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ABSTRACT: The analytical formulation for free  vibration  of sandwich  beams  consisting of two different layers  and is 

split along  the interface  with  single  and  multiple  delaminations  is presented here. The  influence  of the  delamination  

size  and  location  on  the  natural  frequency  is  investigated experimentally for beams with single delamination and the 

results agree well with present analytical formulation. Modal  analysis  has also  been  conducted  using  finite  element 

package  ANSYS  and has been compared with the experimental  results. It is observed that the delamination reduces the 

natural frequency and change the mode shape. To identify the exact location and extent of delamination, strain plots are 
used. 
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I. Introduction 
Composite  materials have fully established themselves as workable engineering materials and are now quite 

extensively  used  in  various engineering  applications  wherein  weight  saving  is  of  paramount importance. However 
composites are very sensitive to the anomalies induced during their fabrication or service life.  These  materials  are  

prone  to  damages  such  as  fibre  breakage,  matrix  cracking  and delamination. Delamination is the critical 

parameter for laminates under  compression and one of the most common failure modes in composite laminates. 

Delamination reduces the load-carrying capability of the structure a n d  can thus lead to an early failure.  Delamination 

can promote ear l y failure by interacting with other failure modes. The presence of delamination in a composite 

structure affects its integrity as well as its mechanical properties such as stiffness and compressive strength.  

Vibration based methods  are a new approach for damage  detection  and are more globally  sensitive  to  damage 

than localized methods such as ultrasonic and thermography methods.  

Ahmed [1] presented a finite element analysis technique which includes the effect of transverse shear 

deformation for sandwich beams without any debond Wang et al [2] examined the free vibration of an isotropic beam 

split by a through-width delamination.  They analyzed the beam as four joined Euler- Bernoulli beams, which were 
assumed to vibrate ‘freely’ without touching each other. This was later improved by Mujumdar and Suryanarayanan [3] 

who then proposed a solution based on the assumption that the delaminated beams were constrained to have identical 

transverse displacement. Their solution compared   favorably   with   their   experiments    on   homogeneous,   

isotropic   beams   with   single delaminations. But multiple delaminations further weaken a sandwich beam and cause 

a shift in natural frequencies.  An  increased  number  of  delaminations  also  considerably  complicate  the  problem  

and hence no analytical solution has been studied in detail so far. In the present study, the formulation of Mujumdar 

and Suryanarayanan [3] has been extended for beams with multiple delaminations. Pandey and Biswas [4] used mode 

shape curvature method for damage assessment in composites. This methodology is modified using strain plots for 

identifying the location and extent of delamination in the present study. 

 

II. Analytical formulation 
Fig 1 shows a beam with two arbitrarily located through-width delaminations. The beam is assumed to be 

homogeneous and isotropic. For the analysis, beam has been subdivided into seven regions, namely two delaminated 

regions and three integral regions. The delamination region itself is made up of two separate component segments above 

and below the plane of delamination, joined at their ends to the integral segments. Each segment is modeled as an Euler 

beam. It is assumed that transverse displacement of the delaminated layers is identical and there is no natural gap between 

the delaminated layers. 

 

 
Fig .1 Model of multiple debonded two layered sandwich beam 

Dynamic Analysis of Delaminated Sandwich Composites 
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The governing equations of transverse equilibrium for the intact regions are, 
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In the case of delaminated segments 2 and 3, the governing equation can be written as  
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Similarly for delaminated segments 5 and 6, the governing equation can be written as 
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Assume harmonic function 
ti

ii exWtxw )(),(                       (4) 

where   is the natural frequency and iW is the mode shape. 

Substituting Eq.(4) in Eqs.(1), (2), (3) and introducing non-dimensional variable 
L

x
 , we can obtain the generalized 

solutions of the Eqs.(1), (2) and (3) as  

)sin()cos()sinh()cosh()( 43211  AAAAW       (5) 

)sin()cos()sinh()cosh()(
1111 87652  dddd AAAAW      (6) 

)sin()cos()sinh()cosh()( 12111094  AAAAW        (7) 

)sin()cos()sinh()cosh()(
2222 161514135  dddd AAAAW       (8) 

)sin()cos()sinh()cosh()( 201918177  AAAAW      (9) 

where

4/1
42














EI

LA
  , 

4/1

32
1 












II

I
d  and 

4/1

65
2 












II

I
d                 (10) 

The 20 unknown coefficients 1A to 20A  can be determined using appropriate boundary conditions of intact regions and 

continuity/equilibrium conditions at delamination boundaries. 

 

The boundary conditions for a cantilever beam are as given below: 

1. The deflection at the fixed end is zero, ie. at  =0, W1=0                                                   (11) 

2. The slope at the fixed end is zero, ie. at  =0, 

1

1

dx

dW
=0                                                     (12) 

3.  The bending moment at the free end is zero, ie. at x=L; 1 , 0
4
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                  (13) 

4. The shear force at the free end is zero, ie. at x=L ; 1 , 0
3

7

7

3


dx

Wd
                            (14) 

The Continuity/Equilibrium conditions are as given below: 

At the delamination boundary, x=L1, 
L

L1 = 1 . Applying the compatibility conditions, the following equations are 

derived. 

1. Deflection compatibility states that )()( 1211  WW                                                       (15) 

2. Slope compatibility states that )()( 1211 


 WW                                                             (16) 

3. Bending moment compatibility condition states that  
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4. Shear force compatibility condition states that 

                                           )()()( 123211  WIIEWEI                                                  (18) 

At the delamination boundary,   =
L

LL d11

2


 , applying compatibility conditions, the following equations are 

derived. 

5. Deflection compatibility states that )()( 2422  WW                                                     (19) 

6. Slope compatibility states that )()( 2422 


 WW                                                           (20) 

7. Bending moment compatibility condition states that 

                                           )()()( 223224  WIIEWEI                                                 (21) 

8. Shear force compatibility condition states that  

                                           )()()( 223224  WIIEWEI                                                 (22) 

 Similarly at the second delamination boundaries, we can get 8 more equations. This forms a set of 20 

homogeneous equations for 20 unknown coefficients. Solving the eigen value problem, we obtain the natural frequencies 

and mode shapes. 

 The above formulation has been used for finding the natural frequencies of beams with different end conditions, 

viz. both ends fixed and both ends free. 

 

III. Finite Element Analysis 
The finite element models used for the present study are generated using a meshing application developed in Visual Basic. 
A single keypoint is created at the ends of the delamination and two keypoints are created anywhere along the 

delamination using this program as in Fig 2. The volumes above the delaminated region are defined using one of the two 

keypoints and the volumes below are defined using the other keypoint. This ensures no connectivity between the volumes 

above and below the delaminated region and thus it behaves as a delaminated beam. Layered brick element of SOLID45 is 

used for the modeling of sandwich composite beams. It is an 8-noded layered structural solid element. The element has 

three translational degrees of freedom per node in the nodal x, y, and z directions [5]. 

 

 
     Fig 2. Delamination Modeling in FEM 

 

IV. Experimental Study 
 An experimental study is carried out to show the validity of the analytical results obtained. The beam specimens 

are made by bonding thin aluminum strips using a very thin epoxy film adhesive. The delamination is simulated by bonding 
only a part of the beam surfaces to create unbonded regions at various locations. Delaminations are created by inserting 

celephone sheet of 50 microns along the width for the required length (50 mm) of delamination. 

 In order to incorporate the effect of central layer delaminations, the thickness for each aluminium strip is kept as 

2mm. The beams are of sizes 300mm25mm2mm each. The delamination length of the manufactured specimens is kept 
as 50 mm. 
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Fig 3. Two layered metallic beam specimens with 50 mm delaminations 

A piezoelectric accelerometer (Model 8730AE500, SNC190699 manufactured by Kistler) with a measuring range 

of 500 g, and sensitivity 9.52mV/g is used for testing. The instrumented hammer is Bruel & Kjaer (Model No. 8202) 

equipment along with a force gauge (Model No 8200) with an output sensitivity of 9.52mV/g. Weight of the hammer is 280 

grams. A PC based 2 channel FFT analyzer is connected to the PC through data acquisition card (PC I MCA card. 

manufactured by OROS). 

 Transfer functions only are measured. Frequency versus Phase angle and Frequency versus Amplitude graphs are 

obtained. The beams are tested for two different boundary conditions, viz. clamped-free and free-free. 

V. Results and Discussions 
 The experimental results obtained for the composite beam specimens with single delamination are found in good 

agreement with the present analysis results as given in Table 1. Hence the present model can be used for studying the 

dynamics of debonded sandwich beams. The finite element analysis results are also found to be comparable. The length of 

delamination is kept constant and the location is varied, near to the fixed end (0.25l-0.4L), middle (0.5L-0.7L) and towards 
the free end (0.75L-0.9L). 

 

Table 1. Comparison of natural frequency of beams with single debond (50mm) 

Specimen 

details 

First mode frequency (Hz) 

Cantilever Free- Free 

Experimental Analytical FEM Experimental Analytical FEM 

Intact 35.25 35.95 35.39 198.75 215.60 225.00 

Debond 

0.25L-0.4L 

31.25 30.25 32.25 196.25 213.80 223.00 

0.50L-0.7L 33.75 33.73 35.30 198.75 215.36 224.00 

0.75L-0.9L 34.75 35.80 35.30 195.00 207.75 222.35 

 

The variation in natural frequency for various percentages of debonding lengths for a cantilever beam is given in Table 2 

from which it is clear that the presence of debonding reduces the natural frequencies of the composite beam.  

 

Table 2 Natural frequencies for various debonding lengths for a cantilever beam 

Size of delamination Frequency 

First mode Second mode Third mode 

Nil 35.393 221.62 619.74 

10%  35.358 219.04 601.9 

20% 35.122 204.13 540.13 

30% 34.515 180.19 513.57 

40% 33.447 160.62 508.83 

50% 31.967 149.92 435.75 

60% 30.25 146.33 304.27 

70% 28.506 146.03 224.42 

80% 26.908 144.48 172.32 

90% 25.559 136.47 139.95 

 

 To study the effect of location of debonding on the modal parameters, various parametric studies are conducted by 

providing a constant delamination length, 50mm at three different locations along the longitudinal directions as shown in 
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 Table 3. The variation in natural frequency with the debond location is as shown in Fig 4. It can be concluded that 

the debond has a minimum effect on modal frequency if it is towards the free end of the cantilever and has the maximum 

decrease when it is near to the fixity. Thus, the same bonding length has different effects, with respect to the change in 
location. 

 

Table 3 Effect of the location of debonding on natural frequency for a cantilever beam 

Debond location First mode frequency (Hz) 

Intact beam 35.393 

(1) Near to the fixity (debond  25-75mm) 35.236 

(2) Left of the centre (debond 100-150mm) 35.263 

(3) Right of the centre (debond 150-200mm) 35.301 

(4) Near the free end (debond 225-275mm) 35.370 
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Fig 4. First mode frequency Vs Location of debonds 

 

 The mode shapes for the first mode of the cantilever beam, for various debonding lengths (60 mm, 120 mm and 

180 mm) are shown along with that for an intact beam in Fig 5.  
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Fig 5. Mode shapes of intact and debonded beam 

 It can be seen that when the debonding length is very small, the mode shape is identical for both intact 

and debonded beams A significant change in mode shape is observed only for larger delaminations. Hence to identify the 
exact location and extent of damage in sandwich composite beams, the strain plots can be used. Fig 6 represents the 

variation of longitudinal strain for a debond of 50% of total beam length starting extending from 10 mm to 140 mm.  
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Fig 6 Strain plot of an intact beam and a debonded beam 

 

 Table 4 shows the natural frequencies of a double delaminated cantilever beam obtained using the present 

analytical formulations. The length of first debond (Ld1) and it’s location (L1) is kept same in all the cases. The length of 
the second delamination (Ld2) and the distance between the two debonds (s) is varied. 

  

Table 4 natural frequencies of beam with multiple (two) delaminations 

 

 

 

 

 

 

 

 

 It is observed that the presence of a second debond does not produce a considerable reduction in natural 

frequencies compared to that of a beam with single debond. It is clear that as the spacing between two similar debonds is 

greater than the length of the debond, there is no reasonable change in frequency values and mode shapes. Hence for 

identifying the exact location of multiple debonds also, the strain plots can be effectively used. 

 

VI. Conclusions 
An analytical solution for the free vibration of two layered sandwich beam with multiple delaminations is 

presented. The influence of the delamination sizes and locations on the natural frequency as well as the mode shapes is 

investigated experimentally for beams with single delamination and the results agree well with present analytical 

formulation. In multiple delaminated beams, the effect of a second debond is felt only when it is very close to the first one 

It is found that for small debonding lengths (less than 30% of the length of the beam), the changes in mode shapes and 

reduction in natural frequencies compared to that of an intact beam are not significant. But the variations of longitudinal 

strains for a delaminated beam suffers more irregularities at the delamination location and hence this feature can be 

effectively used for identifying the extent and location of debond. 
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L1=10 mm, Ld1=50 mm 

             S 

 Ld2 

5 mm 10 mm 15 mm 20 mm 50 mm 100 mm 

Frequency (Hz) 

10 mm 22.27 22.27 22.27 22.43 22.59 22.91 

20 mm 21.48 21.64 21.79 21.80 22.27 22.75 

50 mm 20.20 20.52 20.68 20.84 21.63 22.59 

100 mm 19.41 19.57 19.88 20.04 21.32 22.60 


