
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 317 | Page

Blessy Babu

1
, Karthika Manilal

2

1
PG Scholar, Dept.of Electronics and Communication Engg, TKM Institute of Technology, Kollam, Kerala, India

2Asst.Professor, Dept. of Electronics and Communication Engg, TKM Institute of Technology, Kollam, Kerala, India

Abstract: System on chip (SoC) is the integration of different components in to a single chip targeting a specific

application. Real-time observability of the internal chip signals is crucial to SoC debugging, the obvious choice would be to

use chip pins to observe them. However, this method is difficult to implement in the presence of high frequency internal

clocks and limitation of the chip pins. A solution to this problem is to embed a bus tracer in SoC to capture bus signal, and

to store the trace in on-chip storage (trace memory). The size of bus trace increases rapidly as the numbers of transactions

are more. In order to reduce the trace size, compression is necessary. These compression mechanisms include slice

compression, differential compression and dictionary based compression. The compression algorithms use forward

encoding method i.e. first data is recorded as uncompressed and all others are encoded. Trace memory is a circular buffer,

so in case of wrapping around this may result in loss of data and affects the decompression flow. Therefore a new reverse
encoding method is used that results in efficient circular buffer utilization. To capture the bus signals, an on-chip

communication architecture based on WISHBONE bus, with four masters and four slaves is designed and the hardware

tracer based on reverse encoding is integrated to this. This is coded using VHDL, simulated using ModelSim 6.4c and

synthesized using Xilinx ISE tool.

I. INTRODUCTION
The growing complexity and shorter time to market constraint makes verification and debugging a major hurdle in

shortening development cycle of system on chip.

In contrast to software debugging, hardware debugging methods provides insight to observability of internal state
system and real time behavior in SoC. The limitation of this approach is unavailability of dedicated pins and increased gap of

internal and external frequencies while moving trace out of chip. This leads to demand for on chip debugging units. The

main problem dealing with the on chip debug units is that execution trace in SoC is large and hence for storing these much

data results in increased cost of hardware implementation and data acquisition systems. The solution to this problem is to

integrate a tracer in to the bus, which is the communication architecture in SoC, to capture and compress signal in real time

and store them in an on-chip trace memory. The traced data can then be decompressed on the software terminal for

performance analysis, bus utilization and verification.

Trace collection is controlled by user defined signal condition. They are two types of traces forward trace and

backward trace. As shown in figure 1 the forward/backward trace refers to trace captured before/after a triggering event.

The forward trace is used for diagnosing errors at known time periods and backward trace is used for detecting the system

Backward trace Event trigger Forward trace

Fig.1. Difference between forward trace and backward trace

Fig.2. forward encoding differential compression algorithm malfunctioning.

Traces which are collected are stored in a trace memory; since capacity is limited it is usually used as circular

buffer. In case of backward trace, signals are continuously collected, so when trace memory is full, wrapping around occurs

i.e., initial data become overwritten. This causes a problem when the trace needs to be compressed.

For example, Fig.2 shows traditional differential compression algorithm that make use of forward encoding. It

works as follows. First datum is recorded as uncompressed; when second datum comes it is encoded with respect to first, ie,

difference between the first and second is stored. When third datum comes it is encoded with respect to second and so on.

The problem occurs when first data become overwritten due to wrapping around in circular buffer. This initial data is in

uncompressed format and all other dates are encoded with respect to that .Therefore when it is lost all other data’s becomes

useless ie, they cannot be decompressed.

On Chip Bus Tracer Based On Reverse Encoding In Soc

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 318 | Page

In this paper a reverse encoding algorithm is proposed. This algorithm is applied to different popular compression

algorithms and demonstrated in an on WISHBONE bus for SoC. The tracer supports both forward and backward trace with

effective circular buffer utilization in addition to good compression ratios and small hardware overhead.
This paper is organized as follows. Section II discusses related work regarding tracers. Section III presents the proposed

algorithm. Section IV introduces architecture of on chip bus tracer. In Section VI, the experimental results a are discussed.

Section VIII concludes this paper.

II. RELATED WORKS
 The execution traces in SoC is large so there needs a large amount of memory for storing these data’s .This results

the need of reduction/compression techniques. They techniques are divided into lossy and lossless approaches.

 Lossy approach has the advantage of high compression ratio [3]. The idea is to capture only the erroneous signals in

a trace buffer to increase the trace-buffer utilization. Here a three pass methodology is used. During the first pass, the rough
error rate is measured, in the second pass, a set of suspect clock cycles where errors may be present is determined, and then

in the third pass, the trace buffer captures only during the suspect clock cycles. In this manner, the effective observation

window of the trace buffer can be expanded significantly, by up to orders of magnitude. This greatly increases the

effectiveness of a given size trace buffer and can rapidly speed up the debug process.. But it is not suitable for real time on

chip bus tracing

 Lossless data compression algorithms can be classified into two main categories statistical coding algorithms and

dictionary coding algorithms [5] Statistical based compression algorithms, such as Huffman coding or arithmetic coding can

lead to an optimal average code length and hence good compression ratio. For the real-time requirement and the fact that

debug data is not known a-priori these static methods are not suitable. The second category of data compression algorithms

is the dictionary-based compression algorithms. The compression in these methods is achieved by encoding a symbol or a

sequence of consecutive symbols into shorter code words which are represented by indices to the dictionary locations. But

this approaches face difficulty when wrapping around occurs because they use forward encoding algorithm.
 For effective debugging they must support both forward and backward trace .The logic analyzers [7] support

forward trace but they have no compression ability and backward trace capability.

 In ARM ETM [6] and NEXUS interface, data filtering is used to increase trace depth. They use a branch target

technique to compress instruction address: it ignores consecutive address and stores only branch and target address. The

hardware overhead of these works is small since

the filtering mechanism is simple to implement in hardware. However, the effectiveness of these techniques is mainly limited

by the average basic block size, which is roughly around four or five instructions per basic block,

 Periodical triggering supports both forward and backward trace[4].Here trace memory is divided into small

segments using a ping pong organization .These segments are compressed separately hence destruction of one segment does

not affect another. But has a disadvantage of more uncompressed data. Utilization ratio can be increased by increasing the

segments but it reduces the compression ratio.

III. REVERSE ENCODING ALGORITHM
To overcome the disadvantage of data loss due to wrapping around in circular buffer a reverse encoding is applied to

different compression algorithms in trace reduction stage.. In this newest data is set to uncompressed and all other preceding

datum’s are encoded with respect to the newest so when first data is removed, it doesn’t affect the decompression because it

is only a encoded value not the initial uncompressed data. As in reverse encoding, there is a difference from Fig.2.i.e.0x834

is set as uncompressed and all others are encoded with respect to that.

IV. SYSTEM ARCHITECTURE

Fig.3.Bus tracer hardware architecture

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 319 | Page

 Fig. 3 shows the hardware architecture of the bus tracer. It has two major functional modules (1) signal monitor

/tracing and (2) trace compression. Signal monitor consist of event trigger, bus interface unit and signal monitor. Bus

interface unit handles bus requests and collects the bus signal for storing, signal monitor synchronizes the signals and pass
these signals to data reduction stage, where reverse encoding is applied. Event trigger module is configurable and controls

trigger condition of start/stop a trace. When triggered the bus tracer starts capturing signals and stops until another trigger

happens. Finally, the data packer packs the compressed data and writes them to the circular trace memory.

 As shown in Fig. 3 bus signals are classified into three, instruction address, data address/value, and control signals.

Instruction addresses are processed in three steps. First is to record only the non sequential jumping address. In virtual of the

computer program usually having the property of spatial locality, each adjacent address pattern often is increased by a

sequential offset .Hence, we can choose to only record the adjacent address pattern increased by a non-sequential offset, also

called branch jump address, so as to eliminate the most address information. Secondly such branch/target addresses repeat

several times because most programs are recursive. Therefore, dictionary-based compressor is used to reduce these repeated

addresses. Third, the higher part between two adjacent address patterns is almost similar. Hence, if we can make the

similarity between the current address and the previous address to be eliminated, the compression ratio may be rising

dramatically. So the dictionary contents from dictionary-based compressor 1 are further compressed by a slice compressor.
For control signals, we use dictionary-based compressor 2 (shown in Fig. 3). Because the variety of transfer types in a

system is usually small, the same transfer types appear frequently. Therefore, the control signal patterns indicating the

transfer types also appear frequently, which enables the dictionary-based method to reduce the size of the repeated signal

patterns. The signal variations on data bus (data address and data value buses) are not regular that compared with program

address bus. Using the differential approach based on subtraction is the convenience way to reduce the data bus trace size

and the hardware cost of subtraction module is small.

 The following sections show how to apply our reverse-encoding algorithm to the compression methods used in this

bus tracer

A. Differential Compression

 Compared to forward encoding, reverse encoding differ in following areas (1) since forward encoding records the
first datum as uncompressed while reverse encoding records last datum as uncompressed (2) forward encoding relates the

present datum to the previous datum while the reverse encoding relates the present datum to the next datum. The encoded

results of both forward and reverse encoding are same because absolute difference is not changed after interchanging the

minuend and the subtrahend.

Fig. 4. Differential compressor hardware based on reverse encoding

 Fig. 4 shows the differential compressor hardware based on reverse encoding. The present datum is represented as

dini and next datum is represented as dini+1 , dini+1 is obtained by delaying the input data with a register REG.For each

cycle three outputs are generated: 1) the absolute difference, which is obtained by subtracting the present datum from the

next datum ; 2) the sign magnitude, which is obtained by comparing the two data, that results in identifying whether the

result is positive or negative ; and 3) sizei) which indicates the number of meaningful bits of the difference. The reason

for representing the difference as the absolute value and a signed magnitude is because the high-order bits of the absolute
difference are usually zeros and can be discarded. The absolute difference and the sign magnitude are further packed together

to form the final encoded datum . Finally, the data packer module stores the meaningful low-order bits of the encoded datum

according to the size. In addition, to record the last datum in uncompressed format, we can read it from the register REG

when the trace stops. Therefore, the register REG is implemented as the interface register of the tracer so that it can access

via the bus.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 320 | Page

B. Slice Compression

 The basic principle of slice compression is that the higher parts between two adjacent branch/target address data are

almost similar. Hence, by the elimination of the similar parts, the compression ratio can be raised. Table I shows an example
of forward-/reverse-encoding slice compression for a set of instruction addresses. In the forward encoding, the first address is

kept uncompressed. The succeeding address is encoded as its differential bits from the preceding address, .eg., 0x0300_6120

is encoded as 0x120 since the difference between 0x0300_6120 and 0x0300_6600 is 0x120. For reverse encoding, the

reference direction is reversed; the last address is kept uncompressed while the previous ones are encoded based on the

uncompressed last address.

Table I

Example of slice compression for forward/reverse encoding

 The implementation of the reverse-encoding slice compression is similar to that of the differential compression, as

shown in Fig. 4. The only difference is that the sizeof, differential, and comp modules now compare the bit difference of two

data.

C. Dictionary-Based Compression

Fig.5. Dictionary compressor hardware based on forward encoding

 In dictionary based compression the idea is to map the data to a table keeping frequently appeared data, and record

the table index instead of the data to reduce size. Fig. 5 shows the hardware architecture of forward encoding dictionary

compression. For each input datum, the comparator compares the datum with the data in the dictionary. If the datum is not

in the table (Match=Miss), the datum is written into the table and also recorded in a trace. Otherwise, the index of the hit
table entry (Match=Hit) is recorded instead of the datum. But the problem associated with this is that when wrapping around

occurs, the uncompressed datum might be overwritten, resulting in data loss. Consider a example that we are sending a series

of data’s a1, a2, a3, a4, a5, a6.a1 to a3 has the same value as do a4 to a6. At first cycle, since the table is empty, input datum

does not match with any table entry (known as a Miss). Therefore, it is inserted into the table and immediately recorded in an

uncompressed format. At second and third cycle, a2 and a3 are the same; hence they are encoded as the indexes,

respectively. At fourth clock cycle, a4 replaces a1 becausea4 is different from a1 (known as a Miss) and the table has only

one entry, replaces. In this encoding algorithm, when a1 is overwritten, a2 and a3 cannot be decompressed.

 Reverse encoding based dictionary compression can eliminate this problem. Concept of reverse encoding is that, the

recording of a1 is delayed: It is only recorded until it is replaced with a4. As a result, the encoded data are placed before the

uncompressed datum .With this order, the wrapping around does not cause data loss since the encoded data are lost before

the related uncompressed data.

 Fig.6. shows the dictionary-based compressor hardware based on reverse encoding. The input datum is compared
with the data in the dictionary (din1) by the comparator. If there is a match, then the comparator sends the matched entry

number (match index) to the data packer. If not, the input datum is inserted in the dictionary according to the index

(w_index) calculated by the index calculator. At the same time, the replaced datum (replaced data) is output to the slice

compressor for the further processing.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 321 | Page

Fig.6. Dictionary compressor hardware based on reverse encoding

 Main difference between forward and reverse encoding is that when data’s are placed in dictionary they are not

immediately recorded, it is recorded only when the data’s are replaced.

V. DATA PACKER
 Data packer receives the compressed data from the compression module, processes them, and writes them to the

circular trace memory. It is responsible for: packet management and circular buffer management. For packet management,

since the compressed data length and type are variable, every compressed data needs a header for interpretation. Therefore,

this step generates a proper header and attaches it to each compressed datum. Fig.7 shows data packet example. Last packet

contains the uncompressed date hence decompression starts from this. since the decompression works in a backward order,
in order to interpret the content of a packet, the header is placed at the end of a packet so that the header can be read first

before the trace data. It is obtained by reversing the bit order of a packet, since the sub headers should also be read before the

compressed data.

VI. SIMULATION RESULTS
As an experimental study a communication architecture based on wishbone in SoC is designed consisting of four masters

and four slaves .Master 1 is designed as processor and slaves as memories and the bus tracer based on reverse encoding is

integrated to this architecture for tracing the processors program memory. Fig.8, Fig.9, Fig.10 shows results of master 1

communication to external memory

Fig.8.Simulation result of master 1 during write operation

 Fig.9. Simulation result of wishbone bus during write operation

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 322 | Page

Fig.7. data packet format

 The bus tracers traces both the communication, read and write to the external memory and compresses these using reverse

encoding compression algorithms and stores them in circular trace memory. This is shown in Fig.11

Fig.10. Simulation result external memory during write operation

 The decompression is shown in Fig.12 which includes packet de-assemble and decompression of all these

compression algorithms

Fig.11.simulation results of reverse encoding compression algorithms

Fig.12.Simulation results of decompression of algorithms

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-317-323 ISSN: 2249-6645

www.ijmer.com 323 | Page

The whole architecture is modeled using VHDL. Simulation was done using Modelsim XE III 6.4 and is

synthesized using Xilinx ISE 9.2i

V. CONCLUSION
 During design implementation stage and final chip testing bus signal tracing (bus tracer) can help designer to debug

and analyze hardware-software design. Traditional tracers use forward-encoding compression algorithms to reduce the

data size. However, such algorithms are not suitable for a backward trace with a circular buffer. So a reverse encoding

based bus tracer is proposed that support both forward and backward trace. This tracer is integrated on wishbone bus

consisting of four masters and four slaves. The result shows that this tracer can achieve good circular buffer utilization.

REFERENCES
[1] Fu-Ching Yang, “Reverse encoding based on chip bus tracer for effective circular buffer utilization”, IEEE Trans. vlsi, vol. 18, no.

50, pp. 732–739, 2010.

[2] Ayas kantha swain,” Design and verification of wishbone bus interface for system on chip integration”, 2010 annual IEEE India
conference

[3] J.-S. Yang and N. A. Touba, “Expanding trace buffer observation window for in-system silicon debug through selective
capture,” in Proc. IEEE 26th VLSI Test Symp., Apr. 27–May 1 2008, pp. 345–351.

[4] Y.-T. Lin, W.-C. Shiue, and I.-J. Huang, “A multi-resolution AHB bus tracer for read-time compression of forward/backward traces
in a circular buffer,” in Proc. DAC, Jul. 2008, pp. 862–865.

[5] E. Anis and N. Nicolici, “On using lossless compression of debug data in embedded logic analysis,” in Proc. IEEE Int. Test Conf.,
Oct. 2007, pp. 1–10.

[6] ARM, Ltd., Cambridge, U.K., “Embedded trace macrocell architecture specification,” 2002. [Online]. Available:
http://infocenter.arm.com/

[7] Altera Corporation, San Jose, CA, “Signal Tap embedded logic analyzer mega function,” 2001. [Online]. Available:
http://www.altera.com/literature/ ds/dssignal.pdf

http://infocenter.arm.com/
http://www.altera.com/literature/

