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I. Introduction 

In 1981, Fisher [1] initiated the study of fixed points on two metric spaces. In1991, Popa  [2] 

proved some theorems on two metric spaces. After this many authors([3]-[7],[8],[9]-[11]) proved 

many fixed point theorems in two metric spaces. Using the Banach contraction mapping, Nadler [12] 

introduced the concept of multi-valued contraction mapping and he showed that a multi-valued 

contraction mapping gives a fixed point in the complete metric space. Later, some fixed points 

theorems for multifunctions on two complete metric spaces have been proved in [13], [14] and 

[15].The purpose of this paper is to give some common fixed point theorems for multi-valued 

mappings in two metric spaces. 

 

Definition1.2 A sequence {xn} in a metric space (X, d) is said to be convergent to a point x  X if 

given 0 there exists a positive integer n0 such that d(xn,x)   for all n  n0. 

 

Definition1.3. A  sequence {xn} in a metric space (X, d)  is said to be a Cauchy sequence in X if given 

0 there exists a positive integer n0 such that d(xm,xn)   for all m,n  n0 . 

 

Definition1.4. A metric space (X, d) is said to be complete if every Cauchy sequence in X converges 

to a point in X. 

 

Definition1.5 Let X be a non-empty set and f : X → X be a map. An element x in X is called a fixed 

point of X if f(x) = x . 

 

Definition1.6. Let X be a non-empty set and f , g : X → X be two maps. An element x in X is called a 

common fixed point of f and g if f(x) = g(x) = x. 

 

Definition1.7. Let (X,d1) and (Y,d2) be complete metric spaces and B(X) and B(Y) be two families of 

all non-empty bounded subsets of X and Y respectively. The function 1 (A,B) for A, B in B(X)    and 

2 (C,D) for C,D in B (Y) are defined as follow 

            1 (A,B) = sup{ d1(a,b): a  A, bB } 

            2 (C,D) = sup{ d2(c,d): c  C, dD } 

   and         (A) = diameter(A)  

Abstract: In this paper we prove some common fixed point theorems for multivalued mappings in two 

complete metric spaces. 
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If A consists of a single point a we write 1 (A,B) = 1 (a,B). If B also consists of a single point b we 

write 1 (A,B) = 1 (a,B) = 1 (a,b). It follows immediately that 1 (A,B) = 1 (B,A)   0, and  

 1 (A,B)    1 (A,C) + 1 (C,B) for all A,B in B(X). 

  

Definition1.8. If {An : n = 1,2,3…} is a sequence of sets in B(X), we say that it converges to the 

closed set A in B(X) if  

(i) Each point a in A is the limit of some convergent sequence {an  An : n = 1,2,3…}, 

(ii) For arbitrary  > 0, there exists an integer N such that An   A   for n > N where A is the 

union of all open spheres with centres in A and radius  . 

The set A is then said to be the limit of the sequence {An}. 

  

 Definition1.9. Let f  be a multivalued mapping of X into B(X). f is continuous at x in X if whenever  

{xn} is a sequence of points in X converging to x, the sequence {f(xn)} in B(X) converges to fx in 

B(X). If f is continuous at each point x  X, then f is continuous mapping of X into B(X).   

 

Definition1.10. Let T be a multifunction of X into B(X). z is a fixed point of T if Tz = {z}. 

 

Lemma 1.11[16]. If {An} and {Bn} are sequences of bounded subsets of a complete metric space (X, 

d) which converges to the bounded subsets A and B, respectively, then the sequence {δ(An,Bn)} 

converges to δ(A,B). 

 

II. Main Results 

Theorem 2.1: Let (X, d1) and (Y, d2) be two complete metric spaces. Let A, B be mappings of X into 

B(Y) and S, T be mappings of Y into B(X) satisfying the inequalities. 

1 (SAx, TBx′)   max{ 1 (x,x′), 1 ( x,SAx), 1 (x′,TBx′),    

                                                                             ½[ 1 (x,TBx′)+ 1 (SAx, x′)], 2 (Ax, Bx′)}  

                                                                                                                                              --------- (1) 

 2 (BSy, ATy′)    max{ 2 (y,y′), 2 (y,BSy), 2 (y′,ATy′),   

                                                                            ½[ 2 (y,ATy′)+ 2 (BSy,y′)], 2 (Sy,Ty′)} 

                                                                                                                                            ---------- (2) 

for all x, x′ in X and y, y′ in Y where 0<   < 1. If one of the mappings A, B, S and T is continuous, 

then SA and TB have a unique common fixed point z in X and BS and AT have a unique common 

fixed point w in Y.  Further, Az = Bz = {w} and Sw = Tw = {z}.   

 

Proof: From (1) and (2) we have 

1 (SAC, TBD)    max{ 1 (C,D), 1 (C,SAC) , 1 (D,TBD),  

                                                           ½[ 1 (C,TBD)+ 1 (SAC,D)], 2 (AC,BD)}   --------- (3) 

 2 (BSE, ATF)    max{ 2 (E,F), 2 (E,BSE), 2 (F,ATF),   

                                                          ½[ 2 (E, ATF)+ 2 (BSE,F)], ),(1 TFSE  }  ---------- (4) 

                                           C,D B(X) and E,FB(Y) 

Let x0 be an arbitrary point in X. Then y1A(x0) since A: X  B(Y), x1  S(y1) since  

S : Y  B(X) , y2B(x1) since B: X  B(Y) and x2  T(y2) since T : Y  B(X). 

Continuing in this way we get for n 1, y2n-1A(x2n-2), x2n-1S(y2n-1), y2nB(x2n-1) and 

x2n T(y2n) . We define the sequences {xn} in B(X) and {yn} in B(Y) by choosing a point  

x2n-1 (SATB)
n-1

SAx = X2n-1, x2n  (TBSA)
n 
x = X2n,  

y2n-1A (TBSA)
n-1

x = Y2n-1 and y2n  B(SATB)
n-1

SAx = Y2n         n = 1.2,3, … 

Now from (3) we have 

1 (X2n+1, X2n) = 1 (SAX2n, TBX2n-1) 
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                             . max{ 1 (X2n, X2n-1 ), 1 (X2n,SAX2n), 1 (X2n-1, TBX2n-1),   

                                                      ½[ 1 (X2n,TBX2n-1)+ 1 (SAX2n, X2n-1)], 2 (AX2n,BX2n-1 )} 

                         =  .max { 1 (X2n, X2n-1 ), 1 (X2n, X2n+1), 1 (X2n-1, X2n),      

                                                                 ½[ 1 (X2n,X2n)+ 1 ( X2n+1, X2n-1)], 2 (Y2n+1,Y2n) } 

                         =  .max{ 1 (X2n, X2n-1 ), 1 (X2n, X2n+1), 1 (X2n-1, X2n),  

                                                                                        ½. 1 ( X2n+1, X2n-1),  2 (Y2n+1,Y2n) } 

                            .max{ 1 (X2n, X2n-1 ), 1 (X2n, X2n+1), ½. 1 (X2n+1, X2n)+ 1 (X2n, X2n-1),    

                                                                                                                          2 (Y2n+1,Y2n) }  

 Hence 

  1 (X2n+1, X2n)    . max{ 1 ( X2n, X2n-1) , 2 (Y2n+1,Y2n) }             --------------- (5) 

  Now  from (4) we have 

  2 (Y2n+1,Y2n)   = 2 (BSY2n-1, ATY2n) 

                          .max{ 2 (Y2n, Y2n-1), 2 (Y2n-1, BSY2n-1), 2 (Y2n, ATY2n),  

                                                             ½[ 2 (Y2n-1, ATY2n)+ 2 (Y2n,BSY2n-1)], 1 (SY2n-1, TY2n)}   

                           . max{ 2 (Y2n-1, Y2n), 1 (X2n-1, X2n)}                      

Similarly we have  

   1 (X2n, X2n-1)    .max { 1 (X2n-2, X2n-1) , 2 (Y2n-1, Y2n)}               ----------------- (6)  

   2 (Y2n,Y2n-1)    .max { 2 (Y2n-2, Y2n-1), 1 (X2n-1, X2n-2)}   

 from inequalities (5) and (6), we have 

  1 (Xn+1,Xn)    max { 1 (Xn, Xn-1) , 2 (Yn+1, Yn) } 

                                 

                          n
.max { 1 (X1, x0) , 2 (Y2, Y1) }  → 0  as n→∞ 

Also 1 (xn+1,xn)  1 (Xn+1,Xn)  

which implies 1 (xn+1,xn) → 0  as n→∞ 

Thus {xn} is a Cauchy sequence in X. Since X  is complete, it converges to a point z in X.  

Further 

1 (z, Xn)  1 (z, xn)+ 1 (xn, Xn) 

                  1 (z, xn)+ 2 1 (Xn, Xn+1) 

   1 (z, Xn)   0 as n   

Similarly {yn} is a Cauchy sequence in Y and it converges to a point w in Y and 2 (w, Yn)   0 

 as n  . 

Now 

1 (SAx2n,z)   1 ( SAx2n, x2n) + 1 ( x2n, z) 

                      1 ( SAx2n, TBx2n-1) + 1 ( x2n, z) 

                         . max{ 1 (x2n, x2n-1 ), 1 (z,SAx2n), 1 ( x2n, TBz), 

                                        ½[ 1 (x2n,TBx2n-1 )+ 1 ( x2n-1 ,SAx2n)], 2 (Ax2n, B x2n-1 )} 

                                                                                   + 1 ( x2n, z)   0 as n  . 

 Thus 
n

lim SAx2n = {z} =  
n

lim  Sy2n+1 

 Similarly we prove 

         
n

lim TBx2n-1 = {z} =  
n

lim  Ty2n 

         
n

lim BSy2n-1 = {w} =  
n

lim  Bx2n-1 
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n

lim ATy2n  = {w} =  
n

lim  Ax2n 

 Suppose A is continuous, then  

    
n

lim Ax2n = Az = {w}. 

 we prove SAz = {z}. 

We have 

   1 (SAz, z) = 
n

lim 1 (SAz, TBx2n-1) 

                         
n

lim  .max{ 1 (z, x2n-1), 1 (z, SAz), 1 (x2n-1,TBx2n-1),  

                                            ½[ 1 (z, TBx2n-1) + 1 (x2n-1,SAz)], 2 (Az, Bx2n-1)} 

                       <  1 (z, SAz)  (since   <1)   

Thus SAz = {z}.    

Hence Sw = {z}.  (Since Az = {w}) 

Now we prove BSw = {w}. 

We have 

   2 (BSw, w) = 
n

lim 2 (BSw, ATy2n) 

                          
n

lim  .max{ 2 (w,y2n), 2 (w, BSw), 2 (y2n, ATy2n), 

                                                         ½[ 2 (w,ATy2n)+ 2 (y2n,BSw)], 1 (Sw, Ty2n)}  

                        < 2 (w,BSw)    (Since   < 1)  

Thus BSw = {w}. 

Hence Bz =  {w}.  (Since Sw = z) 

Now we prove TBz = {z}. 

We have 

  1 (z,TBz) = 
n

lim 1 (SAx2n, TBz) 

                         
n

lim   .max{ 1 (x2n,z), 1 (x2n,SAx2n), 1 (z,TBz), 

                                                                  ½[ 1 (x2n,TBz)+ 1 (z,SAx2n)], 2 (Ax2n, Bz)}                    

                        < 1 (z,TBz)   (Since  < 1)  

Thus TBz = { z }. 

Hence Tw = {z}.   (Since Bz = {w}) 

Now we prove ATw = {w}. 

We have 

  2 (w, ATw) = 
n

lim 2 (BSy2n-1,ATw) 

                       
n

lim  .max{ 2 (y2n-1,w), 2 (y2n-1, BSy2n-1), 2 (w, ATw),  

                                               ½[ 2 (y2n-1,ATw)+ 2 (w,BSy2n-1)], 1 (Sy2n-1, Tw)} 

                        < 2 (w,ATw)   (Since   < 1)  

Thus ATw = {w}. 

The same results hold if one of the mappings B, S and T is continuous. 

Uniqueness: Let z′ be another common fixed point of SA and TB so that z′ is in SAz′ and TBz′. 

Using inequalities (1) and (2) we have 

     max{ 1 (SAz′, z′), 1 ( z′, TB z′)} 

                            1 (SAz′, TBz′) 

                             .max{ 1 (z′,z′), 1 (z′,SAz′), 1 (z′,TBz′),    

                                                                ½[ 1 (z′,TBz′)+ 1 (z′,SAz′)], 2 (Az′,Bz′)} 
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                          <  . 2 (Az′,Bz′) 

                            . max{ 2 (ATBz′, Bz′), 2 (Az′, BSAz′)} 

                             . 2 (BSAz′,ATBz′) 

                             2
. max{ 2 (Az′, Bz′), 2 (Az′, BSAz′), 2 ( Bz′,AT Bz′),  

                                                                  ½[ 2 (Az′,ATBz′)+ 2 ( BSAz′,Bz′)], 1 (SAz′, TBz′) } 

                           <  2
. 1 (SAz′, TBz′) 

             SAz′ =  TBz′   (since   < 1) 

             SAz′ =  TBz′ = {z′} and Az′ = Bz′ =  {w′} 

Thus    SAz′ =  TBz′ = Sw′ = Tw′ = {z′} and   

            BSw′ = ATw′ =  Az′ = Bz′ =  {w′}  

 We have            

                   1 (z, z′) = 1 (SAz, TBz′) 

                                    .max{ 1 (z,z′), 1 (z,SAz), 1 (z′,TBz′), 

                                                                    ½[ 1 (z,TBz′)+ 1 (z′,SAz)], 2 (Az,Bz′)} 

                                  < 2 (w, w′) 

              2 (w, w′) = 2 (BSw, ATw′) 

                                  .max { 2 (w,w′), 2 (w,BSw), 2 (w′,ATw′),  

                                                            ½[ 2 (w,ATw′)+ 2 (w′,BSw)], 1 (Sw,Tw′) } 

                                 < 1 (z, z′) 

Hence 1 (z, z′) < 2 (w, w′) < 1  (z, z′) 

Thus z = z′. 

So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique 

common fixed point of BS and AT. 

 

Remark :2.2 : If we put A = B, S = T in the above theorem 2.1, we get the following corollary. 

 

Corollory 2.3 : Let (X, d1) and (Y, d2) be two complete  metric spaces. Let A be a mapping of X into 

B(Y) and T be a mapping of Y into B(X) satisfying the inequalities. 

 1  (TAx, TAx′)    max { 1 (x,x′), 1 (x,TAx), 1 (x′,TAx′),  

                                                                  ½[ 1 (x,TAx′)+ 1 (x′,TAx)], 2 (Ax,Ax′) }     

2 (ATy, ATy′)    max { 2 (y,y′), 2 (y,ATy), 2 (y′,ATy′),  

                                                                     ½[ 2 (y,ATy′)+ 2 (y′,ATy)], 1 (Ty,Ty′)}       

for all x, x′ in X and y, y′ in Y where 0<   < 1. If one of the mappings A and T is continuous, then 

TA  has a unique fixed point z in X and AT  has a unique fixed point w in Y. Further,  

 Az = Bz = {w} and Sw = Tw = {z}.  

 

Theorem 2.4: Let (X, d1) and (Y, d2) be two complete metric spaces. Let A, B be mappings of X into 

B(Y) and S, T be mappings of Y into B(X) satisfying the inequalities. 

1 (SAx, TBx′)    max{ 1 (x,x′), 1 (x′,TBx′), 2 (Ax,Bx′), ½[ 1 (x,TBx′)+ 1 (SAx,x′)], 

                                                                                             [ 1 (x,SAx). 1 (x′,TBx′)] / 1 (x,x′)}  

                                                                                                                                            --------- (1) 

 2 (BSy, ATy′)   max{ 2 (y,y′), 2 (y′,ATy′), 2 (Sy,Ty′), ½[ 2 (y,ATy′)+ 2 (BSy,y′)], 

                                                                                          [ 2 (y,BSy). 2 (y′,ATy′)] / 2 (y,y′)} 

                                                                                                                                              ------- (2) 
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for all x, x′ in X and y, y′ in Y where 0<   < 1. If one of the mappings A, B, S and T is continuous, 

then SA and TB have a unique common fixed point z in X and BS and AT have a unique common 

fixed point w in Y.  Further, Az = Bz = {w} and Sw = Tw = {z}.   

Proof:  

From (1) and (2) we have 

1 (SAC, TBD)    max{ 1 (C,D), 1 (D,TBD), 2 (AC,BD),  

                                ½[ 1 (C,TBD)+ 1 (SAC,D)], [ 1 (C,SAC). 1 (D,TBD)] / 1 (C,D)} 

                                                                                                                                       --------- (3) 

 2 (BSE, ATF)    max{ 2 (E,F), 2 (F,ATF), ),(1 TFSE ,  

                                ½[ 2 (E,ATF)+ 2 (BSE,F)], [ 2 (E,BSE). 2 (F,ATF)] / 2 (E,F)} 

                                                                                                                                       ---------- (4) 

                                                      C,D B(X) and E,FB(Y) 

Let x0 be an arbitrary point in X. Then y1A(x0) since A: X  B(Y) , x1  S(y1) since  

S : Y  B(X) , y2B(x1) since B: X  B(Y) and x2  T(y2) since T : Y  B(X). 

Continuing in this way we get for n 1, y2n-1A(x2n-2), x2n-1S(y2n-1), y2nB(x2n-1) and 

x2n T(y2n) . We define the sequences {xn} in B(X) and {yn} in B(Y) by 

choosing a point x2n-1  (SATB)
n-1

SAx = X2n-1, x2n  (TBSA)
n 
x = X2n,  

y2n-1A (TBSA)
n-1

x = Y2n-1  and y2n  B(SATB)
n-1

SAx = Y2n     n = 1.2,3, …. 

Now from (3) we have 

1 (X2n+1, X2n) = 1 (SAX2n, TBX2n-1) 

                              . max{ 1 (X2n, X2n-1), 1 (X2n-1,TBX2n-1), 2 (AX2n,BX2n-1 ),  

                                                                         ½[ 1 (X2n,TBX2n-1)+ 1 (SAX2n,X2n-1)], 

                                                              [ 1 (X2n,SAX2n). 1 (X2n-1,TBX2n-1)] / 1 (X2n, X2n-1)} 

                            =  .max{ 1 (X2n, X2n-1), 1 (X2n-1,X2n), 2 (Y2n+1,Y2n ),  

                                                                                     ½[ 1 (X2n,X2n)+ 1 (X2n+1,X2n-1)], 

                                                                         1 (X2n, X2n+1). 1 (X2n-1, X2n)] / 1 (X2n, X2n-1)} 

                            = .max{ 1 (X2n, X2n-1), 2 (Y2n+1,Y2n ), 1/2[ 1 (X2n+1,X2n)+ 1 (X2n, X2n-1)],  

                                                                                                                              1 (X2n,X2n+1)} 

                           .max{ 1 (X2n, X2n-1), 2 (Y2n+1,Y2n )}--------------------------------------- (5) 

 Now  from  (4) we have 

2 (Y2n, Y2n+1) = 2 (BSY2n-1, ATY2n) 

                           . max{ 2 (Y2n-1, Y2n), 2 (Y2n,ATY2n ), 1  (SY2n-1, TY2n),  

                                                                1/2[ 2 (Y2n-1,ATY2n)+ 2 (BSY2n-1, Y2n)] , 

                                                        2 (Y2n-1,BSY2n-1). 2 (Y2n,ATY2n) / 2 (Y2n-1, Y2n)} 

                            . max { 2 (Y2n-1, Y2n), 1 (X2n-1, X2n)}   

Similarly 

 1 (X2n, X2n-1)     . max{ 1 (X2n-2,X2n-1), 2 (Y2n-1,Y2n)}---------------------------------- (6) 

 2 (Y2n,Y2n-1)    . max { 2 (Y2n-1, Y2n-2), 1 (X2n-1, X2n-2)} 

from inequalities (5) and (6), we have 

  1 (Xn+1,Xn)    max { 1 (Xn, Xn-1) , 2 (Yn+1, Yn) } 

                                 

                         n
.max { 1 (X1, x0) , 2 (Y2, Y1) }  → 0  as n→∞ 

Also 1 (xn, xn+ 1)    1 (Xn, Xn+ 1)  

   1 (xn, xn+1)   0 as n   
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Thus {xn} is a Cauchy sequences in X. Since X is complete, {xn} converges to a point z in X.  

Further 

1 (z, Xn)  1 (z, xn)+ 1 (xn, Xn) 

                  1 (z, xn)+ 2 1 (Xn, Xn+1) 

   1 (z, Xn)   0 as n   

Similarly {yn} is a Cauchy sequence in Y and it converges to a point w in Y and 

2 (w, Yn)   0 as n  . 

Now 

1 (SAx2n,z)   1 ( SAx2n, x2n) + 1 ( x2n, z) 

                      1 ( SAx2n, TBx2n-1) + 1 ( x2n, z) 

                        .max { 1 (x2n, x2n-1), 1 (x2n-1,TBx2n-1), 2 (Ax2n,Bx2n-1 ),  

                                                               ½[ 1 (x2n,TBx2n-1)+ 1 (SAx2n,x2n-1)], 

                                               [ 1 (x2n,SAx2n). 1 (x2n-1,TBx2n-1)] / 1 (x2n, x2n-1)}  

                                                                                 + 1 ( x2n, z)    0 as n  . 

Thus 
n

lim SAx2n = {z} =  
n

lim  Sy2n+1 

Similarly we prove 

         
n

lim TBx2n-1 = {z} =  
n

lim  Ty2n 

         
n

lim BSy2n-1 = {w} =  
n

lim  Bx2n-1 

         
n

lim ATy2n  = {w} =  
n

lim  Ax2n 

 Suppose A  is continuous, then  

    
n

lim Ax2n = Az = {w}. 

Now we prove SAz = {z}  

We have 

   1 (SAz,z)   
n

lim  1 (SAz, TBx2n-1) 

                        
n

lim   .max{ 1 (z, x2n-1),  1 ( x2n-1,TB x2n-1), 2 (Az, Bx2n-1),  

                                                                              ½[ 1 (z,TBx2n-1)+ 1 (SAz,x2n-1)], 

                                                                  1 (z, SAz), 1 ( x2n-1,TB x2n-1) / 1 (z, x2n-1) }    

                      < 1 (z,SAz) (Since  < 1) 

 Thus   SAz = {z} = Sw    

Now we prove BSw = w. 

We have 

   2 (BSw, w)     
n

lim  2 (BSw, ATy2n) 

                             
n

lim  . max{ 2 (w, y2n), 2 (y2n,ATy2n), 1 (Sw, Ty2n),  

                                                                        ½[ 2 (w, ATy2n)+ 2 (BSw,y2n)], 

                                                               2 (w,BSw). 2 (y2n, ATy2n) / 2 (w, y2n) } 

                         < 2 (w,BSw)    (Since   < 1) 

Thus BSw = {w} = Bz. 

Now we prove TBz = {z}. 

  1 (z,TBz)   
n

lim  1 (SAx2n,TBz) 

                        
n

lim   .max{ 1 (x2n ,z), 1 (z ,TBz),  2 (Ax2n,Bz),  
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                                                                ½[ 1 (x2n ,TBz)+ 1 (SAx2n ,z)], 

                                                                    1 (x2n ,SAx2n). 1 (z,TBz) / 1 (x2n ,z)} 

                    < 1 (z,TBz)   (Since  < 1) 

Thus TBz = {z}= Tw. 

Now we prove ATw = {w}. 

 2 (w, ATw)    
n

lim  2 (BSy2n-1, ATw) 

                          
n

lim  .max{ 2 (y2n-1, w), 2 (w,ATw), 1 (Sy2n-1, Tw),   

                                                              ½[ 2 (y2n-1, ATw)+ 2 (BSy2n-1, w)], 

                                                        2 (y2n-1, BSy2n-1). 2 (w,ATw) / 2 (y2n-1, w) } 

                         < 2 (w,ATw)    (Since   < 1) 

Thus ATw = {w}. 

The same results hold if one of  the mappings B, S and T is continuous. 

Uniqueness: Let z′ be another common fixed point of SA and TB so that z′ is in SAz′ and TBz′. 

Using inequalities (1) and (2) we have 

     max{ 1 (SAz′, z′), 1 ( z′, TB z′)} 

                                 1 (SAz′, TBz′)     

                                  . max{ 1 (z′, z′), 1 (z′,TBz′), 2 (Az′,Bz′),  

                                        ½[ 1 (z′,TBz′)+ 1 (SAz′, z′)], [ 1 (z′,SAz′). 1 (z′,TBz′)] / 1 (z′, z′)}   

                                   . 2 (Az′,Bz′) 

                                  . max{ 2 (ATBz′, Bz′), 2 (Az′,BSAz′)} 

                                   . 2 (BSAz′,ATBz′) 

                                   2
. max{ 2 (Az′,Bz′) , 2 (Bz′, ATBz′), 1  (SAz′,TBz′) 

                                                                               ½[ 2 (z′,BSAz′)+ 2 (ATBz′, z′)], 

                                                                            2 ( z′,BSAz′). 2 ( z′,ATBz′)/ 2 (z′,z′) } 

                                    2
 1 (SAz′, TBz′)  

             SAz′ =  TBz′   (since   < 1) 

             SAz′ =  TBz′ = {z′} and Az′ = Bz′ =  {w′} 

Thus    SAz′ =  TBz′ = Sw′ = Tw′ = {z′} and   

            BSw′ = ATw′ =  Az′ = Bz′ =  {w′}  

 We have            

                   1 (z, z′) = 1 (SAz, TBz′) 

                                     . max{ 1 (z, z′), 1 (z′, TBz′), 2 (Az,Bz′),  

                                      ½[ 1 (z, TBz′)+ 1 (SAz, z′)], 1 (z, SAz) . 1 (z′, TBz′) / 1 (z, z′) }                                                                  

                                   <  2 (w, w′)  (Since   < 1) 

Now 

             2 (w, w′) = 2 (BSw, ATw′) 

                                . max{ 2 (w, w′), 2 (w′, ATw′), 1 (Sw,Tw′),    

                                  ½[ 2 (w, ATw′)+ 2 (BSw, w′)], 2 (w, BSw ). 2 (w′, ATw′) / 2 (w, w′)} 

                               < 1 (z, z′) 

    Hence 1 (z, z′) < 2 (w, w′) < 1 (z, z′) 

      z = z′. 
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So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique 

common fixed point of BS and AT. 

Remark: 2.5 : If we put A = B, S = T in the above theorem 2.4, we get the following corollary. 

 

Corollory 2.6 : Let (X, d1) and (Y, d2) be two complete metric spaces. Let A be a mapping of X into 

B(Y) and T be a mapping of Y into B(X) satisfying the inequalities. 

1 (TAx, TAx′)    max{ 1 (x,x′), 1 (x′,TAx′), 2 (Ax,Ax′), ½[ 1 (x,TAx′)+ 1 (TAx,x′)], 

                                                                                             [ 1 (x,TAx). 1 (x′,TAx′)] / 1 (x,x′)} 

 2 (ATy, ATy′)   max{ 2 (y,y′), 2 (y′,ATy′), 2 (Ty,Ty′),½[ 2 (y,ATy′)+ 2 (ATy,y′)],   

                                                                                           [ 2 (y,ATy). 2 (y′,ATy′)] / 2 (y,y′)} 

for all x, x′ in X and y, y′ in Y where 0<   < 1. If one of the mappings A and T is continuous, then 

TA has a unique fixed point z in X and AT has a unique fixed point w in Y.  Further, Az = Bz = {w} 

and  

Sw = Tw = {z}.   

 

Theorem  2.7: Let (X, d1) and (Y, d2) be complete metric spaces.  Let A, B be mappings of X into 

B(Y) and S, T be mappings of Y into B(X) satisfying the inequalities. 

1 (SAx, TBx′) ≤  . max{ 1 (x,x′), 1 (x,SAx), 1 (x′,TBx′), 2 (Ax,Bx′), 

                                                                                                
2

)',(1 TBxx
,

2

)',(1 xSAx
} ------- (1) 

2 (BSy, ATy′) ≤  . max{ 2 (y,y′), 2 (y,BSy), 2 (y′,ATy′), 1 (Sy,Ty′),  

                                                                                              
2

)',(2 ATyy
,

2

)',(2 yBSy
} ---------(2) 

for all x, x′ in X and y,y′ in Y where 0 ≤   < 1. If one of the mappings  A, B, S and T is continuous , 

then SA and TB have a unique common fixed point z in X and BS and AT have a unique common 

fixed point w in Y.  Further, Az = Bz = {w} and Sw = Tw = {z}.   

 

Proof: From (1) and (2) we have 

1 (SAC, TBD)    max{ 1 (C,D), 1 (C,SAC), 1 (D,TBD), 2 (AC,BD), 

                                                                                     
2

),(1 TBDC
,

2

),(1 DSAC
}   --------- (3) 

 2 (BSE, ATF)    max{ 2 (E,F), 2 (E,BSE), 2 (F,ATF), 1 (SE,TF),  

                                                                                  
2

),(2 ATFE
,

2

),(2 FBSE
}     ---------- (4) 

                                                                                   C,D B(X) and E,FB(Y) 

Let x0 be an arbitrary point in X. Then y1A(x0) since A: X  B(Y) , x1  S(y1) since  

S : Y  B(X) , y2B(x1) since B: X  B(Y) and x2  T(y2) since T : Y  B(X). 

continuing in this way we get for n 1, y2n-1A(x2n-2), x2n-1S(y2n-1), y2nB(x2n-1) and 

x2n T(y2n) . We define the sequences {xn} in B(X) and {yn} in B(Y) by 

choosing a point x2n-1  (SATB)
n-1

SAx = X2n-1, x2n  (TBSA)
n 
x = X2n,  

y2n-1A (TBSA)
n-1

x = Y2n-1 and y2n  B(SATB)
n-1

SAx = Y2n     n = 1.2,3, …. 

Now from (3) we have 

1 (X2n+1, X2n) ≤  1 (SAX2n, TBX2n-1) 

                    ≤  .max{ 1  (X2n, X2n-1), 1 (X2n,SAX2n), 1 (X2n-1, TBX2n-1), 2 (AX2n,BX2n-1 ),  

                                                                                       ,
2

),( 1221 nn TBXX

2

),( 1221 nn XSAX
 }                                      
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                    =  . max{ 1 (X2n, X2n-1),  1 (X2n, X2n+1), 1 (X2n-1, X2n), 2 (Y2n+1,Y2n),                                  

                                                                                              
2

),( 221 nn XX
 ,

2

),( 12121  nn XX
  }    

                    ≤  . max{ 1 (X2n, X2n-1),  1 (X2n, X2n+1), 1 (X2n-1, X2n), 2 (Y2n+1,Y2n),                                  

                                                                                                  
2

)X ,(X +)X ,(X 1-2n2n12n12n1   }                                                      

         

                    ≤   . max{ 1 (X2n-1, X2n), 2 (Y2n+1, Y2n)}              --------------------------- (5) 

Now from (4) we have 

  2 ( Y2n, Y2n+1) ≤  2 (BSY2n-1, ATY2n) 

                      ≤   . max{ 2 ( Y2n-1, Y2n), 2 ( Y2n-1, BSY2n-1), 2 ( Y2n, ATY2n),   

                                                          1 (SY2n-1, TY2n),
2

)ATY ,(Y 2n1-2n2  , 
2

)Y ,(BSY 2n1-2n2  } 

                      ≤   . max{ 2 (Y2n-1, Y2n), 1 (X2n-1, X2n)}                  

  

Similarly 

 1 (X2n, X2n-1)     . max{ 1 (X2n-2,X2n-1), 2 (Y2n-1,Y2n)}------------------------------- (6) 

 2 (Y2n,Y2n-1)     . max { 2 (Y2n-1, Y2n-2), 1 (X2n-1, X2n-2)} 

from inequalities (5) and (6), we have 

  1 (Xn, Xn+1)     max { 1 (Xn, Xn-1) , 2 (Yn+1, Yn) } 

                                    

                          n
. max { 1 (x0, X1) , 2 (Y1, Y2) }  0 as n   

   Also 1 (xn, xn+ 1)    1 (Xn, Xn+ 1)  

   1 (xn, xn+1)   0 as n   

Thus {xn} is a Cauchy sequence in X. Since X is complete, {xn} converges to a point z in X.  

Further 

1 (z, Xn)  1 (z, xn)+ 1 (xn, Xn) 

                  1 (z, xn)+ 2 1 (Xn, Xn+1) 

   1 (z, Xn)   0 as n   

Similarly {yn} is a Cauchy sequence in Y and it converges to a point w in Y and 

2 (w, Yn)   0 as n  . 

Now 

1 (SAx2n,z)   1 ( SAx2n, x2n) + 1 ( x2n, z) 

                      1 ( SAx2n, TBx2n-1) + 1 ( x2n, z) 

                     ≤  .max{ 1 (x2n, x2n-1), 1 (x2n,SAx2n), 1 (x2n-1, TBx2n-1), 2 (Ax2n,Bx2n-1 ),  

                                                                                     ,
2

),( 1221 nn TBxx

2

),( 1221 nn xSAx
 } 

                                                                                                      + 1 ( x2n, z)   0 as n   

Thus 
n

lim  SAx2n = {z} = 
n

lim Sy2n+1 

Similarly we prove 

         
n

lim TBx2n-1 = {z} =  
n

lim  Ty2n 

         
n

lim BSy2n-1 = {w} =  
n

lim  Bx2n-1 
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n

lim ATy2n  = {w} =  
n

lim  Ax2n 

Suppose A  is continuous, then  

    
n

lim Ax2n = Az = {w}. 

Now we prove SAz = {z}  

We have 

   1 (SAz,z) = 
n

lim  1 (SAz, TBx2n-1) 

 

                   ≤  
n

lim  . max{ 1 (z, x2n-1), 1 (z,SAz), 1 (x2n-1,TB x2n-1), 2 (Az, Bx2n-1), 

                                                                                           
2

)TBx (z, 1-2n1  , 
2

) x, (SAz 1-2n1 } 

                    < 1 (z,SAz)   (Since   < 1) 

Thus SAz = {z}.  

Hence Sw = {z}.  (Since Az = {w}) 

Now we prove BSw = {w}. 

We have 

   2 (BSw, w)  =  
n

lim 2 (BSw, ATy2n) 

                     ≤  
n

lim  . max{ 2 (w, y2n), 2 (w, BSw), 2 (y2n, ATy2n), 1 (Sw, Ty2n),   

                                                                                              
2

 ) ATy (w, 2n2 ,
2

)y (BSw, 2n2 }    

                     <  2 (w,BSw)    (Since    < 1) 

Thus BSw = {w}. 

Hence Bz = {w}.  (Since Sw = {z}) 

Now we prove TBz = {z} 

  1 (z,TBz)  = 
n

lim 1 (SAx2n, TBz) 

                       ≤  
n

lim  . max{ 1 (x2n ,z), 1 (x2n,SAx2n), 1 (z, TBz), 2 (Ax2n, Bz),  

                                                                                         
2

TBz),(x 2n1 ,  
2

z) ,(SAx 2n1 }                    

                        < 1 (z, TBz)   (Since   < 1) 

Thus TBz = {z}. 

Hence Tw = {z}.   (Since Bz = {w}) 

Now we prove ATw = {w}. 

  2 (w, ATw)  = 
n

lim 2 (BSy2n-1, ATw) 

                        ≤ 
n

lim  . max{ 2 (y2n-1, w), 2 (y2n-1, BSy2n-1), 2 (w, ATw), 1 (Sy2n-1, Tw), 

                                                                                             
2

ATw) ,(y 1-2n2 ,
2

w),(BSy 1-2n2 }                                                                            

                       <  2 (w, ATw)   (Since   < 1) 

Thus ATw = {w}. 

The same results hold if one of  the mappings B, S and T is continuous. 

 

Uniqueness: Let z′ be another common fixed point of SA and TB so that z′ is in SAz′ and TBz′. 

Using inequalities (1) and (2) we have 

     max{ 1 (SAz′, z′), 1 ( z′, TB z′)} 
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                                 1 (SAz′, TBz′)  

                                 ≤  .max{ 1  (z′, z′), 1 ( z′,SA z′), 1 ( z′, TB z′), 2 (A z′,B z′ ),  

                                                                                                   ,
2

)',z'(1 TBz

2

)','(1 zSAz
 } 

                                   . 2 (Az′,Bz′) 

                                  . max{ 2 (ATBz′, Bz′), 2 (Az′,BSAz′)} 

                                   . 2 (BSAz′,ATBz′) 

                                ≤   2
. max{ 2 (Az′, Bz′), 2 ( Az′, BSAz′), 2 (Bz′, ATBz′),   

                                                   1 (SAz′, TBz′), 
2

)ATBz' ,(Az'2  , 
2

)Bz' ,(BSAz'2  } 

                                  2
 1 (SAz′, TBz′)  

             SAz′ =  TBz′   (since   < 1) 

             SAz′ =  TBz′ = {z′} and Az′ = Bz′ =  {w′} 

Thus    SAz′ =  TBz′ = Sw′ = Tw′ = {z′} and   

            BSw′ = ATw′ =  Az′ = Bz′ =  {w′}  

 We have            

            1 (z, z′) = 1 (SAz, TBz′) 

                          ≤  . max{ 1 (z, z′), 1 (z,SAz), 1 (z′,TBz′), 2 (Az,Bz′), 

                                                                                             
2

)TBz' (z,1 ,
2

)z' (SAz,1 } 

                           < 2 (w, w′)  (since   < 1) 

           2 (w, w′) = 2 (BSw,ATw′) 

                           ≤   . max{ 2 (w,w′), 2 (w, BSw), 2 (w′,ATw′), 1 (Sw,Tw′), 

                                                                                              
2

)ATw' (w,2 , 
2

) w'(BSw,2 } 

                          < 1 (z, z′)  (since   < 1) 

Hence 1 (z, z′) < 2 (w, w′) < 1 (z, z′) 

Thus z = z′. 

So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique 

common fixed point of BS and AT. 

  

Remark 2.8: If we put A = B, S = T in the above theorem 2.7, we get the following corollary. 

 

Corollary 2.9: Let (X,d1) and (Y,d2) be two complete metric spaces. Let A be a mapping of X into Y 

and T be a mapping of Y into X satisfying the inequalities.  

1 (TAx, TAx′) ≤  .max{ 1 (x,x′), 1 (x,TAx), 1 (x′,TAx′), 2 (Ax,Ax′),
2

)',(1 TAxx
,

2

)',(1 xTAx
}  

                         

2 (ATy,ATy′)≤ .max{ 2 (y,y′), 2 (y,ATy), 2 (y′,ATy′), 1 (Ty,Ty′),
2

)',(2 ATyy
,

2

)',(2 yATy
} 

for all x, x′ in X and y,y′ in Y where 0 ≤  < 1. If one of the mappings A and T is continuous, then 

TA has a unique fixed point z in X and AT has a unique fixed point w in Y.  Further,  

Az = Bz = {w} and Sw = Tw = {z}.   
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Theorem  2.10: Let (X, d1) and (Y, d2) be complete metric spaces.  Let A, B be mappings of X into 

B(Y) and S, T be mappings of Y into B(X) satisfying the inequalities. 

1 (SAx, TBx′) ≤  . max{ 1 (x,x′), 1 (x,SAx), 2 (Ax,Bx′), 
2

)',(1 TBxx
,

2

)',(1 xSAx
 

                                                                         [ 1 (x,SAx). 1 (x′,TBx′)] / 1 (x,x′) } ------- (1) 

2 (BSy, ATy′) ≤  . max{ 2 (y,y′), 2 (y,BSy),  1 (Sy,Ty′), 
2

)',(2 ATyy
,

2

)',(2 yBSy
 

                                                                         [ 2 (y,BSy). 2 (y′,ATy′)] / 2 (y,y′) } ---------(2) 

for all x, x′ in X and y,y′ in Y where 0 ≤   < 1. If one of the mappings  A, B, S and T is continuous , 

then SA and TB have a unique common fixed point z in X and BS and AT have a unique common 

fixed point w in Y.  Further, Az = Bz = {w} and Sw = Tw = {z}.   

 

Proof: From (1) and (2) we have 

1 (SAC, TBD)    max{ 1 (C,D), 1 (C,SAC), 2 (AC,BD), 
2

),(1 TBDC
,

2

),(1 DSAC
 

                                                                   [ 1 (C,SAC). 1 (D,TBD)] / 1 (C,D) }      --------- (3) 

 2 (BSE, ATF)   max{ 2 (E,F), 2 (E,BSE), 1 (SE,TF), 
2

),(2 ATFE
,

2

),(2 FBSE
 

                                                                   [ 2 (E,BSE). 2 (F′,ATF)] / 2 (E,F)}       ---------- (4) 

                                                                                   C,D B(X) and E,FB(Y) 

Let x0 be an arbitrary point in X. Then y1A(x0) since A: X  B(Y), x1  S(y1) since S : Y  B(X), 

y2B(x1) since B: X  B(Y) and x2  T(y2) since T : Y  B(X).Continuing in this way we get for  

n 1, y2n-1A(x2n-2), x2n-1S(y2n-1), y2nB(x2n-1) and x2n T(y2n) . We define the sequences {xn} in  

B(X) and {yn} in B(Y) by choosing a point  x2n-1  (SATB)
n-1

SAx = X2n-1, x2n  (TBSA)
n 
x = X2n, ,  

y2n-1A (TBSA)
n-1

x = Y2n-1 and  y2n  B(SATB)
n-1

SAx = Y2n     n = 1.2,3, …. 

 

Now from (3) we have 

1 (X2n+1, X2n) ≤  1 (SAX2n, TBX2n-1) 

                    ≤  .max{ 1 (X2n, X2n-1), 1 (X2n,SAX2n), 2 (AX2n,BX2n-1 ), ,
2

),( 1221 nn TBXX
 

                                    
2

),( 1221 nn XSAX
, [ 1 (X2n,SAX2n). 1 ( X2n-1, TBX2n-1)] / 1 (X2n, X2n-1)}                                      

                    =  . max{ 1 (X2n, X2n-1),  1 (X2n, X2n+1), 2 (Y2n+1,Y2n), 
2

),( 221 nn XX
 ,                                

                                              
2

),( 12121  nn XX
,[ 1 (X2n,X2n+1). 1 (X2n-1,X2n)] / 1 (X2n, X2n-1) }    

                    ≤  . max{ 1 (X2n, X2n-1),  1 (X2n, X2n+1), 2 (Y2n+1,Y2n), 0,                                

                                                                       
2

)X ,(X +)X ,(X 1-2n2n12n12n1  
, 1 (X2n,X2n+1) }                                                      

         

                    ≤   . max{ 1 (X2n-1, X2n), 2 (Y2n+1, Y2n)}              --------------------------- (5) 

Now from (4) we have 

  2 ( Y2n, Y2n+1) ≤  2 (BSY2n-1, ATY2n) 

                      ≤    max{ 2 (Y2n-1, Y2n), 2 ( Y2n-1, BSY2n-1), 1 (SY2n-1, TY2n),
2

)ATY ,(Y 2n1-2n2 ,   
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2

)Y ,(BSY 2n1-2n2 ,[ 2 (Y2n-1,BSY2n-1). 2 (Y2n,ATY2n) / 2 (Y2n-1, Y2n) } 

                      ≤   . max{ 2 (Y2n-1, Y2n), 1 (X2n-1, X2n)}                  

Similarly 

 1 (X2n, X2n-1)     . max{ 1 (X2n-2,X2n-1), 2 (Y2n-1,Y2n)}------------------------------- (6) 

 2 (Y2n,Y2n-1)     . max { 2 (Y2n-1, Y2n-2), 1 (X2n-1, X2n-2)} 

from inequalities (5) and  (6) we have 

  1 (Xn, Xn+1)     max { 1 (Xn, Xn-1) , 2 (Yn+1, Yn) } 

                                    

                           n
. max { 1 (x0, X1) , 2 (Y1, Y2) }  0 as n   

   Also 1 (xn, xn+ 1)    1 (Xn, Xn+ 1)  

   1 (xn, xn+1)   0 as n   

Thus {xn} is a Cauchy sequence in X. Since X is complete, {xn} converges to a point z in X.  

Further 

1 (z, Xn)  1 (z, xn)+ 1 (xn, Xn) 

                  1 (z, xn)+ 2 1 (Xn, Xn+1) 

   1 (z, Xn)   0 as n   

Similarly {yn} is a Cauchy sequence in Y and it converges to a point w in Y and 

2 (w, Yn)   0 as n  . 

Now 

1 (SAx2n,z)   1 ( SAx2n, x2n) + 1 ( x2n, z) 

                      1 ( SAx2n, TBx2n-1) + 1 ( x2n, z) 

                     ≤ c.max{ 1 (x2n, x2n-1), 1 (x2n,SAx2n), 2 (Ax2n,Bx2n-1 ), ,
2

),( 1221 nn TBxx
 

                                 
2

),( 1221 nn xSAx
,[ 1 (x2n,SAx2n). 1 (x2n-1,TBx2n-1)] / 1 (x2n, x2n-1) } 

                                                                                                  + 1 ( x2n, z)   0 as n   

Thus 
n

lim  SAx2n = {z} = 
n

lim Sy2n+1 

Similarly we prove 

         
n

lim TBx2n-1 = {z} =  
n

lim  Ty2n 

         
n

lim BSy2n-1 = {w} =  
n

lim  Bx2n-1 

         
n

lim ATy2n  = {w} =  
n

lim  Ax2n 

Suppose A  is continuous, then  

    
n

lim Ax2n = Az = {w}. 

Now we prove SAz = {z}  

We have 

   1 (SAz,z) = 
n

lim  1 (SAz, TBx2n-1) 

                   ≤  
n

lim  . max{ 1 (z, x2n-1), 1 (z,SAz), 2 (Az, Bx2n-1), 
2

)TBx (z, 1-2n1 , 

                                             
2

) x, (SAz 1-2n1 , 1 (z, SAz), 1 ( x2n-1,TB x2n-1) / 1 (z, x2n-1) } 
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                    < 1 (z,SAz)   (Since   < 1) 

Thus SAz = {z}.  

Hence Sw = {z}.  (Since Az = {w}) 

Now we prove BSw = {w}. 

We have 

   2 (BSw, w)  =  
n

lim 2 (BSw, ATy2n) 

                     ≤  
n

lim   max{ 2 (w, y2n), 2 (w, BSw), 1 (Sw, Ty2n), 
2

 ) ATy (w, 2n2 ,  

                                                      
2

)y (BSw, 2n2 , 2 (w,BSw). 2 (y2n, ATy2n) / 2 (w, y2n)}    

                     < 2 (w,BSw)    (Since    < 1) 

Thus BSw = {w}. 

Hence Bz = {w}.  (Since Sw = {z}) 

Now we prove TBz = {z} 

  1 (z,TBz)  = 
n

lim 1 (SAx2n, TBz) 

                       ≤  
n

lim  . max{ 1 (x2n ,z), 1 (x2n,SAx2n), 2 (Ax2n, Bz), 
2

TBz),(x 2n1 , 

                                                           
2

z) ,(SAx 2n1 , 1 (x2n ,SAx2n). 1 (z,TBz) / 1 (x2n ,z)}                    

                        < 1 (z, TBz)   (Since   < 1) 

Thus TBz = {z}. 

Hence Tw = {z}.   (Since Bz = {w}) 

Now we prove ATw = {w}. 

  2 (w, ATw)  = 
n

lim 2 (BSy2n-1, ATw) 

                        ≤ 
n

lim  .max{ 2 (y2n-1, w), 2 (y2n-1, BSy2n-1), 1 (Sy2n-1, Tw), 
2

ATw) ,(y 1-2n2 , 

                                                        
2

w),(BSy 1-2n2 , 2 (y2n-1, BSy2n-1). 2 (w,ATw) / 2 (y2n-1, w)}                                                                            

                        <  2 (w, ATw)   (Since   < 1) 

Thus ATw = {w}. 

The same results hold if one of  the mappings B, S and T is continuous. 

 

Uniqueness: Let z′ be another common fixed point of SA and TB so that z′ is in SAz′ and TBz′. 

Using inequalities (1) and (2) we have 

     max{ 1 (SAz′, z′), 1 ( z′, TBz′)} 

                                 1 (SAz′, TBz′)  

                                 ≤  .max{ 1  (z′, z′), 1 ( z′,SA z′), 2 (A z′,B z′ ), ,
2

)',z'(1 TBz
 

                                                           
2

)','(1 zSAz
,[ 1 (z′,SAz′). 1 (z′,TBz′)] / 1 (z′, z′) } 

                                  . 2 (Az′,Bz′) 

                                 . max{ 2 (ATBz′, Bz′), 2 (Az′,BSAz′)} 

                                  . 2 (BSAz′,ATBz′) 
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                               ≤  2
.max{ 2 (Az′, Bz′), 2 ( Az′, BSAz′), 1 (SAz′, TBz′),

2

)ATBz' ,(Az'2 , 

                                                 
2

)Bz' ,(BSAz'2  , 2 ( z′,BSAz′). 2 ( z′,ATBz′)/ 2 (z′,z′)} 

                                  2
 1 (SAz′, TBz′)  

             SAz′ =  TBz′   (since   < 1) 

             SAz′ =  TBz′ = {z′} and Az′ = Bz′ =  {w′} 

Thus    SAz′ =  TBz′ = Sw′ = Tw′ = {z′} and   

            BSw′ = ATw′ =  Az′ = Bz′ =  {w′}  

 We have            

            1 (z, z′) = 1 (SAz, TBz′) 

                          ≤  . max{ 1 (z, z′), 1 (z,SAz),  2 (Az,Bz′),
2

)TBz' (z,1 , 

                                                         
2

)z' (SAz,1 , 1 (z, SAz) . 1 (z′, TBz′) / 1 (z, z′)} 

                           < 2 (w, w′)  (since  < 1) 

           2 (w, w′) = 2 (BSw,ATw′) 

                           ≤   . max{ 2 (w,w′), 2 (w, BSw), 1 (Sw,Tw′),
2

)ATw' (w,2 , 

                                                       
2

) w'(BSw,2 , 2 (w, BSw ). 2 (w′, ATw′) / 2 (w, w′)} 

                          < 1 (z, z′)  (since   < 1) 

Hence 1 (z, z′) < 2 (w, w′) < 1 (z, z′) 

Thus z = z′. 

So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique 

common fixed point of BS and AT. 

  

Remark :2.11 : If we put A = B, S = T in the above theorem 2.10, we get the following corollary. 

 

Corollary 2.12: Let (X,d1) and (Y,d2) be two complete metric spaces. Let A, B be mappings of X into 

B(Y) and S, T be mappings of Y into B(X) satisfying the inequalities.  

1 (TAx, TAx′) ≤  . max{ 1 (x,x′), 1 (x,TAx), 2 (Ax,Ax′), 
2

)',(1 TAxx
,

2

)',(1 xTAx
 

                                                                                  [ 1 (x,TAx). 1 (x′,TAx′)] / 1 (x,x′) }  

2 (ATy, ATy′) ≤  . max{ 2 (y,y′), 2 (y,ATy),  1 (Ty,Ty′), 
2

)',(2 ATyy
,

2

)',(2 yATy
 

                                                                                  [ 2 (y,ATy). 2 (y′,ATy′)] / 2 (y,y′) }  

for all x, x′ in X and y, y′ in Y where 0 ≤   < 1. If one of the mappings A and T is continuous, then 

TA has a unique fixed point z in X and AT has a unique fixed point w in Y.  Further,  

Az = Bz = {w} and Sw = Tw = {z}.   
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