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I. INTRODUCTION, DEFINITIONS AND NOTATIONS. 
Let ℂ be the set of all finite complex numbers. Also let  f  be a meromorphic function and g be an entire function defined on 

ℂ . In the sequel we use the following two notations: 

 𝑖  log[𝑘]𝑥 = log(log[𝑘−1]𝑥)   𝑓𝑜𝑟 𝑘 = 1,2,3, … ;  log[0]𝑥 = 𝑥 
and 

 𝑖𝑖  exp[𝑘]𝑥 = exp 𝑒𝑥𝑝 𝑘−1 𝑥  𝑓𝑜𝑟 𝑘 = 1,2,3, … ; exp[0]𝑥 = 𝑥. 
The following definitions are frequently used in this paper: 

Definition 1  The order 𝜌𝑓  and lower order 𝜆𝑓  of a meromorphic function f are defined as 

𝜌𝑓 =  
log 𝑇(𝑟, 𝑓)

log 𝑟𝑟→∞  
lim ⁡sup

 

and 

𝜆𝑓 =  
log 𝑇(𝑟, 𝑓)

log 𝑟𝑟→∞
lim ⁡inf . 

If  f  is entire, one can easily verify that 

𝜌𝑓 =  
log[2] 𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞  
lim ⁡sup

 

and 

𝜆𝑓 =  
log[2] 𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞
lim ⁡inf . 

Definition 2   The hyper order 𝜌
𝑓
and hyper lower order 𝜆𝑓  of  a  meromorphic function  f  are defined as follows 

 𝜌
𝑓

=  
log[2] 𝑇(𝑟, 𝑓)

log 𝑟𝑟→∞  
lim ⁡sup

 

and 

𝜆𝑓 =  
log[2] 𝑇(𝑟, 𝑓)

log 𝑟𝑟→∞
lim ⁡inf . 

If  f is entire, then 

 𝜌
𝑓

=  
log[3] 𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞  
lim ⁡sup

 

and 

𝜆𝑓 =  
log[3] 𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞
lim ⁡inf . 

Definition 3  The type 𝜍𝑓  of a meromorphic function  f  is defined as follows 

𝜍𝑓 =  
𝑇(𝑟, 𝑓)

𝑟𝜌𝑓𝑟→∞  
lim ⁡sup

, 0 < 𝜌𝑓 < ∞. 

When  f  is entire, then 

𝜍𝑓 =  
log𝑀(𝑟, 𝑓)

𝑟𝜌𝑓𝑟→∞  
lim ⁡sup

, 0 < 𝜌𝑓 < ∞. 

Definition 4   A function 𝜆𝑓(𝑟) is called a lower proximate order of a meromorphic function  f  of  finite lower order 𝜆𝑓   if  

(i) 𝜆𝑓(𝑟) is non-negative and continuous for  𝑟 ≥ 𝑟0, say 

(ii) 𝜆𝑓(𝑟) is differentiable for 𝑟 ≥ 𝑟0 except possibly at isolated points at which 𝜆𝑓
′ (𝑟 + 0) and  𝜆𝑓

′ (𝑟 − 0) exists,  
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(iii)  

lim
𝑟→∞

𝜆𝑓 𝑟 = 𝜆𝑓 , 

(iv)  

lim
𝑟→∞

𝑟𝜆𝑓
′  𝑟 log 𝑟 = 0 

and 

(v)  

 
𝑇(𝑟, 𝑓)

𝑟𝜆𝑓(𝑟)𝑟→∞
lim ⁡inf = 1. 

Definition 5   Let ‘a’ be a complex number, finite or infinite. The Nevanlinna’s deficiency and Valiron deficiency of ‘a’ with 

respect to a meromorphic function  f  are defined as 

𝛿 𝑎; 𝑓 = 1 −  
𝑁(𝑟, 𝑎; 𝑓)

𝑇(𝑟, 𝑓)𝑟→∞  
lim ⁡sup

=  
𝑚(𝑟, 𝑎; 𝑓)

𝑇(𝑟, 𝑓)𝑟→∞  
lim ⁡inf  

and 

Δ 𝑎; 𝑓 = 1 −  
𝑁(𝑟, 𝑎; 𝑓)

𝑇(𝑟, 𝑓)𝑟→∞  
lim ⁡inf =  

𝑚(𝑟, 𝑎; 𝑓)

𝑇(𝑟, 𝑓)𝑟→∞  
lim ⁡sup

. 

Let  f   be a non-constant meromorphic function defined in the open complex plane ℂ. Also let n0j, n1j,…,  nkj (k ≥ 1) be non-

negative integers such that for each j,  𝑛𝑖𝑗
𝑘
𝑖=0 ≥ 1.  We call 

𝑀𝑗  𝑓 = 𝐴𝑗 (𝑓)𝑛0𝑗 (𝑓(1))𝑛1𝑗 … (𝑓(𝑘))𝑛𝑘𝑗  

where 𝑇 𝑟, 𝐴𝑗 = 𝑆(𝑟, 𝑓), to be a differential monomial generated by  f.  The numbers 

𝛾𝑀𝑗
=  𝑛𝑖𝑗

𝑘

𝑖=0

 

and 

Γ𝑀𝑗
=  (𝑖 + 1)𝑛𝑖𝑗

𝑘

𝑖=0

 

are called the degree and weight of 𝑀𝑗 [𝑓] {cf. [4]} respectively. The expression 

𝑃 𝑓 =  𝑀𝑗 [𝑓]

𝑠

𝑗=1

 

is called a differential polynomial generated by  f.  The numbers 

𝛾𝑃 = max
1≤𝑗≤𝑠

𝛾𝑀𝑗
 

and 

Γ𝑃 = max
1≤𝑗≤𝑠

Γ𝑀𝑗
 

are respectively called the degree and weight of P[f]  {cf.  [4]}. Also we call the numbers 

𝛾𝑃 = min
1≤𝑗≤𝑠

𝛾𝑀𝑗
 

and k ( the order of the highest derivative of  f) the lower degree and the order of P[f] respectively. If 𝛾𝑃 = 𝛾𝑃 , P[f] is called a 

homogeneous differential polynomial. 

Bhooshnurmath and Prasad [3] considered a special type of differential polynomial of the form 𝐹 = 𝑓𝑛𝑄[𝑓] where 

Q[f] is a differential polynomial in f  and n = 0, 1, 2,…. In this paper we intend to prove some improved results depending 

upon the comparative growth properties of the composition of entire and meromorphic functions and a special type of 

differential polynomial as mentioned above and generated by one of the factors of the composition. We do not explain the 

standard notations and definitions in the theory of entire and meromorphic functions because those are available in [9] and 

[5].   

  

II. LEMMAS. 
In this section we present some lemmas which will be needed in the sequel. 

Lemma 1  [1]  If  f  is meromorphic and  g  is entire then for all sufficiently large values of  r, 

𝑇 𝑟, 𝑓𝑜𝑔 ≤  1 + 𝑜 1  
𝑇 𝑟, 𝑔 

log𝑀 𝑟, 𝑔 
𝑇 𝑀 𝑟, 𝑔 , 𝑓 . 

Lemma 2 [2] Let  f  be meromorphic and  g  be entire and suppose that 0 < 𝜇 < 𝜌𝑔 ≤ ∞. Then for a sequence of values of  r  

tending to infinity, 

𝑇(𝑟, 𝑓𝑜𝑔) ≥ 𝑇(exp( 𝑟𝜇 ), 𝑓). 
Lemma 3 [3] Let 𝐹 = 𝑓𝑛𝑄[𝑓] where Q[f] is a differential polynomial in f. If n ≥ 1 then 𝜌𝐹 = 𝜌𝑓  and 𝜆𝐹 = 𝜆𝑓 . 

Lemma 4 Let 𝐹 = 𝑓𝑛𝑄[𝑓] where Q[f] is a differential polynomial in f. If n ≥ 1 then 

lim
𝑟→∞

𝑇(𝑟, 𝐹)

𝑇(𝑟, 𝑓)
= 1. 

The proof  of  Lemma 4 directly follows from Lemma 3. 
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In the line of Lemma 3 we may prove the following lemma: 

Lemma 5 Let 𝐹 = 𝑓𝑛𝑄[𝑓] where Q[f] is a differential polynomial in f. If n ≥ 1 then 𝜌
𝐹

= 𝜌
𝑓
 and   𝜆𝐹 = 𝜆𝑓 . 

Lemma 6 For a meromorphic function  f  of finite lower order, lower proximate order exists. 

The lemma can be proved in the line of  Theorem 1 [7] and so the proof is omitted. 

 

Lemma 7 Let  f  be a meromorphic function of finite lower order 𝜆𝑓 . Then for 𝛿 > 0  the function 𝑟𝜆𝑓+𝛿−𝜆𝑓 (𝑟) is an 

increasing  function  of  r.  

Proof.  Since 
𝑑

𝑑𝑟
𝑟𝜆𝑓+𝛿−𝜆𝑓(𝑟) =  𝜆𝑓 + 𝛿 − 𝜆𝑓 𝑟 − 𝑟𝜆𝑓

′ log 𝑟 𝑟𝜆𝑓+𝛿−𝜆𝑓 𝑟 −1 > 0 

for sufficiently large values of  r, the lemma follows.  

Lemma 8  [6] Let  f  be an entire function of finite lower order. If there exists entire functions ai (i= 1, 2, 3,…, n; n ≤ ∞) 

satisfying 𝑇 𝑟, 𝑎𝑖 = 𝑜{𝑇(𝑟, 𝑓)} and 

 𝛿(𝑎𝑖 , 𝑓)

𝑛

𝑖=1

= 1, 

then 

lim
𝑟→∞

𝑇(𝑟, 𝑓)

log𝑀(𝑟, 𝑓)
=

1

𝜋
. 

 

III. THEOREMS. 
In this section we present the main results of the paper. 

 

Theorem 1  Let  f  be a meromorphic function and  g  be an entire function satisfying 

  𝑖  𝜆𝑓 , 𝜆𝑔  are both finite and  

 𝑖𝑖  𝑓𝑜𝑟 𝑛 ≥ 1, 𝐺 = 𝑔𝑛𝑄[𝑔]. Then 

 
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞
lim ⁡inf ≤ 3. 𝜌𝑓 . 2𝜆𝑔 . 

Proof.  If  𝜌𝑓 = ∞, the result is obvious. So we suppose that 𝜌𝑓 < ∞. Since 𝑇 𝑟, 𝑔 ≤ log+𝑀 𝑟, 𝑔 , in view of  Lemma 1 we 

get for all sufficiently large values of  r  that 

𝑇 𝑟, 𝑓𝑜𝑔 ≤  1 + 𝑜 1  𝑇(𝑀 𝑟, 𝑔 , 𝑓) 
i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≤ log{1 + 𝑜(1)} + log 𝑇(𝑀 𝑟, 𝑔 , 𝑓) 

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≤ 𝑜 1 +  𝜌𝑓 + 𝜀 log𝑀(𝑟, 𝑔) 

i.e., 

 
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝑔)𝑟→∞  
lim ⁡inf ≤  𝜌𝑓 + 𝜀  

log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝑔)𝑟→∞
lim ⁡inf . 

Since 𝜀(> 0) is arbitrary, it follows that 

                                   
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝑔)𝑟→∞  
lim ⁡inf ≤ 𝜌𝑓 .  

log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝑔)𝑟→∞
lim ⁡inf .                              1  

As by condition (v) of Definition 4 

 
𝑇(𝑟, 𝑔)

𝑟𝜆𝑔(𝑟)𝑟→∞ 
lim ⁡inf = 1, 

so for given 𝜀(0 < 𝜀 < 1) we get for a sequence of values of  r tending to infinity that 

                                                            𝑇 𝑟, 𝑔 ≤  1 + 𝜀 𝑟𝜆𝑔 𝑟                                          (2) 
and for all sufficiently large values of  r, 

                                                            𝑇 𝑟, 𝑔 >  1 − 𝜀 𝑟𝜆𝑔 𝑟                                          (3) 

Since 

log𝑀(𝑟, 𝑔) ≤ 3𝑇(2𝑟, 𝑔) 

{cf. [5]}, we have by (2), for a sequence of values of  r tending to infinity,  

                              log𝑀(𝑟, 𝑔) ≤ 3𝑇 2𝑟, 𝑔 ≤ 3 1 + 𝜀  2𝑟 𝜆𝑔 2𝑟 .                           (4) 

Combining (3) and (4), we obtain for a sequence of values of r tending to infinity that 

log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝑔)
≤

3(1 + 𝜀)

(1 − 𝜀)
.
(2𝑟)𝜆𝑔(2𝑟)

𝑟𝜆𝑔(𝑟)
. 

Now for any 𝛿(> 0), for a sequence of values of r tending to infinity we obtain that 

log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝑔)
≤

3(1 + 𝜀)

(1 − 𝜀)
.

(2𝑟)𝜆𝑔+𝛿

(2𝑟)𝜆𝑔+𝛿−𝜆𝑔(2𝑟)
.

1

𝑟𝜆𝑔(𝑟)
 

i.e., 
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log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝑔)
≤

3(1 + 𝜀)

(1 − 𝜀)
. 2𝜆𝑔+𝛿                                   (5) 

because 𝑟𝜆𝑔+𝛿−𝜆𝑔(𝑟) is an increasing function of r by Lemma 7. Since 𝜀(> 0) and 𝛿(> 0) are arbitrary, it follows from (5) 

that 

                                                        
log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝑔)𝑟→∞ 
lim ⁡inf ≤ 3. 2𝜆𝑔 .                                       (6) 

Thus from (1) and (6) we obtain that 

                                            
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝑔)𝑟→∞ 
lim ⁡inf ≤ 3. 𝜌𝑓 . 2𝜆𝑔 .                                          (7) 

Now in view of (7) and Lemma 3, we get that 

 
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞  
lim ⁡inf =  

log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝑔)𝑟→∞  
lim ⁡inf . lim

𝑟→∞

𝑇(𝑟, 𝑔)

𝑇(𝑟, 𝐺)
 

≤ 3. 𝜌𝑓 . 2𝜆𝑔 . 

This proves the theorem. 

 

Theorem 2  Let  f  be meromorphic and  g  be entire such that 𝜌𝑓 < ∞, 𝜆𝑔 < ∞ and for 𝑛 ≥ 1, 𝐺 = 𝑔𝑛𝑄 𝑔 . Then 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log𝑇(𝑟, 𝐺)𝑟→∞
lim ⁡inf ≤ 1. 

Proof.  Since 

𝑇 𝑟, 𝑔 ≤ log+𝑀 𝑟, 𝑔 , 
in view of Lemma 1, we get for all sufficiently large values of r that 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≤ log 𝑇(𝑀 𝑟, 𝑔 , 𝑓) + log{1 + 𝑜(1)} 

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≤  𝜌𝑓 + 𝜀 log𝑀(𝑟, 𝑔) + 𝑜(1) 

i.e., 

                                  log[2]𝑇 𝑟, 𝑓𝑜𝑔 ≤ log[2]𝑀 𝑟, 𝑔 + 𝑂 1 .                                     (8) 

It is well known that for any entire function  g, 

log𝑀(𝑟, 𝑔) ≤ 3𝑇 2𝑟, 𝑔                𝑐𝑓.  5  . 
Then for 0 < 𝜀 < 1 and 𝛿 > 0 , for a sequence of values of r  tending to 

infinity it follows from (5) that 

                                             log 2 𝑀 𝑟, 𝑔 ≤ log 𝑇 𝑟, 𝑔 +  𝑂 1 .                                 9  
Now combining (8) and (9), we obtain for a sequence of values of r tending to infinity that  

log 2 𝑇(𝑟, 𝑓𝑜𝑔) ≤ log 𝑇 𝑟, 𝑔 + 𝑂(1) 
i.e., 

                                                    
log 2 𝑇(𝑟, 𝑓𝑜𝑔)

log 𝑇 𝑟, 𝑔 
≤ 1.                                                    (10) 

As by Lemma 4, 

lim
𝑟→∞

log 𝑇(𝑟, 𝑔)

log 𝑇(𝑟, 𝐺)
 

exists and is equal to 1, then from (10) we get that 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log 𝑇(𝑟, 𝐺)𝑟→∞  
lim ⁡inf =  

log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log𝑇(𝑟, 𝑔)𝑟→∞  
lim ⁡inf . lim

𝑟→∞

log 𝑇(𝑟, 𝑔)

log 𝑇(𝑟, 𝐺)
 

≤ 1.1 = 1. 
Thus the theorem is established. 

 

Remark 1 The condition 𝜌𝑓 < ∞ is essential in Theorem 2 which is evident from the following example. 

 

Example 1 Let 𝑓 = exp[2]𝑧 and 𝑔 = exp 𝑧. Then 𝑓𝑜𝑔 = exp[3]𝑧 and for 𝑛 ≥ 1, 𝐺 = 𝑔𝑛𝑄 𝑔 . Taking 𝑛 = 1, 𝐴𝑗 = 1, 𝑛0𝑗 =

1 and 𝑛1𝑗 = ⋯ = 𝑛𝑘𝑗 = 0; we see that 𝐺 = exp 2𝑧 . Now we have 

 

𝜌𝑓 =  
log[2]𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞  
lim ⁡sup

=  
log[2](exp[2]𝑟)

log 𝑟𝑟→∞  
lim ⁡sup

= ∞ 

and 

𝜆𝑔 =  
log[2]𝑀(𝑟, 𝑔)

log 𝑟𝑟→∞  
lim ⁡inf =  

log 2 (exp 𝑟)

log 𝑟𝑟→∞  
lim ⁡inf = 1. 

Again from  the  inequality 

 

𝑇(𝑟, 𝑓) ≤ log+𝑀(𝑟, 𝑓) ≤ 3𝑇(2𝑟, 𝑓) 

{cf. p.18, [5]} we obtain that 
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𝑇 𝑟, 𝐺 ≤ log𝑀 𝑟, 𝐺 = log(exp 2𝑟) 
i.e., 

log 𝑇(𝑟, 𝐺) ≤ log 𝑟 + 𝑂(1) 

and 

𝑇 𝑟, 𝑓𝑜𝑔 ≥
1

3
log𝑀  

𝑟

2
, 𝑓𝑜𝑔 =

1

3
exp[2](

𝑟

2
) 

i.e., 

log[2]𝑇 𝑟, 𝑓𝑜𝑔 ≥
𝑟

2
+ 𝑂 1 . 

Combining the above two inequalities, we have 

log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log 𝑇(𝑟, 𝐺)
≥

𝑟
2

+ 𝑂(1)

log 𝑟 + 𝑂(1)
. 

Therefore 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log 𝑇(𝑟, 𝐺)𝑟→∞  
lim ⁡inf = ∞, 

which is contrary to Theorem 2. 

 

Theorem 3  Let  f  and  g  be any two entire functions such that 𝜌𝑔 < 𝜆𝑓 ≤ 𝜌𝑓 < ∞ and for  𝑛 ≥ 1, 𝐹 = 𝑓𝑛𝑄[𝑓] and 

𝐺 = 𝑔𝑛𝑄 𝑔 . Also there exist entire functions ai (i = 1, 2,…, n; n ≤ ∞)  with 

 𝑖 𝑇 𝑟, 𝑎𝑖 = 𝑜 𝑇 𝑟, 𝑔    𝑎𝑠 𝑟 → ∞  𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛 
and 

 𝑖𝑖   𝛿 𝑎𝑖 ; 𝑔 = 1.

𝑛

𝑖=1

 

Then 

lim
𝑟→∞

{log 𝑇(𝑟, 𝑓𝑜𝑔)}2

𝑇 𝑟, 𝐹 𝑇(𝑟, 𝐺)
= 0. 

 

Proof.  In view of the inequality 

𝑇(𝑟, 𝑔) ≤ log+𝑀(𝑟, 𝑔) 
and Lemma 1, we obtain for all sufficiently large values of  r   that 

𝑇 𝑟, 𝑓𝑜𝑔 ≤ {1 + 𝑜 1 }𝑇(𝑀 𝑟, 𝑔 , 𝑓) 

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≤ log{1 + 𝑜(1)} + log 𝑇(𝑀 𝑟, 𝑔 , 𝑓) 

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≤ 𝑜 1 +  𝜌𝑓 + 𝜀 log𝑀(𝑟, 𝑔) 

i.e., 

                               log 𝑇(𝑟, 𝑓𝑜𝑔) ≤ 𝑜 1 +  𝜌𝑓 + 𝜀 𝑟(𝜌𝑔+𝜀).                 (11) 

Again in view of Lemma 3, we get for all sufficiently large values of   r  that 

log 𝑇 𝑟, 𝐹 >  𝜆𝐹 − 𝜀 log 𝑟 

i.e., 

log 𝑇 𝑟, 𝐹 >  𝜆𝑓 − 𝜀 log 𝑟 

i.e., 

                                                   𝑇 𝑟, 𝐹 > 𝑟𝜆𝑓−𝜀 .                                         (12) 
Now combining (11) and (12), it follows for all sufficiently large values of  r that 

                     
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐹)
≤

𝑜 1 + (𝜌𝑓 + 𝜀)𝑟(𝜌𝑔+𝜀)

𝑟𝜆𝑓−𝜀
.                           (13) 

Since 𝜌𝑔 < 𝜆𝑓 , we can choose 𝜀(> 0) in such a way that 

                                             𝜌𝑔 + 𝜀 < 𝜆𝑓 − 𝜀.                                               (14) 

So in view of (13) and (14), it follows that 

                                         lim
𝑟→∞

log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐹)
= 0.                                          (15) 

Again from Lemma 4 and Lemma 8, we get for all sufficiently large values of r that 

log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)
≤

𝑜 1 +  𝜌𝑓 + 𝜀 log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝐺)
 

i.e., 

 
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞   
lim ⁡sup

≤ (𝜌𝑓 + 𝜀)  
log𝑀(𝑟, 𝑔)

𝑇(𝑟, 𝐺)𝑟→∞  
lim ⁡sup

 

i.e., 
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log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞   
lim ⁡sup

≤  𝜌𝑓 + 𝜀  
log𝑀 𝑟, 𝑔 

𝑇 𝑟, 𝑔 𝑟→∞  
lim sup

. lim
𝑟→∞

 
𝑇(𝑟, 𝑔)

𝑇(𝑟, 𝐺)
 

i.e., 

 
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞   
lim ⁡sup

≤  𝜌𝑓 + 𝜀 . 𝜋. 

Since 𝜀(> 0) is arbitrary, it follows from above that 

                                   
log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞   
lim ⁡sup

≤ 𝜌𝑓 . 𝜋.                                   (16) 

Combining (15) and (16), we obtain that 

 
{log 𝑇(𝑟, 𝑓𝑜𝑔)}2

𝑇 𝑟, 𝐹 𝑇(𝑟, 𝐺)𝑟→∞  
lim ⁡sup

 

= lim
𝑟→∞

log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐹)
.  

log 𝑇(𝑟, 𝑓𝑜𝑔)

𝑇(𝑟, 𝐺)𝑟→∞  
lim ⁡sup

 

     

≤ 0. 𝜋. 𝜌𝑓 = 0, 

i.e., 

lim
𝑟→∞

{log 𝑇(𝑟, 𝑓𝑜𝑔)}2

𝑇 𝑟, 𝐹 𝑇(𝑟, 𝐺)
= 0. 

This proves the theorem. 

 

Theorem 4  Let  f  and  g  be any two entire functions satisfying the following conditions:  𝑖    𝜆𝑓 > 0     𝑖𝑖    𝜌
𝑓

<

∞   𝑖𝑖𝑖     0 < 𝜆𝑔 ≤ 𝜌𝑔  and also let for 𝑛 ≥ 1, 𝐹 = 𝑓𝑛𝑄 𝑓 .  Then 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞  
lim ⁡sup

≥ max{
𝜆𝑔

𝜆𝑓
,
𝜌𝑔

𝜌
𝑓

}. 

Proof.   We know that for  r > 0 {cf. [8]} and for all sufficiently large values of r, 

                                     𝑇 𝑟, 𝑓𝑜𝑔 ≥
1

3
log𝑀  

1

8
𝑀  

𝑟

4
, 𝑔 + 𝑜 1 , 𝑓 .                     (17) 

Since 𝜆𝑓  and 𝜆𝑔  are the lower orders of  f  and  g  respectively then for given 𝜀(> 0) and for all sufficiently large values of  r  

we obtain that  

log𝑀 𝑟, 𝑓 > 𝑟𝜆𝑓−𝜀  
and 

log𝑀 𝑟, 𝑔 > 𝑟𝜆𝑔−𝜀  

where 0 < 𝜀 < min 𝜆𝑓 , 𝜆𝑔 . So from (17) we have for all sufficiently large values of  r, 

𝑇(𝑟, 𝑓𝑜𝑔) ≥
1

3
 
1

8
𝑀  

𝑟

4
, 𝑔 + 𝑜 1  

𝜆𝑓−𝜀

 

i.e., 

𝑇(𝑟, 𝑓𝑜𝑔) ≥
1

3
{
1

9
𝑀(

𝑟

4
, 𝑔)}𝜆𝑓−𝜀  

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≥ 𝑂 1 +  𝜆𝑓 − 𝜀 log𝑀(
𝑟

4
, 𝑔) 

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≥ 𝑂 1 +  𝜆𝑓 − 𝜀 (
𝑟

4
)𝜆𝑔−𝜀  

i.e., 

                              log 2 𝑇 𝑟, 𝑓𝑜𝑔 ≥ 𝑂 1 +  𝜆𝑔 − 𝜀 log 𝑟.                            18  

Again in view of Lemma 1, we get for a sequence of values r tending to infinity that 

log 2 𝑇 𝑟, 𝐹 ≤  𝜆𝐹 + 𝜀 log 𝑟 

i.e., 

                                              log 2 𝑇 𝑟, 𝐹 ≤  𝜆𝑓 + 𝜀 log 𝑟.                               (19) 

Combining (18) and (19), it follows for a sequence of values of  r tending to infinity that 

log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)
≥

𝑂 1 +  𝜆𝑔 − 𝜀 log 𝑟

 𝜆𝑓 + 𝜀 log 𝑟
. 

Since 𝜀(> 0) is arbitrary, we obtain that 

 

                                    
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞   
lim ⁡sup

≥
𝜆𝑔

𝜆𝑓
.                                         (20) 

Again from (17), we get for a sequence of values of   r  tending to infinity that 
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log 𝑇(𝑟, 𝑓𝑜𝑔) ≥ 𝑂 1 + (𝜆𝑓 − 𝜀)(
𝑟

4
)𝜌𝑔−𝜀  

i.e., 

                                  log 2 𝑇 𝑟, 𝑓𝑜𝑔 ≥ 𝑂 1 +  𝜌𝑔 − 𝜀 log 𝑟.                     (21) 

Also in view of  Lemma 5, for all sufficiently large values of  r  we have 

log[2]𝑇 𝑟, 𝐹 ≤  𝜌
𝐹

+ 𝜀 log 𝑟 

i.e., 

                                          log[2]𝑇 𝑟, 𝐹 ≤  𝜌
𝑓

+ 𝜀 log 𝑟.                               (22) 

Now from (21) and (22), it follows for a sequence of values of   r tending to infinity that 

log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)
≥

𝑂 1 +  𝜌𝑔 − 𝜀 log 𝑟

 𝜌
𝑓

+ 𝜀 log 𝑟
. 

As 𝜀(0 < 𝜀 < 𝜌𝑔) is arbitrary, we obtain from above that 

                                               
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log⁡[2] 𝑇(𝑟, 𝐹)𝑟→∞   
lim ⁡sup

≥
𝜌𝑔

𝜌
𝑓

.                                    (23) 

Therefore from (20) and (23), we get that 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞  
lim ⁡sup

≥ max{
𝜆𝑔

𝜆𝑓
,
𝜌𝑔

𝜌
𝑓

}. 

Thus the theorem is established. 

 

Theorem 5  Let  f  be meromorphic and  g  be entire such that  𝑖  0 < 𝜆𝑓 < 𝜌
𝑓

,  𝑖𝑖  𝜌𝑔 < ∞,    𝑖𝑖𝑖  𝜌𝑓 < ∞ and 

 𝑖𝑣  𝑓𝑜𝑟 𝑛 ≥ 1, 𝐹 = 𝑓𝑛𝑄 𝑓 . Then 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞  
lim ⁡inf ≤ min{

𝜆𝑔

𝜆𝑓
,
𝜌𝑔

𝜌
𝑓

}. 

Proof.  In view of  Lemma 1 and the inequality 

𝑇 𝑟, 𝑔 ≤ log+𝑀 𝑟, 𝑔 , 
we obtain for all sufficiently large values of   r   that 

                                     log 𝑇 𝑟, 𝑓𝑜𝑔 ≤ 𝑜 1 +  𝜌𝑓 + 𝜀 log𝑀(𝑟, 𝑔).                    (24) 

Also for a sequence of values of   r  tending to infinity, 

                                              log𝑀(𝑟, 𝑔) ≤ 𝑟𝜆𝑔+𝜀 .                                                       (25) 
Combining (24) and (25), it follows for a sequence of values of  r  tending to infinity that 

log 𝑇 𝑟, 𝑓𝑜𝑔 ≤ 𝑜 1 + (𝜌𝑓 + 𝜀)𝑟𝜆𝑔+𝜀  

i.e., 

log 𝑇 𝑟, 𝑓𝑜𝑔 ≤ 𝑟𝜆𝑔+𝜀{𝑜 1 + (𝜌𝑓 + 𝜀)} 

i.e., 

                                 log[2]𝑇 𝑟, 𝑓𝑜𝑔 ≤ 𝑂 1 +  𝜆𝑔 + 𝜀 log 𝑟 .                                (26) 

Again in view of  Lemma  5, we obtain for all sufficiently large values of  r that 

log 2 𝑇 𝑟, 𝐹 >  𝜆𝐹 − 𝜀 log 𝑟 

 

i.e., 

                                           log 2 𝑇 𝑟, 𝐹 >  𝜆𝑓 − 𝜀 log 𝑟 .                                          (27) 

Now from (26) and (27), we get for a sequence of values of  r tending to infinity that 

log[2]𝑇 𝑟, 𝑓𝑜𝑔 

log 2 𝑇 𝑟, 𝐹 
≤

𝑂 1 +  𝜆𝑔 + 𝜀 log 𝑟

 𝜆𝑓 − 𝜀 log 𝑟
. 

 

As 𝜀(> 0) is arbitrary, it follows that 

                                     
log[2]𝑇 𝑟, 𝑓𝑜𝑔 

log 2 𝑇 𝑟, 𝐹 
𝑟→∞  

lim ⁡inf ≤
𝜆𝑔

𝜆𝑓
.                                           (28) 

In view of  Lemma 1, we obtain for all sufficiently large values of  r   that 

               log 2 𝑇 𝑟, 𝑓𝑜𝑔 ≤ 𝑂 1 +  𝜌𝑔 + 𝜀 log 𝑟.                                        (29) 

Also by Remark 1, it follows for a sequence of values of  r  tending to infinity that 

log 2 𝑇 𝑟, 𝐹 >  𝜌
𝐹
− 𝜀 log 𝑟 

i.e., 

                                         log 2 𝑇 𝑟, 𝐹 >  𝜌
𝑓
− 𝜀 log 𝑟.                                 30  

Combining (29) and (30), we get for a sequence of values of  r  tending to infinity that 
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log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)
≤

𝑂 1 +  𝜌𝑔 + 𝜀 log 𝑟

 𝜌
𝑓
− 𝜀 log 𝑟

. 

Since 𝜀(> 0) is arbitrary, it follows from above that 

                                            
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞
lim ⁡inf ≤

𝜌𝑔

𝜌
𝑓

.                                    (31) 

Now from (28) and (31), we get that 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞
lim ⁡inf ≤ min{

𝜆𝑔

𝜆𝑓
,
𝜌𝑔

𝜌
𝑓

}. 

This proves the theorem. 

The following theorem is a natural consequence of  Theorem 4 and Theorem 5: 

 

Theorem 6 Let  f  and  g  be any two entire functions such that   

 𝑖  0 < 𝜆𝑓 < 𝜌
𝑓

< ∞,  𝑖𝑖  0 < 𝜆𝑓 ≤ 𝜌𝑓 < ∞,  𝑖𝑖𝑖  0 < 𝜆𝑔 ≤ 𝜌𝑔 < ∞ and  

 𝑖𝑣 𝑓𝑜𝑟 𝑛 ≥ 1, 𝐹 = 𝑓𝑛𝑄 𝑓 . Then 

 
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞ 
lim ⁡inf ≤ min{

𝜆𝑔

𝜆𝑓
,
𝜌𝑔

𝜌
𝑓

} ≤ max{
𝜆𝑔

𝜆𝑓
,
𝜌𝑔

𝜌
𝑓

} ≤  
log[2]𝑇(𝑟, 𝑓𝑜𝑔)

log[2]𝑇(𝑟, 𝐹)𝑟→∞  
lim ⁡sup

. 

 

Theorem 7 Let  f  be meromorphic and  g  be entire satisfying 0 < 𝜆𝑓 ≤ 𝜌𝑓 < ∞,𝜌𝑔 > 0 and also let for 𝑛 ≥ 1,  

𝐹 = 𝑓𝑛𝑄[𝑓]. Then   

 
log[2]𝑇(exp 𝑟𝜌𝑔  , 𝑓𝑜𝑔)

log[2]𝑇(exp 𝑟𝜇  , 𝐹)
= ∞𝑟→∞  

lim ⁡sup
, 

where 0 < 𝜇 < 𝜌𝑔 .  

Proof.   Let 0 < 𝜇′ < 𝜌𝑔 . Then in view of Lemma 2, we get for a sequence of  values of  r  tending to infinity that 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≥ log 𝑇(exp(𝑟𝜇 ) , 𝑓) 
i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≥  𝜆𝑓 − 𝜀 log{exp(𝑟𝜇
′
)} 

i.e., 

log 𝑇(𝑟, 𝑓𝑜𝑔) ≥  𝜆𝑓 − 𝜀 𝑟𝜇
′
 

i.e., 

                                   log[2]𝑇 𝑟, 𝑓𝑜𝑔 ≥ 𝑂 1 + 𝜇′ log 𝑟 .                                (32) 
Again in view of Lemma 3, we have for all sufficiently large values of  r, 

log 𝑇(exp 𝑟𝜇  , 𝐹) ≤  𝜌𝐹 + 𝜀 log{exp(𝑟𝜇 )} 

i.e., 

log 𝑇(exp 𝑟𝜇  , 𝐹) ≤  𝜌𝑓 + 𝜀 𝑟𝜇  

i.e., 

                              log 𝑇(exp 𝑟𝜇  , 𝐹) ≤ 𝑂 1 + 𝜇 log 𝑟.                              (33) 

Now combining (32) and (33), we obtain for a sequence of values of  r  tending to infinity that 

log[2]𝑇(exp 𝑟𝜌𝑔  , 𝑓𝑜𝑔)

log[2]𝑇(exp 𝑟𝜇  , 𝐹)
≥

𝑂 1 + 𝜇′𝑟𝜌𝑔

𝑂 1 + 𝜇 log 𝑟
 

from which the theorem follows. 

 

Remark 2 The condition 𝜌𝑔 > 0 is necessary in  Theorem 7 as we see in the following example. 

 

Example 2 Let 𝑓 = exp 𝑧 , 𝑔 = 𝑧 and 𝜇 = 1 > 0 . Then 𝑓𝑜𝑔 = exp 𝑧 and for 𝑛 ≥ 1, 𝐹 = 𝑓𝑛𝑄 𝑓 .  Taking  

𝑛 = 1, 𝐴𝑗 = 1, 𝑛0𝑗 = 1 and 𝑛1𝑗 = ⋯ = 𝑛𝑘𝑗 = 0; we see that 𝐹 = exp 2𝑧.  Then 

 

𝜌𝑓 =  
log[2]𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞
lim ⁡sup

= 1, 

𝜆𝑓 =  
log[2]𝑀(𝑟, 𝑓)

log 𝑟𝑟→∞
lim ⁡inf = 1 

and 

𝜌𝑔 =  
log[2]𝑀(𝑟, 𝑔)

log 𝑟𝑟→∞
lim ⁡sup

= 0. 

Also we get that 

𝑇 𝑟, 𝑓 =
𝑟

𝜋
. 
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Therefore 

𝑇 exp 𝑟𝜌𝑔  , 𝑓𝑜𝑔 =
𝑒

𝜋
 

and 

𝑇 exp 𝑟𝜇  , 𝐹 =
2 exp 𝑟

𝜋
. 

So from the above two expressions we obtain that 

log[2]𝑇(exp 𝑟𝜌𝑔  , 𝑓𝑜𝑔)

log[2]𝑇(exp 𝑟𝜇  , 𝐹)
=

𝑂(1)

log 𝑟 + 𝑂(1)
 

i.e., 

 
log[2]𝑇(exp 𝑟𝜌𝑔  , 𝑓𝑜𝑔)

log[2]𝑇(exp 𝑟𝜇  , 𝐹)𝑟→∞   
lim ⁡sup

= 0, 

which contradicts Theorem 7. 
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