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I.    INTRODUCTION  
Queueing model with Erlang arrival has been discussed by Gross and Harris (1998) and several others. 

Control chart is a quality control technique evolved initially to monitor production processes. Montgomery 
(2005) proposed a number of applications of Shewhart control charts in assuring quality in manufacturing 

industries. Shore (2000) developed control chart for random queue length of M /M /s queueing model by 

considering the first three moments and also Shore (2006) developed Shewhart-like general control charts for 

G/G/S queueing system using skewness. Khaparde and Dhabe (2010) constructed the control chart for random 

queue length of M/M/1 queueing model using method of weighted variance. Poongodi and Muthulakshmi 

(2012) analyzed number of customers in system of M/Ek/1 queueing model using control chart technique. The 

Erlang arrival queueing system is applicable to many real-life situations:  

(i) In military recruits a recruit first lines up to have blood test at one station, an eye examination at the next 

station, mental test by a psychiatrist at the third, and is examined by a doctor for medical problems at the 

fourth and so on. Recruit needs to pass all phases before entering for selection. 

(ii) In a typical polling system, voters have to pass through many phases like showing identity cards, 

signing, getting ink mark etc., before voting.  
(iii) In an airline counter, passengers are expected to check in which consists of many phases, before entering 

into the plane. 

and so on. 

 

This motivated the author to study the construction of Shewhart control charts for number of customers 

in the queue, number of customers in the system, waiting time in the queue and waiting time in the system of 

Ek/M/1 queueing model.  

 

II.    EK/ M/1 MODEL DESCRIPTION 
Consider a queueing system in which the inter-arrival times follow k-Erlang distribution with mean1/ in which 

an arrival has to pass through k phases, each with a mean time 1/k prior to entering the service. Service times 

follow an exponential distribution with mean1/ µ. 
Let pn be the probability that there are n customers in Ek/M/1 queueing system. Then  

                      pn = 



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where pj
(P) is the probability of completion of j phases and is given by 
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where r0 ϵ (0,1) is the root of the characteristic equation 

               µ zk+1 – (k+µ) z + k = 0 
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since  p0
(P) = 

k

r1 0

,
  taking ρ =  /µ, equation  (2) becomes 
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Therefore equation (1), reduces to 

                      pn = ρ (1-r0
k) (r0

k)n-1 

which is a geometric distribution. 

Control chart analysis of Ek/M/1 queueing model is carried out in the following sections. 

 

III.    NUMBER OF CUSTOMERS IN THE QUEUE 
Let Lq denote the number of customers in the queue. 

The expected number of customers in the queue, E(Lq) is given by 
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Then variance of Lq is 
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Upper control limit (UCL), central line (CL) and lower control limit (LCL) of Shewhart control chart, under the 

assumption that the number of customers in the queue follows normal distribution, are given by 

UCL = E (Lq) + 3 )qVar(L
 (5)  

 CL     = E (Lq) 

LCL = E (Lq) - 3 )qVar(L  

The parameters of the control chart are obtained by using (3) and (4) in (5) as 
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IV.     NUMBER OF CUSTOMERS IN THE SYSTEM 
Let Ls denote the number of customers in the system (both in queue and in service). 

The expected number of customers in the system is given by 

                         E(Ls) = 
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Then variance of Ls is 
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2) – (E(Ls))

2 

                              = 
2k

0

k
0

)r(1

ρ)rρ(1




                                                           (7) 

The parameters of Shewhart control chart, under the assumption that the number of customers in the system 
follows normal distribution, are given by 

UCL = E (Ls) + 3 )sVar(L
                                (8)  

CL       = E (Ls) 

LCL = E (Ls) - 3 )sVar(L  

Using (6) and (7) in (8), the parameters of the control chart are obtained as 
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V.    WAITING TIME IN THE QUEUE 
Distribution of waiting time of a customer in the queue for the model under study is given by 
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k e- µ (1-r
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k) t ,       t ≥ 0. 

 

Then the pdf of waiting time is                        
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Let wq denote the waiting time of customers in the queue. 

The mean of wq is 
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Then variance of wq  is  
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The parameters of Shewhart control chart, under the assumption that the waiting time of customers in the queue 
follows normal distribution, are given by 

UCL = E (wq) + 3 )Var(w q    (11)  

CL       = E (wq) 

LCL = E (wq) - 3 )Var(w q  

The parameters of the control chart are obtained by using (9) and (10) in (11) as 
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VI.   WAITING TIME IN THE SYSTEM 
Let ws denote the waiting time of customers in the system. 

The expected waiting time of customers in the system, E(ws) is given by 

                         E (ws) = E(Ls)/ λ 
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Also the variance of ws is given by 
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The parameters of Shewhart control chart, under the assumption that the waiting time of customers in the system 

follows normal distribution, are given by 

 UCL = E (ws) + 3 )Var(w s   (14)  

CL = E (ws) 

 LCL = E (ws) - 3 )Var(w s  

The control chart parameters are obtained by using (12) and (13) in (14) as 
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VII.    NUMERICAL ANALYSIS  
Numerical analysis is carried out to analyze the performance of queueing system with reference to the 

parameters λ, µ and k. As LCL values are negative for the selected values of the parameters, they are considered 

as zero and therefore not shown in the table as a separate column. 

Table gives the control chart parameters fornumber of customers in the queue,   number of customers in the 

system, waiting time of customers in the queue and waiting time of customers in the system for certain selected 

values of λ, µ and k.   

TABLE - CONTROL CHART PARAMETERS FOR LQ, LS, WQ AND WS 

 

Numerical values in the table reveal the following features: 

For all the performance measures of Ek/M/1 queueing system 
(i) increase in the arrival rate λ, increases the parameters and UCL for fixed  values of µ  and k.  

(ii) increase in the service rate µ, decreases the parametersCL and UCL for fixed values of λ and k. 

(iii) increase in the number of phases k, decreases the parametersCL and UCL for fixed values of λ and µ.  

VIII.   CONCLUSION 
In this paper control chart technique is applied to analyze the system characteristics of Ek/M/1 queueing 

system. These characteristics provide the arrivals to decide whether to join the system or not. In addition it gives 

the information on the waiting time. 
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