
International

OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 4 | Apr. 2014 | 50 |

Accelerating Real Time Applications on Heterogeneous Platforms

Vivek Vanpariya
1
, Prof. S. Ramani

2

1, 2 (SCSE, VIT University, Vellore, India)

I. INTRODUCTION
General purpose CPU performance scaling has opened up a new direction for computer scientist and

architect. Scaling performance of new generation GP-CPU has not as predicted by Gordon moor. After

observing it closely the throughput for sequential code in GP-CPU is getting fluctuated between subsequent

processor generations. This problem has motivated the scientist to innovate the high performance and cost

effective hardware. As a solution computer scientist comes up with a low level GP-GPU core which has features

like out of order execution and lack branch prediction to optimize the sequential code [1]. Khronos has a

framework and standard set for heterogeneous parallel computing on cross-vendor and cross-platform hardware

[7]. It provides an abstraction layer via which code can scale from simple embedded microcontrollers to GP-

CPU’s from Intel and AMD, up to massively-parallel GP-GPU hardware pipelines, all without modifying code
[8]. Most important task of graphical processing unit (GPU) is to accelerate the graphical applications. It

contains large amount of streaming processors for commutations when compared to Central Processing Unit

(CPU). Also GPU have high-bandwidth for data transfer. Graphics processing unit’s hasty increase in both

programmability and capability has spawned a researcher’s community that has effectively mapped a broad

range of computationally demanding, complex problems to the GPU. In other words GPU computing is using it

as to boost up central processing units for general-purpose scientific and engineering computations. It can be

achieved by offloading some of the intensive and overwhelming portions of the code and the remaining part of

the code will remain in the CPU. From user’s view point, the application run more rapidly because of the

extremely parallel processing power of the general purpose unit to boost performance which is well- known as

“heterogeneous” or “hybrid” computing. Some critical factors like power, cost, bandwidth on which we have to

focus when we working on GPU.

Figure 1: CPU vs. GPU

II. GPU ARCHITECTURE
Graphics processing units will be able to process independent fragments and vertices, but also can

process many of them in parallel. This comes handy when the programmer needs to process many vertices or

fragments in the same way. In this logic, GPUs are stream processors also called as stream at once. Stream can

be said as collection of records that requires similar kind of computation.

Abstract: In this paper we describe about the novel implementations of depth estimation from a stereo
images using feature extraction algorithms that run on the graphics processing unit (GPU) which is

suitable for real time applications like analyzing video in real-time vision systems. Modern graphics

cards contain large number of parallel processors and high-bandwidth memory for accelerating the

processing of data computation operations. In this paper we give general idea of how to accelerate the

real time application using heterogeneous platforms. We have proposed to use some added resources to

grasp more computationally involved optimization methods. This proposed approach will indirectly

accelerate a database by producing better plan quality.

Index Terms: Graphics processing unit (GPU), depth estimation, and video analysis.

Accelerating Real Time Applications on heterogeneous Platforms

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 4 | Apr. 2014 | 51 |

Figure 2: GPU Architecture

The 8800 is composed of 128 stream processors each rotating at the rate of 1350 Mhz. Each processor is capable

to do calculation like MAD and MUL per clock cycle. Each processor need 4 cycles for executing specials

instructions like EXP, LOG, RCP, RSQ, SIN, COS which is managed by an additional unit.

III. OPEN COMPUTING LANGUAGE
Open CL is popularly known as one of the free of royalty standard for general purpose parallel

programming across CPUs, GPUs and other processors, giving software developer’s transportable and capable

access to the power of these assorted processing platforms. OpenCL consists of an application programming

interface for coordinating parallel computation across heterogeneous processors and a cross-platform

programming language with a well précised computation background.

Standards of Open CL:

 It supports data-based and task-based parallel programming models.

 It utilizes a rift of ISO C99 with extensions for parallelism.

 It defines steady numerical supplies based on IEEE 754.

 It defines a configuration report for handheld and embedded devices.

 It efficiently interoperates with OpenGL, OpenGL ES and other graphics APIs.

OPENCL memory model

Open CL framework provides the distributed memory. As shown in figure 3, each processor has its own private

memory and each core has its own local memory.

Figure 3: Architecture of Conceptual Open CL device having processing elements (PE), computing units and

devices.

Accelerating Real Time Applications on heterogeneous Platforms

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 4 | Apr. 2014 | 52 |

IV. TEST CASE FOR SERIAL VS PARALLEL CODE
In this section we give the basic comparison of serial and parallel code performance. If we take simple

example of matrix multiplication in which each element is computed sequentially from the row of the first
matrix and column of the second matrix. Same matrix multiplication can be done on parallel environment

because there will be no previous data dependency. The below discussion give knowledge how to write parallel

code using Open CL.

Parallel code of matrix multiplication is ported on Storm which is a tool of STMicroelectronics, which provide

the parallel environment with 64 parallel processing units.

No. of Data

Elements per

matrix

No. of

Cycles

required for

sequential

code to run

No. of

Cycles

required for

parallel code

to run

Speed Up

16x16 1654850 32230 51

32x32 13185830 212402 62

48x48 44479008 701355 63

64x64 105413896 1653468 63

128x128 843161792 13180778 64

256x256 6744844288 105394568 64

512x512 53957111808 843086272 64

Table 2: Comparison table of Serial vs Parallel code of Matrix multiplication.

Tools have got 4 clusters and each cluster contains 16 processing elements (cores). Above table give comparison

chart of matrix multiplication using Storm. If we take the advantage of local memory and memory bandwidth

for accessing the data from host part to device part then we can get better speedup i.e., speed of data transfer

from global memory to compute device is slower than the speed of data transfer from local memory to compute

device. Because local memory is more near to clusters and it is local to each clusters. Memory coalscaling is

another feature of parallel processing. Suppose my bit transfer capacity from host to device is 32 bit’s then why
should I transfer 8 bit at a time. Fetch 32 bit’s at a time and store it on device local memory until four bytes

process.

No. of Data
Elements per

matrix

No. of
Cycles using

Global

Memory

No. of
Cycles using

Local

Memory

Speed Up

16x16 32230 20477 1.57

32x32 212402 114949 1.85

48x48 701355 368612 1.90

64x64 1653468 860118 1.92

Table 3: Comparison table of global vs serial memory for Matrix multiplication.

Figure 4: Cycles Needs for Global Vs. Local Memory for Matrix Multiplication

Accelerating Real Time Applications on heterogeneous Platforms

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 4 | Apr. 2014 | 53 |

V. REAL TIME APPLICATION
Real time applications like depth estimation for stereo images, video analytics for survellience and etc.

are the good applications on image processing technology where repetitive work on pixels is needed. For this we
are concentrating on throughput rather than the latency. Filtering and/or convolution for images are one of the

important modules for depth estimation or in video analytics. In below discussion we briefly discuss

convolution and result analysis after porting it on NVIDIA’s Quadro FX 4600 and Storm tool of

STMicroelectronics.

Convolution

Kernel: It is a collection of numbers in the matrix form which is used in convolution of images. They

are available in different size having different number patterns producing different results. The dimension of

each kernel is subjective but most often 3x3 is preferred.

A convolution is usually performed by doing the multiplication of a pixel and its adjacent pixels color value by a

matrix.

Convolve is likely used to Enhance, Sharpen or smoothing the image.

We have the formulae for doing convolution of image f(x, y) and kernel k(x, y) represented as

 f(x,y) * k(x,y)=

f(u,v) k(x-u,y-v)dudv ….(1)

 In discrete form,

f(x,y)*k(x,y)=

1

0

w

i

1

0

H

j

 f(i,j) k(x-i, y-j) …..(2)

W, H is the width and height of image respectively.

Figure 5: Masking on image.

VI. RESULT ANALYSIS

Function Name Time

require

for

assembly

code
(ms)

Time

require

for

C/C++

code
(ms)

Time

require

for

Parallel

code
(ms)

convolve_cols_3x3 50 360 136

convolve_121_row_3x3_16bit 10 50 30

convolve_101_row_3x3_16bit 20 60 23

Table 4: Time analysis for assembly, serial and parallel code (using NVIDIA device).

Accelerating Real Time Applications on heterogeneous Platforms

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 4 | Apr. 2014 | 54 |

Figure 6: Comparison graph for table 4

 Function Name

Time require

for Assembly

Code (ms)

Time

require

for

C/C++

Code

(ms)

Time

require for

Parallel

Code on

xp70(ms)

convolve_cols_3x3 50 360 128

convolve_121_row_

3x3_16bit

10 50 28

convolve_101_row_

3x3_16bit

20 60 20

Table 6: Time analysis for assembly, serial and parallel code (using Sthorm device).

VII. CONCLUSION AND FUTURE WORK
In this paper we have discussed the behavior of serial and parallel code with respect to different

heterogeneous platforms. OpenCL has lot of task like getting a platform, kernel setting, memory/buffer

initialization, filling the read buffer with input data, taking the device information, setting the work group and

work items etc.. Due to this, performance results are not expected for small size data. By analyzing the

comparison tables, we can accelerate the sequential code with the help of parallel computing elements on

heterogeneous platforms.

In future related work, one can apply the optimization technique like memory co-aliasing, vector data

types and pipeline futures on complex real time applications.

REFERENCES
[1] I. Blthoff, H. Blthoff, and P. Sinha. “Topdown influences on stereoscopic depth-perception”. Nature Neuroscience,

1:254.257.

[2] S. Das and N. Ahuja. “Performance analysis of stereo, vergence, and focus as depth cues for active vision”. IEEE
Trans PAMI, 17:1213.1219.

[3] A. Smolic and P. Kauff, “Interactive 3-D video representation and coding technologies,” Proc. IEEE, Special Issue
on Advances in Video Coding and Delivery, vol. 93, no. 1, pp. 98–110, Jan. 2005.

[4] K. Mueller, P.Merkle, H. Schwarz, T. Hinz, A. Smolic, T. Oelbaum, and T. Wiegand, “Multi-view video coding
based on H.264.MPEG4-AVC using hierarchical B pictures,” in Proc. PCS’ 2006,

 Apr. 2006, paper SS3–3. [Online.] http://www.engineeringvillage2.org.
[5] Niem W, Buschmann R, ”Automatic Modelling of 3D Natural Objects fromMultiple Views”, European Workshop

on Combined real and synthetic image processing for broadcast and video productions, 23–24. 11. 1994, Hamburg,
Germany.

[6] L. Falkenhagen, A. Kopernik, M. Strintzis, ”Disparity Estimation based on 3D Arbi- trarily Shaped Regions”,
RACE Project Deliverable, R2045/UH/DS/P/023/b1.

[7] Y. Yakimovski, R. Cunningham, ”A System for Extracting 3D Measurements from a Stereo Pair of TV Cameras”,
CGVIP, Vol. 7, 1978, pp. 195 – 210.

[8] Koch, R., ”3–D Scene Modelling from Stereoscopic Image Sequences”, European Workshop on Combined real
and synthetic image processing for broadcast and video productions, 23–24. 11. 1994, Hamburg, Germany.

http://www.engineeringvillage2.org/

Accelerating Real Time Applications on heterogeneous Platforms

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 4 | Apr. 2014 | 55 |

Vivek Vanpariya received his B.E degree from A.D Patel institute of Technology affiliated to Sardar Patel

University, Gujrat, India. He did his M. Tech in Computer Science and Engineering from VIT University

Vellore, India. His area of interests includes Computer Network, Algorithms and Operating Systems.

Ramani S received his M.Tech degree from Bharathidasan Institute of Technology affiliated to Bharathidasan

University, TamilNadu, India. He is pursuing his Ph. D from VIT University Vellore, India. His area of interests

includes Database, Web Technologies and Data Mining.

