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ABSTRACT: In this work the stiffness equations for
evaluating the internal stress of rigidly fixed portal frames
by the displacement method were generated. But obtaining
the equations for the internal stresses required non-scalar
or parametric inversion of the structure stiffness matrix. To
circumvent this problem, the flexibility method was used
taking advantage of the symmetrical nature of the portal
frame and the method of virtual work. These were used to
obtain the internal stresses on rigidly fixed portal frames
for different cases of external loads when axial deformation
is considered. A dimensionless constant s was used to
capture the effect of axial deformation in the equations.
When it is set to zero, the effect of axial deformation is
ignored and the equations become the same as what can be
obtained in any structural engineering textbook. These
equations were used to investigate the contribution of axial
deformation to the calculated internal stresses and how
they vary with the ratio of the flexural rigidity of the beam
and columns and the height to length ratio of the loaded
portal frames.
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I. INTRODUCTION

Structural frames are primarily responsible for
strength and rigidity of buildings. For simpler single storey
structures like warehouses, garages etc portal frames are
usually adequate. It is estimated that about 50% of the hot-
rolled constructional steel used in the UK is fabricated into
single-storey buildings (Graham and Alan, 2007). This
shows the increasing importance of this fundamental
structural assemblage. The analysis of portal frames are
usually done with predetermined equations obtained from
structural engineering textbooks or design manuals. The
equations in these texts were derived with an underlying
assumption that deformation of structures due to axial
forces is negligible giving rise to the need to undertake this
study. The twenty first century has seen an astronomical use
of computers in the analysis of structures (Samuelsson and
Zienkiewi, 2006) but this has not completely eliminated the
use of manual calculations form simple structures and for
easy cross-checking of computer output (Hibbeler, 2006).
Hence the need for the development of equations that
capture the contribution of axial deformation in portal
frames for different loading conditions.

Il. DEVELOPMENT OF THE MODEL
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Figure 1: A simple portal frame showing its dimensions and

the 6 degrees of freedom

The analysis of portal frames by the stiffness method
requires the determination of the structure’s degrees of
freedom and the development of the structure’s stiffness
matrix. For the structure shown in Figure 1a, the degrees of
freedom are as shown in Figure 1b. I, and A; are
respectively the second moment of inertia and cross-
sectional area of the columns while I, and A, are the second
moment of inertia and cross-sectional area of the beam
respectively. The stiffness coefficients for the various
degrees of freedom considering shear deformation can be
obtained from equations developed in Ghali et al (1985)
and Okonkwo (2012) and are presented below

The structure’s stiffness matrix can be written as:

[kn ki kiz kis kis kls]
|k21 kyy ko3 kas kys  koe I
k31 ksp ksz ks kss  ksg

K = . 1
ke ko kas Kas das Kol W)
lk“ ksy ksy kse ks k56J
ko1 kez kes kea Kes  Kee

Where k;; is the force in coordinate (degree of freedom) i
when there is a unit displacement in coordinate (degree of
freedom) j. They are as follows:

EA;
ki =—
11 N

ki =0
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__6EDL
k13 - 12
12ELL
k14 - n3
k15 = 0
6EI,
kie = z
_12El; | EAp
kzz —_ h3 + 1
_6EL
k23 - h2
kyy =0
EA,
kys = - : )
kye =0
4El, = 4EL
kiyz =—+—
33 [ 3
6El,
koo ="
k35 = 0
2El,
k3e = e
12El, . EA
kay = L4
13 h
kys =0
_ 6EhL
kae ="
12El; |, EAy
kee = —=
55 h3 + i

From Maxwell’s Reciprocal theorem and Betti’s Law kjj =
kii ( Leet and Uang, 2002).

When there are external loads on the structure on the
structure there is need to calculate the forces in the
restrained structure F, as a result of the external load.

The structure’s equilibrium equations are then written as
{F} = {F}+[K]{D}. .. : @)

(10
| k2o |

Ey=10r @

Where ki, is the force due to external load in coordinate i
when the other degrees of freedom are restrained.

WWW.ijmer.com

Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255

ISSN: 2249-6645

w}:{ﬁ}. : : N ()

g}:{?}. o . .. (6)

Where F; is the external load with a direction coinciding
with the coordinate i (McGuire et al, 2000).

By making {D} the subject of the formula in equation (3)

Dy =[KI"'F-E} . . . . ()

Once {D} is obtained the internal stresses in the frame can
be easily obtained by writing the structure’s compatibility
equations given as

M=MT+M1d1+M2d2+M3d3 . . (8)

Where M is the internal stress (bending moment) at any
point on the frame, M; is the internal stress at the point
under consideration in the restrained structure while Mi is
the internal stress at the point when there is a unit
displacement in coordinate i.

To solve equation (8) there is need to obtain {D}. {D} can
be obtained from the inversion of [K] in equation (7).
Finding the inverse of K parametrically (i.e. without
substituting the numerical values of E, h, | etc) is a difficult
task. This problem is circumvented by using the flexibility
method to solve the same problem, taking advantage of the
symmetrical nature of the structure and the principle of
virtual work.

111.APPLICATION OF THE FLEXIBILITY

MODEL
The basic system or primary structure for the structure in
Figure 1a is given in Figure 2. The removed redundant
force is depicted with X;.

X
Xz l :
——") Xs x| =——
X2

Figure 2: The Basic System showing the removed
redundant forces
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The flexibility matrix of the structure can be determined
using the principle of virtual work.
By applying the unit load theorem the deflection in beams
or frames can be determined for the combined action of the
internal stresses, bending moment and axial forces with

M NN
D—f?ds+fads. . . 9
Where M and N are the virtual internal stresses while M
and N are the real/actual internal stresses.

E is the modulus of elasticity of the structural material

A is the cross-sectional area of the element (McGuire et al,
2000; Nash, 1998)

If d; is the deformation in the direction of i due to a unit
load at j then by evaluating equation (9) the following are
obtained:

_ LGA1P+6LA11%h+1211 1k

dyy = 12E11 I Ay (10a)

d13 = 0 (100)
_ 2420343111

dyy = =5 (10d)

_h2

dy; = o (10e)
_ L +2hIy

dyy = 2 (10f)

From Maxwell’s Reciprocal theorem and Betti’s Law djj =
dji.

The structure’s compatibility equations can be written thus

di1 dyn din (X dyo
dyi dy dyp|§Xo(+3d2(=0 . (11a)
d3; d3 dil\X3 dsg
ie. fF+d, =0, (11b)

Where F is the vector of redundant forces X;, X,, X5 and d,
is the vector deformation d;g, dyg, d3o due to external load
on the basic system (Jenkins, 1990).
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1 12El1 1 A1 (15&)

dq1 - 11A1l3 +612A1l2h+24-1112h

ds33 _ 3EL Ay (lI1+2h1p) (15b)
dpdaz—d3;  242h3U1+31F 12443 h4 L +6hll 1,

dso _ —3EII,GAyh? (15¢)
dzzdgg—d%g 2A2h3”1+311212+A2h412+6h”112

doy _ Elil (24203 +3111) (15d)

dppd33 —d%g - 2A2h3”1 +311212+A2h412+6h”112

Equation (12) is evaluated to get the redundant forces and
these are substituted into the structures force equilibrium

(superposition) equations to obtain the internal stresses at
any point.

M = MO + M1X1 + M2X2 + M3X3 . . (16)

Where M is the required stress at a point, M, is the stress at
that point for the reduced structure, M is stress at that point
when the only the redundant force X; =1 acts on the reduced
structure.

For the loaded portal frame of Figure 3, the deformations of
the reduced structure due to external loads are

d10 = 0 .
(17a)
_ wh?i?
20 ™ ggn
(17b)
_ —wl?(+6hDp)
dzo = 24E1L I (17c)

By substituting the values of equations (17a) — (17c) into
equations (12)

—Az[lwhzl?’
X, = 18b
27 4242031 +3112+A2 h* [ +6h111 1) (18b)
wi2(245h311 +31212 4342 1, +18hily I
X3 — ( 2 1 1 2 2 1 2) (180)

24(24203101 +31312+A2 h* [ +6h1I 1)

Evaluating equation (16) for different points on the
structure using the force factors obtained in equations (18a)

_ £ —(18c
F=f1(=d). . . . (12) (18c)
_ 2wid1y (h34,-311)
My = 122420311 +31312 +Azh4 1, +6hil 1) | (19)
—1 _ Adjlf]
7= det [f] ' ' (13)
(Stroud, 1995) M. — —2wi31y (2h34,+311) (20)
B 24(242h3U1 +31312+A2h* I +6hIL 1)
1
[_ 0 0 }
d11
d33 —d32
-1 = 0
f d22d33—d%3 d22d33—d%3 ' (14) M. = —2W1311(2h3A2+3l[1) (21)
l —dz3 dzz J ¢ 24(242h31 +31F 12+ A2 R  +6h1I 1)
dzd3z—d3;  dpadsz—dds
] M. = —Wl3[1(8[2h3+szl311)
From equations 10a — 10f C ™ 12[4h3 1, 2L +hIp)+s213 11 (U +2h15)]
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2wid1y (h34,-311)

M, = .
D T 12(242h311 +31212 4+ A3 h4 I +6h1I1 Iy)

(22)

For the loaded portal frame of Figure 4, the deformations of
the reduced structure due to external loads are

—wl (131 A1 +8h1%1; A1 +64h1113)

dyp = 128E11 1, Aq ' (232)
wh2i?
dyg = T . . (23b)
_ —wl?(ll +6hIp)
dso = 48EN I ' : (230)

By substituting the values of equations (23a) — (23c) into
equations (12)

3wl (1311 A1 +8h1% 1 A1 +64hI1 1)

X = 24a
17 320114113 +61,A112h+24h11 1) (243)
—2WhZI3A211
X, = . (24b
2 7 16(242h310 +31312+A2 h4 I +6hll 1) (24b)
x _ wh3124;,(3hl+211)+3wi31y (11 +6R1p) (24¢)
37 48(242h31L +31212+A3h4 1 +6h1ILT,)
S
Letp =2 . . (25
s1

Evaluating equation (16) for different points on the
structure using the force factors obtained in equations (24a)
—(24c)

MA =
wl2[h34; (3hIp+8111)+3L (U +6h15)]
48(242h3111 +31212+ AR 1 +6hl1 1)

(26)

wi* A1 (5111 +24h1y)
64(I1A113+61,A112h+24h11 1)

MB =
wi*A1 (511 +24h1y)
64(I1A113+61,A112h+24h1113)
wi2[h34; (3hlp+2111)+3L (U +6h13)]

48(242h3111 +3112+ AR 1 +6hl11 1)

@7)

MC =
3wl2(13 A1 +8h1% A1 +64Rh11 I7)

T 6411 A1 B+6I A1 [2h+24h 11 13)

wl2[h34; Bhlp+2111)+3L (U +6h13)]

48(242h3111 +31212+ AR 1 +6hl1 1)

(28)

MD =
3wl2(13 A1 +8h1% A1 +64 R4 1)

T T64(11 A1 B+6I A1 [Zh+24h 11 13)

wi2[h34; (3hIp+8111)+3L (U +6hi3)]

48(242h3111 +31212+ AR 1 +6hl11 1)

(29)

For the loaded portal frame of Figure 5, the deformations of
the reduced structure due to external loads are

wl h3

le - __12E11 (30&1)
h4

oo = 55 (300)
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_ —wh3
30 ™ gy

(30c)

By substituting the values of equations (30a) — (30c) into
equations (12)

wh3 A1
Xy = ——m—t (31a)
I1A11°+61pA11“h+24h11 1)
—wh*4, 311 4+2h1y)
X, = . (3lb)

8(242h3111 +31712+A h* [ +6hlI1 1)

wh3l, (=h3
X, = h3L(—h342+1211) . (SlC)

3 7 24(242h311 4312 2+ As h4 Iy +6hIL )

Evaluating equation (16) for different points on the
structure using the force factors obtained in equations (31a)
—(31c)

MA =

wh?(11 A 13 +541 12 kI +24hE L I)
T 2(4A1B+61,A112h+24h 1 1)
wh3(9h2111 Ay +542h3 L +12111 1)
24(2A2h31 4312 12442 R4 +6hIN 1)

(32)

My =
wh3121,4¢ wh3D(-h34;+1211)
2(11 A 3 +61p A12h+24hI 1) 24(242h311 +31212+AR% 1 +6h1I 1)
(33)
MC =
wh3121,4¢ wh3l(-h34;+1211)
_2(11A113+612A112h+24h1112) 24(242h3111 +31312+A2h* I +6R1L I)
(34)
MD =
wh3121,4¢ wh3(9h2111 Ay +542h3 L +12111 1)
_2(11A113+612A112h+24h1112) 24(242h3111 +31312+A2h* I +6R1L 1)
(35)

For the loaded portal frame of Figure 6, the deformations of
the reduced structure due to external loads are

Pa?l

le = - 261 . . . (36&)

By substituting the values of equations (36a) — (36c) into
equations (12)

_ 6Pa’ll, Aq
X = iBreanliannn : (37a)
X;=0 . : : . (37b)

Evaluating equation (16) for different points on the
structure using the force factors obtained in equations (37a)
—(37¢)
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3al?L Ay
M, =—Pa(1-——2 ). (38)
A1 1°+6A1hl41p+24h11 I
3Pa%12,A4
MB = 3 2 (39)
A1 1°+6A1hl41p+24h11 I
3Pa?1%1, A4
M, = - 3 > (40)
A1111°+6A1hl41p+24h11 1
3al’1,A
My = Pa (1 - ——2 i ). @
A1 I°+6A1hl41p+24h11 1

For the loaded portal frame of Figure 7, the deformations of
the reduced structure due to external loads are

Pa?l
dyg = =75 (42a)
Pa*(3h—a)
dyo = =7 — (42b)
Pa?
dy = =5 (42¢)

By substituting the values of equations (42a) — (42c) into
equations (12)
3Pa’llAq

X, = .o . 43a
17 411346124112k 42411 I (432)

—Pa?Ay[ll; Bh—a)+hI; Bh—2a)]
2(242h3111 +31312+A; h* I +6hll1 1)

X, = (43b)

—Pa?l;(—h3 Az +ah?4,+311)
X3 = 3 2,2 4 : (43c)
2(2A2h311 +31£12+A2 R4 +6h111 1)

Evaluating equation (16) for different points on the
structure using the force factors obtained in equations (43a)
—(43c)

MA =
3Pa?1%1,A,

—Pa
+ 2(1WA113+61,A112h+24hI 1)
Pa?[Az111(3h%—ah)+Ip (24203 —a Az h%+3111)]

44
2(242h3111 +31}12+A2h* I +6hll1 1) (44)
MB =

3Pa?1%1,A4 Pa’l(~h3Az+ah?A;+311;)
201 A 13 +613A112h+24h1 1) 2(242R3111 +31312+A2h* 1, +6h1I1 1)

(45)
MC =

3Pa?l%1A¢ Pa’lp(~=h3A3+ah?A;+311;)
2011 A 13 +613A112h+24R11 1) 2(242R3111 +31312+A2 h* I +6hil1 1)

(46)

MD =

3Pa?l%1A¢

- +
2(1W A3 +61A112h+24hI1 1)
Pa?[Az111(3h%—ah)+Iy (24203 —a Ay h%+3111)]
2(242h3111 +31}12+A2h* I +6hll1 1)

(47)

WWW.ijmer.com

Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255

ISSN: 2249-6645

For the loaded portal frame of Figure 8, the deformations of
the reduced structure due to external loads are

a211A1(31—2a)+6hIy(alA1+217)

dyo = _P[ 12EL I Ay (482)
Pah?
dyo = o7 - : . (48b)
_ Pa(al;+2hlp)
dsp = TN (48c)

By substituting the values of equations (48a) — (48c) into
equations (12)

P(a?1,41(31—2a)+6hly(al A1+211)
X1=( 141 2 1 1). (492)

11A1134+61A112h+24Rh11 1,

—3Pah?lAy(1—a)

X, =
2 7 2(245h31+31212+A2h4 L +6h1IL )

(49b)

Palh34;(2aly +h1)+3U11 (al; +2h1)]
2(24,h311 +31212+A h4 I +6h1I1 )

X; = (49c)

Evaluating equation (16) for different points on the
structure using the force factors obtained in equations (49a)
—(49c)

M, = —Pa+ Plfa?11A1(31—2a)+6h1; (al Ay +211)]
2(I1A113+613A112h+24h11 1)
Paf[A;h3(=aly +hlp +3111)+3U11 (aly +2h1p)]
2(242h3111 +31212+A h* I +6h1I Ip)

(50)

y P P(a2l A1 (31-2a)+6h1z (alAg+211))
=—Pa+

B 2(11A113+61,A112h+24 11 1)
Pa[h34; 2aly +hIp)+3U11 (aly +2h1p)]

2(242h3111 +31312+A h* I +6h1I Ip)

(51)

MC =
Pl(a211A1(31-2a)+6h1y (al Ay +211) )

2(I1A113+61,A112h+24h11 1)
Pa[r34; 2aly +hIp)+3U11 (aly +2h1p)]

2(242h3111 +31312+Ah* I +6hLI 1) ©

(52)

MD =
Pl(a?l A1 (31-2a)+6h1y(al A1 +21))

2(I1A113+61,A112h+24hI 1)
Pa[Azh3(—aly +hlp +3111)+31 (al +2h1)]

2(242h3111 +31212+A h* [ +6hLI 1)

(83)

V. DISCUSSION OF RESULTS
The internal stress on the loaded frames is summarized in
table 1. The effect of axial deformation is captured by the
dimensionless constant s taken as the ratio of the end
translational stiffness to the shear stiffness of a member.

_ 12E _h

121
S = — == 54
1 R3  EA  h24; (54)
_12Ep, 1 12D
S2 =3 =2 (55)
l EAp 124

When the axial deformation in the columns is ignored
s; = 0 and likewise when axial deformation in the beam is
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ignored s, = 0. If axial deformation is ignored in the
whole structure, s; =s, = 0.

The internal stress equations enable an easy investigation
into the contribution of axial deformation to the internal
stresses of statically loaded frames for different kinds of
external loads.

For frame 1 (figure 3), the moment at A, M, is given by
equation (19). The contribution of axial deformation in the
column AM, is given by

A1WA = MA(from equation 19) — MA(from equation 19 when s=0)

_wl311[ 4R3 1 +s,131 1 ]
T 12 l4n3L,Qin +hI)+s2 3 (I +2k1y) 211 +hiy

(56)

Equation (56) gives the contribution of axial deformation to
M, as a function of h, I, 15, I, and s

By considering the case of a portal frame of length | = 5m,
h = 4m. Equation 56 was evaluated to show how the
contribution of axial deformation varied with I,/I, . The
result is shown in Table 2. When plotted on a uniform scale
(Figure 9) the relationship between AMg and I, /1, is seen
to be linear. This was further justified by a linear regression
analysis of the results in Table 2 which was fitted into the

model AM, = P1;—2+ P, to obtain P, = —0.004815 and
P, = 0.0001109 and the fitness parameters sum square of
errors (SSE), coefficient of multiple determination (R? ) and
the root mean squared error (RMSE) gave 1.099 x 107,
0.999952 and 0.0001105 respectively. From Table 2 when
L/I,=0 , AM,=0 and when I,/I,=10;AM, =
—0.0479 which represent only a 5% reduction in the
calculated bending moment.

In like manner by evaluating the axial contribution in the
beam, AMg for varying I, /I, of the portal frame, Table 3
was produced. This was plotted on a uniform scale in
Figure 10. From Figure 10 it would be observed that there
is also a linear relationship between AMg and I, /1, . When

fitted into the model AMB=P3§—1+P4 it gave P; =
2

—0.006502 and P, = —0.0003969 for the fitness
parameters sum square of errors (SSE), coefficient of
multiple determination (R? ) and the root mean squared
error (RMSE) of 6.51 x 107, 0.9999 and 0.000269
respectively.

By pegging I,/1, to a constant value of 0.296 and the
variation of AM, with respect to h/L investigated, Table 4
was generated. A detailed plot of Table 4 was presented in
Figure 11. From Table 4 when h/L = 0; AM, = —3.125
(about 30% drop in calculated bending moment value)
while at h/L > 0, AM, dropped in magnitude exponentially
to values below 1. In like manner, when the variation of
AMg with respect to h/L was investigated, Table 5 was
generated. A detailed plot of Table 5 was presented in
Figure 12. From Table 5 when h/L = 0; AM, = —4.1667
(about 40% drop in calculated bending moment value)
while at h/L > 0, AM, dropped in magnitude exponentially
to values below 1.
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V. CONCLUSION
The flexibility method was used to simplify the analysis
and a summary of the results are presented in table 1. The
equations in table 1 would enable an easy evaluation of the
internal stresses in loaded rigidly fixed portal frames
considering the effect of axial deformation.
From a detailed analysis of frame 1 (Figure 3), it was
observed that the contribution of axial deformation is
generally very small and can be neglected for reasonable
values of I;/1,. However, its contribution skyrockets at
very low values of b/l i.e. as h/l => 0. This depicts the
case of an encased single span beam and a complete
departure from portal frames under study. This analysis can
be extended to the other loaded frames (Figures 4 — 8) using
the equations in Table 1. These would enable the
determination of safe conditions for ignoring axial
deformation under different kinds of loading.
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Figure 8 Figure 7
Table 1: Internal stresses for a loaded rigid frame
<
2 2 A =
a i A= Cross-sectional area ofthe columns
1 1
Iy Iy h I = Second moment of area ofthe column cross-section
As= Cross-sectional area ofthebeam
A D
AT 277 1 Ip=Second moment of area ofthe beam cross-section
= L ]
S/No LOADED FRAME REMARKS
1
w
LYYYVYVYYYVYY penadll ¢ Y
h
= 5 Hp
A A D
AT L mo Ma Mp
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_ _ Wl311(4h312—52l311)
My =Mp = 3 3
12[4h3 1y U +hIy)+s %11 (L1 +2h 1))
M. =M. = —Wl311(812h3+52l311)
B = 0 T 120431, 2L +hIp) +s53131 (U1 +2h13)]
wl wh2i3n1,
Va=Vp = 2 Hy=H) = 4h31, 2L +h ) +s21311 (U1 +2h1y)
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S i i e Ms |\
B C ] D
h
A D Ha
T L M
== == fVA
M, = wi?[4h31 (3hIp+811)+1311 (5111 +652h 1)) wl*(5hly+24h1)
AT 48[4R3 1 (2L +hIy)+s213 (U1 +2hIp)] 64(1211 +6h1%21,+251h31y)
M. = wl*(5hiy+24hly) wi2[4h31; (3hlp+2111)+s21311 (U1 +6h17)]
B T 641211 +6Rh121p+251h31p) | 48[4h31p(2LR 11 +hiy)+s7131 (LI +2Rip)]
M. = wl (31113424112 h+1651h31p) | wi?[4h31 (BRI +2111)+s2131 (L1 +6h1)]
c=-

64 (1113461312 h+2s51h31y)

48[4h31y (2IhI +hIpy)+sp 1311 (L1 +2h1y)]

M. = wi2[4h31, (3Rl +8111)+1311 (s1 111 +652h15)] _wl (31113 +2411%R+1651h3 1)
D=

48[4h31y (211 +hiIy)+s213 (U1 +2h1y)] 64 (11 13+61312h+2s1h31y)
V. = wl (3131 +24h1? [ +1651h31y) V. = wi v
D ™ 320311 +6hi2 1, +251h31p) AT D
thl31112
HA = HD

See equations (26) — (29)

(V3]

T 2[4h31, 2L +hIp)+so13 (U1 +2h1y)]

rYYYyVYYYY

>
v}

_ wh2(I13+5r1%+25,h31)

-
%
&

wh3l, (9h211 +5h3 1 +s,1317)

M
4 2(I113+6h121,+2s1h31y) 6[4h31y 211 +hip)+s31311 (L1 +2R13)]
M, = Wh31212 Wh312(—4h312+szl311)
B T 2 13+6h121+251h315) | 6[4h315 (211 +hiz)+s21311 (U +2h1y)]
M. = Wh31212 Wh312(—4h312+szl311)
C T 2(113+6hi2+251h31y)  6[4h315 (2111 +hIp)+s21311 (L +2h1y)]
M. = wh3i21, wh3l, (9h211 +5h3 1 +s21317)
D~ 3 2 3 3 3
2(11134+6h1%1;4+2s1h313) 6[4h31p (2L +hip)+s1911 (L1 +2h13)]
wh3ll,
Vi=Vp =773 2 3
I 1°+6I1h+2s117h
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_ wh*l, (311 +2h1y) _
Hp = 2[4h31, 2L +h1p)+s31311 (L +2h1p)] Hy = wh—Hp

See equations (32) — (35)

4
B c
=] =]
- e
a h
A D
T L AT 2 Mp
= ¥ VA¢ TVE,
3al?l 3Pa21?]
MAZ_Pa(1_32—23) My = e
[11°4+6hl“Ip+251h° ] I11°+6hl“Ip+251h°]) H
D
3Pa2121,A 3al?]
My = ———2athh My =Pa(1-——2r )
A1 1°+6A1hl41p+24h11 1 I11°+6hl4I+2s1h° ]
6Pa’ll,
Vy=Vp=7—-+—>"—— H,=H.,=P
A B T 131,4612h1,+251 131y A B

See equations (38) — (41)

>
B &
P
—>
a h
A
AT L e
L =
- - Vay
M, = —Pa + 3Pa?ll, Pa?[4l1hl(3h—a)+12 (8R3 1, —4ah3 Iy +s21311)]
A4~ 2(I113+6h121y+251h31y) 2[4h31, 2L +h1y)+s2131 (L1 +2h1R)]
M. = 3Pa?i?l, Pa?l(—4h3L+4ah?l+s,131)
B T o(113+6hi2I+251h31y) | 2[4h315(2L11 +hip)+sy13 1 (L +2h1p)]
M. = 3Pa?ll, Pa’l(—4h3+4ah?+s7131)
C T 2 B+6hi2I+251h3L) | 2[4h31p (2Ll +hiIp)+s21311 (L +2RIp)]
M. = 3Pa?i?l, Pa?[4l1 I, hl(3h—a)+12 (8R3 1 —4ah3 Iy +s21311)]
D= o 3+6hi21,+251h31p) 2[4h31, 2L +hD)+s2131 (111 +2h1p)]
3Palll,
Vi=Vo=—o--—--"2
4 B T 3+612hIy+251h31;
2Pa’Ly[ll; (3h—a)+hI;(Bh—2a)
Hp = 32[1 ) 2 | Hy=P—H,
4h31 (211)+s213 11 (L1 +2hiz)
See equations (44) — (47)
P M
2 !' b ¥ B \
v
B C [0} @
h
Ha @
A D - Ma
L
—+ ~+ Va
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Pl[a?l;(31-2a)+hIy(6al+s1h?)] | Pa[4h3D(=aly +hl+3L11)+s213 11 (al; +2h1p)]

M, =—-Pa+
A 2(I113+6h12I,+2s1h31y) 2[4h3 132U +hip)+s21311 (111 +2h1y)]

Pl[a?l;(31-2a)+hIy(6al+s1h?)] | Pa[4h3L Raly +hy)+s213 11 (aly +2h13)]
2(I113+6h12I,+2s1h31y) 2[4h31y 2L +hiIp)+sp1311 (111 +2h1)]

Mz = —Pa+

Plla?l(31-2a)+hIp (6al+s1h?)] | Pa[4h3l (2aly +hIp)+s,131 (aly +2h1)]

MCZ

2(1113+6h12 I, +2s1h31y) 2[4h31 (214 +hip)+s 1311 (111 +2h13)]
M. = Pl[a?l; (31-2a)+hIp (6al+s1h?)] | Pal[4h3h(—aly +hI+311)+s213 1 (aly +2h1))]
b~ 2(1113+6h121)+2s1h31y) 2[4h31, 2L +hip)+sp1311 (111 +2h )]

Pla?1 (31—2a)+6ahlly+s1h31z]

Vp = 3 2 3 Va=P-1p
1°I1+6hl41p+251h° 1
6Pah?l I, (1—a)

HA = HB =

4h31 (211 +h 1) +s21311 (111 +2h13)

See equations (50) — (53)
Table 2: Axial deformation contribution AM 4 for different values of Il/I2

w=1kN/m L=5m H=04m h=4m

I
Yy, 0 1 2 3 4 5
AM, 0 -0.0045 -0.0095 -0.0144 -0.0102 -0.0241
I
i, 6 7 8 9 10
AM, -0.0289 -0.0337 -0.0384 -0.0432 -0.0479

Table 3: Axial deformation contribution AMp for different values of 11/12

w=1kN/m L=5m H=04m h=4m

I
Y, 0 1 2 3 4 5
AM, 0 -0.0066 -0.0135 -0.0201 -0.0267 -0.0332
I
Y, 6 7 8 9 10
AM, -0.0396 -0.0460 -0.0524 -0.0587 -0.0651

Table 4: Axial deformation contribution AM 4 for different values of h/l

w=ikN/m L=5m "1/, =0296
2

h, 0 0.1 0.2 03 0.4 05
AM,, -3.1250 -0.5409 -0.0823 -0.0239 -0.0096 -0.0047
h, 0.6 0.7 0.8 0.9 1.0

AM, -0.0026 -0.0015 -0.0010 -0.0006 -0.0004

Table 5: Axial deformation contribution AMp for different values of h/l
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w=lkNm L=5m "1/, =0296

0.1 0.2 0.3 0.4 0.5

-0.7668 -0.1208 -0.0359 -0.0146 -0.0072

0.7 0.8 0.9 1.0
-0.0024 -0.0015 -0.0010 -0.0007

ww = 1kMN/ ML =5Sm h =4d4m H =0.94m
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Figure 9: A graph of AM 4 against 11/12

w=1kN/mL =5Sm h =4d4mH =0.4d4m

20

O1 |

T T T T T T T T

1 1 1 1 1 1 1 1

4 & 8 10 12 14 16 12
11712

Figure 10: A graph of AMg against 11/12
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ww = 1kMN/M L =5Sm h=49m H =0.4d9m

1
0.2 0.3 0.4 0.5 0.s 0.7 o.s 0.9 1

h L

Figure 11: A graph of AM , against h/L

w =1kN/m L =5m h=4m H =0.4d4m
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Figure 12: A graph of AMp against h/L
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