a weighted  Moore – Penrose  inverse  and give a formula for it  when it exists 

 

II. The   Main  Result 

we begin  by showing  that  under  some  conditions on  M,N the inverse   . when  it  exits  is  unique , we denote  

the row  space of the matrix A by  R(A), and  the column  space by   R(A) . 

 

 THEOREM 2.1 

Let  A   be a  con-s-k-EP  matrix  of  order  nxn and  M,N  be matrices  order  nxn. R (KV = R(MA), R(KV ) =  

R(AN). There  exist  matrices  x,y suchthat XMA =A,  ANY =A. Then  

(a) A  = A N , A = MA 

(b)   M,N  is  unique. 

 Proof :   

(a) Let  =   exists  then 
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A  =  A (    ( since  A A = ) 

          =  A AN      (since   

   = AN ( since  A A = A) 

The  proof  of the remaining   part of    

(a) Is similar  to the above 

(b)  Let , if possible    ,  be  two candidates   for    then 

AN =    AN ( since  A = A  

            = AN   ( since  = AN  is  symmetric) 

             = A  ( using   (a)) 

             =  ( since  AN is symmetric) 

              =    ( since  A  

             =  AN  (since AN   is symmetric). 

Thus  ANY  =  AN Y  and  hence A = A ( since  ANY =A) . it  follows 

  A    = A     and  therefore 

 =                                  (1) 

Now  

MA  =  M A A   (since   A = A A) 

         =   (since MA  is  symmetric) 

             =       ( using (a) ) 

             =   (since MA is symmetric) 

              =           ( since  A A =A) 

              = M A           ( since  MA   is symmetric) 

It  follows  that  X M A  = X M A    and  hence   

A   = A   ( since  XMA =A) 

Therefore    A   =     and  thus 

    A   =   

     It  follows  from (1) (2)  that    =     and  the proof  is complete. 

 

Example  

A =          =   

Take   M=I  and  N  to be  the  2x2 zero  matrix. Then  it can  be  verified  that  both      satisfy  all  conditions in  

definition 1  and  therefore  the weighted  generalized  inverse  is  not  unique  in  this  example observe  that  here  the 
condition of theorem 2.1 is  not  satisfied   

The  next  result  will  be  used  in    the  sequence   

Lemma 1:  

Let   A  be   an   nxn  matrix . then  A  KVA  
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Proof : 

Let  B =  KVA AVK   we must  show that    for all  i, j   this is = KV [   ] 

VK        (3) 

If  we  set   = j , =I  then    =   = . It  follows   from (3) that  =1 and  the  proof complete . 

The following  is the main  result  of this  section. 

 

Theorem 2.2 

(a) R(KV ) = R(MA), R(KV ) = R(AN) 

(b) M I , N  I 

 Then  the  following  assertations are  equivalent: 

(i)   exists 

(ii) Any  one of the  following  holds  

(1) AN MA = A                                  (2) A MA = A 

(3) AN A = A                                (4) A A =A 

And  thus  =  

(iii) Any  two  rows  of A are  either  identical  or disjoint, and  AN =A  

(iv) Any  two columns  of A are either  identical  or disjoint  and  AN =A  

MA  = A. 

Proof: 

(i)  

Suppose    =  exists  since  the number   of  con –s –  - EP  matrices  of  a given  order  is finite  there 

exists  integers  k  I  , s   such that 

 =                       (4) 

Without   loss  we can assume s  1 for if s=1 then (4) clearly holds  for  S=2 as well  as  now  left  multiplying  

equation  (4) by   and then  using  the  fact AN  is symmetric, we get  

  =  

Left   multiply the above equation  by  and then  use  AGA =A, ANY=A to get  = 

. 

Left  multiply   the above  equation  by  and then  use  the facts  that  MA   is  symmetric  and  the  A   

to get  

M(  = M( . Finally left multiply the above  equation  by  x and  use  XMA=A  to 

get 

(  = ( . Continuing this  way we may assume  k=1, without  less of  generality  

and therefore   

AN  = (  

Starting  with   the above  equation, we get  the following  chain  of implications: 

 AN  

  =  (  

=   

 =  (  

 =  
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=   

  AN  

And  therefore 

A= (                                               (5) 

By Lemma 1. 

A A , and  so  since  M  I,  N I   we have 

A  A MA                                             (6) 

And  hence  post multiplying  by   MA  we get 

   A MA    (  A  (7) 

Repeated  post  multiplication of (7) by  MA  gives 

A  A MA      (  A 

( A …….. (  A = A 

Where the equality follows in view of (5) 

           (8)  

Where  the last  three  equalities  follow  in view  of Theorem 2.1(a) now we show   =  =  We have  

shown  

 , but    = =  ( in view of (8)) and  

MAG = MA  

          = MANA  (Using  Theorem 2.1 (a)) 

          = ( = (  

So    is symmetric  showing   symmetric  is similar .  

so  =  

(ii)  (i) let AN MA =A. By Lemma  1 

A  A  as  M  I , N  we have   

A A  AN A  AN MA =A  thus 

= A =A = AN A                                                  (9) 

The second part of the above  equation  gives  

A A  

         = AN  (using the first  part of (9)) 

          = A  (since  A   is symmetric) 

Similarly  it can be  shown  that   MA = A =  

Now using these  facts equation  (9) and the assumption  one can  easily  see that    =  

(ii)  without   loss we take  AN MA =A 

Suppose  two  rows  of  A, say  the  i th and jth are not  disjoint. Then there  exists    such that   =  =1 . now  if  

=1  for  some r, then  we have  

 = 1  

and  hence  =1 . thus  the  ith  row  of  A is  entry wise  dominated  by the  jth  row. Similarly  we  can  shown  that the    

j th  row  of A  is  entry wise  dominated  by the  ith  row  and  hence  the  two  rows  must  be  identical. 

 The  proof  of  the  remaining  part  is  essentially  contained  in the  proof of  (ii)  (i) 

(iii)  (ii) : let B = A   and  suppose   =1. So there  exists    such that 
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 = a  =a j =1 

Now  observe  that  the   the  column of A is  nonzero . so by  hypothesis  we  have that  the   ith  row  of A  is equal  to the  

 the  row  of  A. but  we  also  have   

So , =1  and  therefore  A   A. it follows by lemma 1  that  A = A A. 

It  follows  by lemma 1 that  A = A . Since AN = A , MA = A.  

Then  AN MA =A A = A 

and  (ii)  is proved. The equivalence  of (iv) and (ii)  is proved  similarly that  completes  the proof  of the theorem. 

 An  examination  of the  proof  of theorem 2.2 reveals that  condition  (b) may  be replaced by  the  weaker   

condition  AN MA  A. 

We  now  provide  a proof of theorem 1.1 

Proof  of   the  1.1 . the  equivalence  of  (i) – (iv) of  the  theorem  essentially  follows  from  theorem 2.2  by  setting  

M=N=I. the equivalence  of (v) and (vii) is  easy  to prove  and  so is  the equivalence  of  (vii) and (viii). The implication 

(v)  (ix) and (ix)  (iii) are  easy  to prove  thus  we have  shown  that  assertations (i) –(ix) are  equivalent.  

It is  easy  to see  that  assertions  (i) –(ix) are  equivalent. 

It is easy  to see  that  (ix)  (x). if (x) holds  then  it can be verified  that  is the  Moore  Penrose  inverses  of A  and  

this (i) holds that completes the proof 

We  remark  that  all  the   assertions  in  theorem  1.1 except (vii) .(viii) are  essentially  contained  in the  literatures. See 

[2,4,5] however, we  have  given  proofs  for  completes the  proof. 

 As  shown  in theorem 1.1 if A admits  a Moore Penrose  inverse, then it must  be   some  times it  happens  that 

the  weighted  Moore Penrose inverse  =  the trivial case being M = N = I. So the obvious question is whether we 

can precisely point out the cases when  = To answer this question we  need the following  result. 

Theorem 2.3: 

Let  A,M,N  be  as in  Theorem  2.2  then  the  following   are equivalent  

(i)   exists 

(ii) There  exists permutation  matrices  P and A such that  

 

        0    0 0 

    0     0        0 

  = PAQ =       

    0 0        0 

       0 0 0 0 

 

 

 =               

                   

       

 

A  conformed  partition  and  then using (10) we see  that all  the blocks  = 0 

I  i, j  k , i j  and  that    0, l  i k. We have a similar conclusion regarding    . 

It is easy to see that    is the weighted Moore – Penrose inverse of   with respect   to   ,  . But  

= ( ( ) (P  =  

       =  

Now  carrying  out the block  multiplication  in  the  equation  = . We    See that     is  of the  form gives 

in the statement 
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Now   by  (ii), the proof of  (i)  (ii) is complete. 

Conversely, suppose  (ii) holds  defining   as in  the  statement of  the theorem, it  is  easy  to  check  that     = .  

Since . 

We  have    =  . 

This  implies  PA AQ  = PAQ. 

Therefore  A A = A and thus   by theroem 2.2. 

As a simple  corollary  we state  the following  result  without  proof. 

 

Corollary 1: 

Let  A,M,N be as  in theorem 2.2 then   =  if  and only if  condition  (ii) of theorem 2.3  is  satisfied  with the  

additional  proviso  that   and are  block  diagonal  . 

We also   have the following 

  

Corollary 2:  

Let  A,M,N  be as in  Theorem 2.2  and further  suppose  A has  no zero  row or  zero  column  then  if     exists   it 

equals  . 

 

Proof :  

Observe  that   has  no diagonal zero  block. Hence by Theorem 2.3 , are block diagonal  furthermore  that   

Exists implics  that   exists . the  result   now  follows  by  corollary 1.we  conclude  with an example which  

shows  that  the  condition  that  A has  no  zero row  or column is necessary in corollary 2. 

 

Example: 

Let  A =                 N =       M = I 

Then  AN MA = A  but N =   

We   sincerely  thank  the  referee  for  a  careful  reading  of the  manuscript  and  for suggesting  theorem 2.3 . 
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