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l. INTRODUCTION, DEFINITIONS AND NOTATIONS.
Let C be the set of all finite complex numbers. Also let f be a meromorphic function and g be an entire function defined on
C . In the sequel we use the following two notations:
() log¥lx = log(logl*~Ux) fork =1,2,3,...; logl%x = x
and
(i) exp®lx = exp(exp*Ux) fork =1,2,3,...; expl¥x = x.
The following definitions are frequently used in this paper:
Definition 1 The order p; and lower order A¢ of a meromorphic function f are defined as
f 7 logr
and
1, — limiinf log T'(r, f)_
f 7" logr
If f isentire, one can easily verify that
fm o logr
and
logll M(r, f)
logr
Definition 2 The hyper order 5fand hyper lower order Zf of a meromorphic function f are defined as follows

= _ lim §up log[Z] T(T’, f)
Py o logr

— lim{inf
Af - >0

and
7, — limfinf log™ T(r, )
f 7 logr
If fisentire, then
—  _ limfup logPI M(r, f)
f T >0 log r
and
log[3] M(r, f)
logr
Definition 3 The type oy of a meromorphic function f is defined as follows

7 . — limfdnf
/‘lf - r—0

0f = 15w 7”Tf,()<,0f<00.

When f is entire, then
_limigup 108 M(7, f)
Of = row T pp
Definition 4 A function A, (r) is called a lower proximate order of a meromorphic function f of finite lower order A; if

,0 < pp <o

(i) A (1) is non-negative and continuous for r > ry, say
(i i) A¢ (1) is differentiable for r > 7, except possibly at isolated points at which A} (r+0)and A} (r — 0) exists,
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(iii)
(iv)

and

(v)

-0

lim rA;(r)logr =0

timing L) _
T —00 rlf(r)
Definition 5 Let ‘a’ be a complex number, finite or infinite. The Nevanlinna'’s deficiency and Valiron deficiency of ‘a’ with
respect to a meromorphic function f are defined as

R (7 I T

. — 1 _ limfnf N(T, a; f) — lim fgup m(r, a, f)
A(a' f) 1 T —00 T(T, f) T —00 T(T, f) .

Let f be anon-constant meromorphic function defined in the open complex plane C. Also let ng;, nyj,..., Ny (k> 1) be non-
negative integers such that for each j, ¥¥_, n; = 1. Wecall

M;[f] = 4 (A" (FOY . (FE)™
where T(r,4;) = S(r, f), to be a differential monomial generated by f. The numbers
k

Yu; = z n;

i=0

and

and

k
i=0
are called the degree and weight of M; [f] {cf. [4]} respectively. The expression

PIf1 =) MIf]
j=1

is called a differential polynomial generated by f. The numbers

= max yy.
Yp 1515sYM1

and

I'p = max Ty,
P 2 M;

are respectively called the degree and weight of P[f] {cf. [4]}. Also we call the numbers

= min .
Yp 15 <s Vu;

and k ( the order of the highest derivative of f) the lower degree and the order of P[f] respectively. If y, = y,, P[f] is called a
homogeneous differential polynomial.

Bhooshnurmath and Prasad [3] considered a special type of differential polynomial of the form F = f™"Q[f] where
QI[f] is a differential polynomial in f and n =0, 1, 2,.... In this paper we intend to prove some improved results depending
upon the comparative growth properties of the composition of entire and meromorphic functions and a special type of
differential polynomial as mentioned above and generated by one of the factors of the composition. We do not explain the
standard notations and definitions in the theory of entire and meromorphic functions because those are available in [9] and

[5].

1. LEMMAS.
In this section we present some lemmas which will be needed in the sequel.
Lemmal [1] If f is meromorphic and g is entire then for all sufficiently large values of r,
T(r,9)
< —_— .
10 fo9) < {1+ 0D} A= S TM (g, )
Lemma 2 [2] Let f be meromorphic and g be entire and suppose that 0 < u < p, < oo. Then for a sequence of values of r
tending to infinity,
T(r fog) =2 T(exp(r*),f).
Lemma 3 [3] Let F = f"Q[f] where Q[f] is a differential polynomial inf. /fn > 1 then p; = py and A = 4.
Lemma 4 Let F = f™Q[f] where QIf] is a differential polynomial in f. Ifn > 1 then
lim L F)
m =
roo T(T, f)
The proof of Lemma 4 directly follows from Lemma 3.
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In the line of Lemma 3 we may prove the following lemma:

Lemmas5 Let F = f"Q[f] where Q[f] is a differential polynomial in f. /fn>1thenp, = ﬁf and Ap = if.

Lemma 6 For a meromorphic function f of finite lower order, lower proximate order exists.
The lemma can be proved in the line of Theorem 1 [7] and so the proof is omitted.

Lemma 7 Let f be a meromorphic function of finite lower order A¢. Then for §(> 0) the function r*/*9~4/ (") js an
increasing function of r.
Proof. Since
d ,
Erlf”_’lf(r) = {4 +6 -2 - s log rirtr =201 5 o
for sufficiently large values of r, the lemma follows.

Lemma 8 [6] Let f be an entire function of finite lower order. If there exists entire functions a; (i=1, 2, 3,..., n; n <o)

satisfying T(r, a;) = o{T(r, )} and
Y s@ =1,
i=1

T ) 1

lim—————=—.
rl—rgologM(r,f) s

then

1. THEOREMS.
In this section we present the main results of the paper.

Theorem 1 Let f be a meromorphic function and g be an entire function satisfying
(@) A¢, 44 are both finite and
(ii) forn=1,G = g"Q[g]. Then

timéint 08T (" fo9)

T T(r,G)
Proof. If p, = oo, the result is obvious. So we suppose that p; < cc. Since T(r, g) < log™M(r, g), in view of Lemma 1 we
get for all sufficiently large values of r that
T(r, fo9) <{1+o0(WITM(, 9. f)

< 3.pp. 2%,

ie.,

logT(r, f,g9) <log{l +o(1)}+1logT(M(r,g9),f)
ie.,
. logT(r,f,9) <o(1)+ (pf + s) logM(r,9)
ie.,

T —0 T(T’ g)
Since (> 0) is arbitrary, it follows that
tmine 1087 (" fo9) < p, liminf logM (. 9)

imiine 108 M (1, 9)
< limfinf _“&° % * I/
< (pf + & r—00 T(r, g)

. 1
T T S g W
As by condition (v) of Definition 4
lim e L2 9) _ 1
T =0 r)“g(‘r) ’
so for given £(0 < € < 1) we get for a sequence of values of r tending to infinity that
T(r,g) <A+ &)rts™ (2)
and for all sufficiently large values of r,
T(r,g) > (1 —&)rts® 3)

Since
logM(r,g) <3T(2r,9)
{cf. [5]}, we have by (2), for a sequence of values of r tending to infinity,
logM(r,g) < 3T(2r,g) < 3(1+ &)(2r)*s @), (4)
Combining (3) and (4), we obtain for a sequence of values of r tending to infinity that
logM(r, g) < 3(1+¢) (2r)*e@n
T(r,g) ~— (1—¢g) rls®
Now for any §(> 0), for a sequence of values of r tending to infinity we obtain that
logM(r,g) 3(1+¢) (2r)ts*d 1
< . .
T(T, g) - (1 _ 5) (27,.)/19+8—Ag(2r) Tlg(r)
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logM(r,g)S3(1+e)lzlg+6 )
T(r,9) 1-¢)
because #9045 is an increasing function of r by Lemma 7. Since (> 0) and §(> 0) are arbitrary, it follows from (5)
that

limiinf 108 M (T 9)

n it < 3.2%. 6
' T(r,9) ©
Thus from (1) and (6) we obtain that
. logT(r,f,9)
liminf 22 1J0T) < 3 5 24, 7
g 7

Now in view of (7) and Lemma 3, we get that
tim it 108 T f09) _ iy e 108 T (T fo9) im T 9)
e T(r, G) T T(T, g) Trom T(T, G)
< 3.pp.2%.

This proves the theorem.

Theorem 2 Let f be meromorphic and g be entire such that p; < o0,4; < andforn > 1,6 = g"Q[g]. Then
imiing 108T (T, £,9) <
7 logT(r,G) ~—
Proof. Since
T(r,g) <log*tM(r, g),
in view of Lemma 1, we get for all sufficiently large values of r that
logT(r, f,9) < logT(M(r, g),f) + log{1 + o(1)}

ie.,
logT(r, f,9) < (pf + s) logM(r,g) + o(1)
ie.,
log®IT(r, f,9) < log®IM(r, g) + O(1). ®
It is well known that for any entire function g,
logM(r,g) < 3T(2r, g) {cf.[51

Then for 0 < ¢ < 1 and §(> 0), for a sequence of values of r tending to
infinity it follows from (5) that
log?IM(r, g) <logT(r,g) + 0(1). 9)
Now combining (8) and (9), we obtain for a sequence of values of r tending to infinity that

log®'T(r, f,9) < logT(r,g) + 0(1)

ie.,
logl2lT :
0g“'T (7, f,9) < (10)
logT(r, 9)
As by Lemma 4,
logT(r, g)

ro logT(r, G)
exists and is equal to 1, then from (10) we get that
imiing 08T £o9) _ e 10827 (. £,.9) . logT(r,g)

% logT(r,G) "7 logT(r,g) 'rl—{glogT(r,G)
<1l1=1.

Thus the theorem is established.

Remark 1 The condition p, < oo is essential in Theorem 2 which is evident from the following example.

Example 1 Let f = exp!?lz and g = expz. Then f,g = expBlzand forn > 1,6 = g"Q[g]. Takingn = 1,4, = 1,ny; =
landny; =+ =mny; = 0; we see that G = exp(2z). Now we have

_ limf&up g IM(r, f) iy 108% (exptlr) —

Pr r >0 - row

logr logr
and
1. = limiinf log”IM (r, 9) _ limfinf log!?! (exp ) -1
g logr o logr

Again from the inequality

T(r,f) <log*M(r,f) < 3T(2r,f)
{cf. p.18, [5]} we obtain that
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T(r,G) <logM(r,G) = log(exp 2r)

logT(r,G) <logr + 0(1)

10 £,9) = slogM (5. ,9) = zexpl)
3 2 3 2
logl!IT(r, £, 9) = %+ o(1).
Combining the above two inequalities, we have
log™'T(r, f,9) _ 710
logT(r,G) —logr+ 0(1)

Therefore
2
it 08T fog) _
"7 logT(r,G) ’
which is contrary to Theorem 2.

Theorem 3 Let f and g be any two entire functions such that p, < A; < pf < candfor n = 1,F = f"Q[f] and
G = g"Qlg]. Also there exist entire functions a; (i= 1, 2,..., n; n <o) with

OT(r,a;) =0ofT(r,9)} asr - o fori=1,2,..,n
and

OPICHIESY
i=1
Then

- {logT(r, f,9)Y _
rox T(r,F)T(r,G)

Proof. In view of the inequality
T(r,g) <log*M(r,g)
and Lemma 1, we obtain for all sufficiently large values of r that
T(r fo9) <{1+0(ITM(r, 9).f)

ie.,

logT(r,f,9) <log{l+o(1)}+logT(M(r,9),f)
ie.,
_ logT(r,f,9) <o(1)+ (pf + s) logM(r,9)
l.e.,

log T(r, f,9) < o(1) + (py + &)rPa*e), (11
Again in view of Lemma 3, we get for all sufficiently large values of r that
logT(r,F) > (A — &) logr
ie.,
logT(r,F) > (/lf —¢)logr
ie.,
T(r,F) >r*e. (12)
Now combining (11) and (12), it follows for all sufficiently large values of r that
log T (7, o(1) + (ps + e)rPste
g(fog)S (1) + (pr +€) . (13)
T(r,F) rir—e
Since p, < A¢, we can choose (> 0) in such a way that
pgte<i —e (14)

So in view of (13) and (14), it follows that

_NogT(r,fo9)
e s )

Again from Lemma 4 and Lemma 8, we get for all sufficiently large values of r that
logT(r, f,9) - o(1l) + (pf + e) logM(r, g)

T(r,G) ~— T(r,G)
ie.,
lim fSup lOgT(T‘, ﬁ)g) < ( + E)limiiﬁup IOgM(T, g)
r—0 T(T, G) = pf r—0n T(T', G)
ie.,
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lim £Sup IOgT(T, ﬁ)g) < (pf + s)lim sup lOgM(T, g) . T(T, g)
= >0

> T, G) T(r,g) ro» T(r,G)
ie.,
imizup 108 T (1, fo9)
lim 8up o <
r—0m T(‘)", G)_ = (,Df + S).ﬂ.
Since (> 0) is arbitrary, it follows from above that
lim #§up lOgT(T, ﬁ)g) < pp.Te (16)

T T(r,G) ~
Combining (15) and (16), we obtain that
limiup 108 T (T, f,9)Y
T T, F)T(r,G)
im 1ogT(r,/,9) timmup 108T (T, f,9)
r—00 T(T‘, F) T T(T,G)

<0.m.p; =0,

{ogT(r o) _
r>w T(r, F)T(r,G)
This proves the theorem.

Theorem 4 Let f and g be any two entire functions satisfying the following conditions: (i) A, >0 (ii) ﬁf <
o (iii) 0< A, <pyandalsoletforn >1,F = f"Q[f]. Then

sy 10870 fo9) A P
T logllT(r,F) = jf'ﬁf :

Proof. We know that for r > 0 {cf. [8]} and for all sufficiently large values of r,

T(r, f,9) z%logM{%M(g,g) +o(1).f}. 17)

Since A¢ and A, are the lower orders of f and g respectively then for given (> 0) and for all sufficiently large values of r
we obtain that
logM(r, f) > r*—¢
and
logM(r,g) > r*s—¢
where 0 < € < min{/’lf,/lg}. So from (17) we have for all sufficiently large values of r,

11 Ap—e
10 1,0) 2 5{5M (5.9) + o)
ie.,
| 11 r fee
T(r fog9) = 3 §M(Z'g)} f
ie.,
logT(r,f,9) = O(1) + (4 —¢) logM(g,g)
ie.,
logT(r, f,9) = 0(1) + (A — g)(g)ﬂg—s
ie.,

log?T(r, f,9) = 0(1) + (1, — ) logr. (18)
Again in view of Lemma 1, we get for a sequence of values r tending to infinity that
log?'T(r, F) < (A7 + €) logr
ie.,
loglIT(r, F) < (4 + €) log . (19)
Combining (18) and (19), it follows for a sequence of values of r tending to infinity that
log?IT(r, £,9) _ 0(1) + (4, — &) logr
logl®IT(r, F) ~ (If +¢)logr '
Since (> 0) is arbitrary, we obtain that

lim §up IOg[Z]T(T, fog) > )'_g
7 loglPIT(r, F) — If'
Again from (17), we get for a sequence of values of r tending to infinity that

(20)
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r
logT(r,f,g9) = 0(1) + (4 — s)(Z)’)g‘E
ie.,
log?!T(r, f,9) = 0(1) + (p, — €)logr. (21)
Also in view of Lemma 5, for all sufficiently large values of r we have
logl®!IT(r,F) < (p, + €)logr
ie.,
logl!IT(r, F) < (ﬁf + e) logr. (22)
Now from (21) and (22), it follows for a sequence of values of r tending to infinity that
logl®IT(7, £, 9) - o) + (p, —¢)logr
logRIT(r, F) = ('l_)f N 8) ogr
As £(0 < € < py) is arbitrary, we obtain from above that
imisup 18P fo9) _ Py 23)
" log® T(r,F) — ﬁf'

Therefore from (20) and (23), we get that
lim f8up log?IT (7, £,9) > max{/l—g Pg
"% logllT(r,F) ~ Zf 'ﬁf '
Thus the theorem is established.

Theorem 5 Let f be meromorphic and g be entire such that (i) 0 < Ef < ﬁf, (i) pg < oo, (iii) pf < ooand
(iv) forn=1, F = f"Q[f]. Then
timint 108" T (2 fo.9) < min Y Py
" log®T(r,F) T By
Proof. Inview of Lemma 1 and the inequality

T(r,g) <log*M(r, g),
we obtain for all sufficiently large values of r that

logT(r, f,g) <o(1) + (pf + s) logM(r, g). (24)
Also for a sequence of values of r tending to infinity,
logM(r, g) < rto*e, (25)

Combining (24) and (25), it follows for a sequence of values of r tending to infinity that

logT(r, f,9) < o(1) + (py + e)r*o*
ie.,

logT(r, f,g) < %% {0 (1) + (py + €)}
ie.,

log®T(r, f,9) < 0(1) + (1, + ) logr. (26)
Again in view of Lemma 5, we obtain for all sufficiently large values of r that
log?'T(r,F) > (27 — €) logr

ie.,
log®1T(r, F) > (if - e) logr. (27)
Now from (26) and (27), we get for a sequence of values of r tending to infinity that
logl!IT (7, £, 9) - 0(1) + (4, + &) logr
logl?IT(r,F) ~ (If —¢)logr .

As (> 0) is arbitrary, it follows that
o 08T £o9) < )
"% logllT(r,F) T Ef'
In view of Lemma 1, we obtain for all sufficiently large values of r that
log®T(r, f,9) < 0(1) + (p, + €)logr. (29)
Also by Remark 1, it follows for a sequence of values of r tending to infinity that
logl?!T(r, F) > (p, — €) logr

(28)

ie.,

log®IT(r, F) > (ﬁf - e) log . (30)
Combining (29) and (30), we get for a sequence of values of r tending to infinity that
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log®IT (1, £, 9) - 0(1) + (py + €)logr
(2] - — '
loglIT (v, F) (pf _ g) logr

Since (> 0) is arbitrary, it follows from above that
iméint 1082 T, £.9) <Py 31)
% logleIT(r,F) ~ ﬁf'
Now from (28) and (31), we get that
timint 1087 (", fo.9) < min %y Py
"% logldT(r,F) ~ jf ’ﬁf '
This proves the theorem.

The following theorem is a natural consequence of Theorem 4 and Theorem 5:

Theorem 6 Let f and g be any two entire functions such that
()0 <A <P, <o, (i) 0 < A < py < o0, (i) 0 < 2y < py < o and
(iv)forn=1,F = f"Q[f]. Then

2 2
lim tnf w < min{%—g,f—g} < max{/}—g,f—g < hmri‘f M.
logl?IT (r, F) A Py Py logl?IT (r, F)

Theorem 7 Let f be meromorphic and g be entire satisfying 0 < A < p; < o0,p, > 0 and also letforn > 1,
F = f"Q[f]. Then
limisup 108171T (exp(r?9), £, 9) o
"7 loglIT (exp(r#), F) ’

where 0 < p < py.
Proof. Let0 < u' < p,. Then in view of Lemma 2, we get for a sequence of values of r tending to infinity that

logT(r, fog) = log T (exp(r*), f)

ie.,
_ logT(r, f,9) = (A — &) log{exp(r* )}
Le.,
logT(r,f,9) = (4 — s)r“'
ie.,

log®IT(r, f,g) = 0(1) + u'logr. (32)
Again in view of Lemma 3, we have for all sufficiently large values of r,
log T (exp(r*), F) < (pr + €) log{exp(r*)}
ie.,
logT(exp(r*),F) < (pf +&)rk
ie.,
logT(exp(r*),F) < 0(1) + ulogr. (33)
Now combining (32) and (33), we obtain for a sequence of values of r tending to infinity that
log™IT (exp(r*9), fog) _ O(1) +p'r?s
logl®IT (exp(r#),F) — 0(1) + ulogr

from which the theorem follows.
Remark 2 The condition p, > 0 is necessary in Theorem 7 as we see in the following example.

Example2 Let f =expz,g=zandu = 1(> 0). Then f,g = expz and forn = 1,F = f*Q[f]. Taking

n=14 =1ny =1landny; = =mny = 0; wesee that F = exp 2z. Then
— lim Sup log[Z]M(T' f) -1
-0 lOgT' )
1. = limfinf logi*lM(r. /) _ 1
and
_ lim&up logl?IM(r, 9) =0
g T —00 lOgT
Also we get that
T
T(r,f) ==
.f) =~
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Therefore
e
T(exp(r9), £,9) = ~
and

2expr
T(exp(r*),F) = :

So from the above two expressions we obtain that
logl?IT (exp(r?9),f,9)  0(1)
logl21T (exp(r#),F) ~ logr + 0(1)

=0,
"7 loglsIT (exp(r#), F)

which contradicts Theorem 7.
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