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I. Introduction and Statement of Results 
 Let P(z) be a polynomial of degree n. A classical result due to Enestrom and Kakeya [9] concerning the 

bounds for the moduli of the zeros of polynomials having positive coefficients is often stated as in the following  

theorem(see [9]) : 

Theorem A (Enestrom-Kakeya) : Let 

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)(  be  a polynomial of degree n whose coefficients satisfy 

                                 naaa  ......0 21 . 

Then P(z) has all its zeros in the closed unit disk 1z . 

   In the literature there exist several generalisations of this result (see [1],[3],[4],[8],[9]). Recently Aziz and Zargar [2] 

relaxed the hypothesis in several ways and proved 
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                                 011 ...... aaaka nn   . 

Then all the zeros of P(z) lie in 
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For polynomials ,whose  coefficients are not necessarily real, Govil and Rehman [6] proved the following generalisation of 
Theorem A: 
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where  0n , then P(z) has all its zeros in  
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   More recently, Govil and Mc-tume [5] proved the following generalisations  of  Theorems B and C: 

Theorem D: Let 
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On The Zeros of Polynomials 
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Theorem E: Let 
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M.H.Gulzar [7] proved the  following  generalisations  of Theorems D and E. 

Theorem F: Let 
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)(  be a polynomial of degree n with jja )Re(  and  jja )Im( , j=0,1,2,……,n. 

If for  some real number 0 , 

                        011 ......   nn , 

then  P(z) has all its zeros in the disk 
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Theorem G: Let 
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If for  some real number 0 , 

                        011 ......   nn , 

then  P(z) has all its zeros in the disk 
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The aim of this paper is to give generalizations of Theorem F and G under less restrictive conditions on the coefficients. 

More precisely we prove the following : 

Theorem 1: Let 

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)(  be a polynomial of degree n with jja )Re(  and  jja )Im( , j=0,1,2,……,n. If 

for  some real numbers 0 , 10  , 

                        011 ......   nn , 

then  P(z) has all its zeros in the disk 
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Remark 1: Taking 1  in Theorem 1, we get Theorem F. Taking  nk  )1(  , 1 ,Theorem 1 reduces to 

Theorem D and taking 0 , 00   and 1 , we get Theorem C.  

       Applying Theorem 1 to P(tz),  we obtain the following result: 

Corollary 1 : Let 
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)(  be a polynomial of degree n with jja )Re(  and  jja )Im( , j=0,1,2,……,n. 

If for some real numbers   0 , 10   and t>0, 
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then  P(z) has all its zeros in the disk 
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     In Theorem 1 , if we take 00  , we get the following result: 

Corollary 2 : Let 
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If for some real numbers  0  , 
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then  P(z) has all its zeros in the disk 
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    If we take 01   nn   in Theorem 1, we get the following result:   

Corollary 3 : Let 
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   Taking 1  in Cor.3, we get the following result: 

Corollary 4 : Let 
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  If we apply Theorem 1 to the polynomial –iP(z) , we easily get the following result: 

Theorem 2: Let 
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If for  some real numbers 0 , 10  ,  
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then  P(z) has all its zeros in the disk 
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   On applying Theorem 2 to the polynomial P(tz), one gets the following result: 

Corollary 5 : Let 
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j=0,1,2,……,n.If for some real numbers   0 , 10   and t>0,  
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II. Proofs of the Theorems 

Proof of Theorem 1. 
Consider the polynomial 

)()1()( zPzzF   

       ).......)(1( 01

1

1 azazazaz n

n

n

n  

  

       
n

nn

n

n

n

nn

n

n

n

nn

n

n

zizizzza

azaazaaza

)()(......)(

)(......)(

1

1

0011

1

0011

1


















 

           001 )(......  izi   

    zzzzz n

nn

n

nn

nn

n )(......)()( 01

1

211

1   




 

            0011

1

000 )(......)()(   

 zzziz n

nn

n

n  . 

Then  

)(zF
 0011

1

000

01

1

211

1

)(......)()z-(  

)(......)()(



















zzzi

zzzzz

n

nn

n

n

n

nn

n

nn

nn

n
 

         







































1

2

10

10101

1
)1(

11

n

j
jnjj

nnnnn

n

z

zz
z

z





 

 

                001

1 )(......    zz n

n . 

Thus , for 1z , 




















001

122101

)1()(

)(......)()(
)(



 nnnnnn z
zzF  

            



n

j

jjn

1

10 )()(   

          





















 


n

j

jnn

n
zz

0

000 22)(   

          0  

 if 

         



n

j

jnn z
1

000 22)(  . 

Hence all the zeros of F(z) whose modulus is greater than 1 lie in  

the disk 

                          

n

n

j

jn

n

z













0

000 22)(

.  

But  those  zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence it follows that 

all the zeros of F(z) lie in the disk 
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Since all the zeros of P(z) are also the zeros of F(z) ,it follows that all the zeros of P(z) lie in the disk 
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This completes the proof of Theorem 1. 
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