

About the 2-Banach Spaces

Risto Malčeski¹, Katerina Anevska² ^{1, 2} (Faculty of informatics/ FON University, Skopje, Macedonia)

Abstract: In this paper are proved a few properties about convergent sequences into a real 2-normed space $(L, \|\cdot, \cdot\|)$ and into a 2-pre-Hilbert space $(L, (\cdot, \cdot|\cdot))$, which are actually generalization of appropriate properties of convergent sequences into a pre-Hilbert space. Also, are given two characterization of a 2-Banach spaces. These characterization in fact are generalization of appropriate results in Banach spaces.

2010 Mathematics Subject Classification: Primary 46B20; Secondary 46C05.

Keywords: convergent sequence, Cauchy sequence, 2-Banach space, weakly convergent sequence, absolutely summable series.

I. INTRODUCTION

Let *L* be a real vector space with dimension greater than 1 and, $\|\cdot,\cdot\|$ be a real function defined on $L \times L$ which satisfies the following:

- a) $||x, y|| \ge 0$, for each $x, y \in L \mathbb{N} ||x, y|| = 0$ if and only if the set $\{x, y\}$ is linearly dependent,
- *b*) ||x, y|| = ||y, x||, for each $x, y \in L$,
- c) $\|\alpha x, y\| = |\alpha| \cdot \|x, y\|$, for each $x, y \in L$ and for each $\alpha \in \mathbf{R}$,
- *d*) $||x + y, z|| \le ||x, z|| + ||y, z||$, for each $x, y, z \in L$.

Function $\|\cdot,\cdot\|$ is called as 2-norm of L, and $(L,\|\cdot,\cdot\|)$ is called as vector 2-normed space ([1]).

Let n > 1 be a natural number, L be a real vector space, dim $L \ge n$ and $(\cdot, \cdot | \cdot)$ be real function on $L \times L \times L$ such that:

i) $(x, x | y) \ge 0$, for each $x, y \in L$ u (x, x | y) = 0 if and only if a and b are linearly dependent,

- *ii)* (x, y | z) = (y, x | z), for each $x, y, z \in L$,
- *iii*) (x, x | y) = (y, y | x), for each $x, y \in L$,
- *iv*) $(\alpha x, y | z) = \alpha(x, y | z)$, for each $x, y, z \in L$ and for each $\alpha \in \mathbf{R}$, and
- v) $(x + x_1, y | z) = (x, y | z) + (x_1, y | z)$, for each $x_1, x, y, z \in L$.

Function $(\cdot, \cdot | \cdot)$ is called as 2-*inner product*, and $(L, (\cdot, \cdot | \cdot))$ is called as 2-*pre-Hilbert space* ([2]).

Concepts of a 2-norm and a 2-inner product are two dimensional analogies of concepts of a norm and an inner product. R. Ehret ([3]) proved that, if $(L, (\cdot, \cdot | \cdot))$ be 2-pre-Hilbert space, than

$$||x, y|| = (x, x | y)^{1/2}$$
, for each $x, y \in L$ (1)

defines 2-norm. So, we get 2-normed vector space $(L, \|\cdot, \cdot\|)$.

II. CONVERGENT AND CAUCHY SEQUENCES IN 2-PRE-HILBERT SPACE

The term convergent sequence in 2-normed space is given by A. White, and he also proved a few properties according to this term. The sequence $\{x_n\}_{n=1}^{\infty}$ into vector 2-normed space is called as *convergent* if there exists $x \in L$ such that $\lim_{n \to \infty} ||x_n - x, y|| = 0$, for every $y \in L$. Vector $x \in L$ is called as *bound* of the

sequence $\{x_n\}_{n=1}^{\infty}$ and we note $\lim_{n \to \infty} x_n = x$ or $x_n \to x$, $n \to \infty$, ([4]).

Theorem 1 ([4]). Let $(L, \|\cdot, \cdot\|)$ be a 2-normed space over L.

a) If $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$, $\lim_{n\to\infty} \alpha_n = \alpha$ and $\lim_{n\to\infty} \beta_n = \beta$, then

 $\lim_{n\to\infty} (\alpha_n x_n + \beta_n y_n) = \alpha x + \beta y \,.$

6) If $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} x_n = y$, then x = y.

Theorem 2 ([4]). a) Let *L* be a vector 2-normed space, $\{x_n\}_{n=1}^{\infty}$ be the sequence in *L* and $y \in L$ is such that $\lim_{n \to \infty} ||x_n - x_m, y|| = 0$. Then the real sequence $\{||x_n - x, y||\}_{n=1}^{\infty}$ is convergent for every $x \in L$.

b) Let L be a vector 2-normed space, $\{x_n\}_{n=1}^{\infty}$ be a sequence in L and $y \in L$ is such that $\lim_{n \to \infty} ||x_n - x, y|| = 0$. Then $\lim_{n \to \infty} ||x_n, y|| = ||x, y||$.

In [7] H. Gunawan was focused on convergent sequences in 2-pre-Hilbert space $(L, (\cdot, \cdot | \cdot))$, and he gave the term weakly convergent sequence in 2-pre-Hilbert space. According to this he proved a few corollaries.

Definition 1 ([5]). The sequence $\{x_n\}_{n=1}^{\infty}$ in the 2-pre-Hilbert space $(L, (\cdot, \cdot | \cdot))$ is called as *weakly* convergent if there exists $x \in L$ such that $\lim_{n \to \infty} (x_n - x, y | z) = 0$, for every $y, z \in L$. The vector $x \in L$ is

called as *weak limit* of the sequence $\{x_n\}_{n=1}^{\infty}$ and is denoted as $x_n \xrightarrow{w} x$, $n \to \infty$.

Theorem 3. Let $(L, (\cdot, \cdot | \cdot))$ be a 2-pre-Hilbert space. If $x_n \xrightarrow{w} x$, $y_n \xrightarrow{w} y$, $\alpha_n \to \alpha$ and $\beta_n \to \beta$, for $n \to \infty$, then $\alpha_n x_n + \beta_n y_n \xrightarrow{w} \alpha x + \beta y$, for $n \to \infty$.

Proof. The validity of this theorem is as a direct implication of Definition 1, the fact that every convergent real sequence is bounded and the following equalities:

$$\begin{split} \lim_{n \to \infty} (\alpha_n x_n + \beta_n y_n - \alpha x - \beta y, u \mid v) &= \lim_{n \to \infty} (\alpha_n x_n - \alpha x, u \mid v) + \lim_{n \to \infty} (\beta_n y_n - \beta y, u \mid v) \\ &= \lim_{n \to \infty} \alpha_n (x_n - x, u \mid v) + \lim_{n \to \infty} (\alpha_n - \alpha) (x, u \mid v) + \\ &+ \lim_{n \to \infty} \beta_n (y_n - y, u \mid v) + \lim_{n \to \infty} (\beta_n - \beta) (y, u \mid v) . \blacksquare \end{split}$$

Corollary 1 ([5]). Let $(L, (\cdot, \cdot | \cdot))$ be a 2-pre-Hilbert space. If $x_n \xrightarrow{w} x$, $y_n \xrightarrow{w} y$, for $n \to \infty$ and $\alpha, \beta \in \mathbf{R}$, then $\alpha x_n + \beta y_n \xrightarrow{w} \alpha x + \beta y$, for $n \to \infty$.

 $\alpha, \beta \in \mathbf{K}$, then $\alpha x_n + \beta y_n \rightarrow \alpha x + \beta y$, for $n \rightarrow \infty$. **Proof.** The validity of this Corollary is as a direct implication of Theorem 3 for $\alpha_n = \alpha, \beta_n = \beta, n \ge 1$.

Lemma 1 ([5]). Let $(L, (\cdot, \cdot | \cdot))$ be a 2-pre-Hilbert space. a) If $r \rightarrow r$, $n \rightarrow \infty$ then $r \rightarrow r$, $r \rightarrow \infty$

a) If
$$x_n \to x$$
, $n \to \infty$, then $x_n \to x$, $n \to \infty$.
b) If $x_n \to x$ and $x_n \to x'$, $n \to \infty$, then $x = x'$.

Theorem 4. Let $(L, (\cdot, \cdot | \cdot))$ be a real 2-pre-Hilbert space. If $x_n \to x$, $y_n \to y$, $\alpha_n \to \alpha$ and $\beta_n \to \beta$, for $n \to \infty$, then

$$\lim (\alpha_n x_n, \beta_n y_n | z) = (\alpha x, \beta y | z), \text{ for every } z \in L.$$
(2)

Proof. Let $x_n \to x$, $y_n \to y$, $\alpha_n \to \alpha$ and $\beta_n \to \beta$, for $n \to \infty$. Then, Theorem 1 a) implies $\lim_{n \to \infty} ||\alpha_n x_n - \alpha x, z|| = 0, \lim_{n \to \infty} ||\beta_n y_n - \beta y, z|| = 0, \text{ for every } z \in L.$ (3)

Properties of 2-inner product and the Cauchy-Buniakowsky-Schwarz inequality imply

$$0 \le |(\alpha_n x_n, \beta_n y_n | z) - (\alpha_x, \beta y | z)|$$

= $|(\alpha_n x_n, \beta_n y_n | z) - (\alpha_n x_n, \beta y | z) + (\alpha_n x_n, \beta y | z) - (\alpha x, \beta y | z)|$
 $\le |(\alpha_n x_n, \beta_n y_n | z) - (\alpha_n x_n, \beta y | z)| + |(\alpha_n x_n, \beta y | z) - (\alpha x, \beta y | z)|$
= $|(\alpha_n x_n, \beta_n y_n - \beta y | z)| + |(\alpha_n x_n - \alpha x, \beta y | z)|$
 $\le ||\alpha_n x_n, z|| \cdot ||\beta_n y_n - \beta y, z|| + ||\alpha_n x_n - \alpha x, z|| \cdot ||\beta y, z||.$

Finally, letting $n \rightarrow \infty$, in the last inequality, by Theorem 2 b) and equality (3) follows the equality (2).

Corollary 2 ([5]). Let $(L, (\cdot, \cdot | \cdot))$ be a real 2-pre-Hilbert space. If $x_n \to x$ and $y_n \to y$, for $n \to \infty$, then $\lim_{n \to \infty} (x_n, y_n | z) = (x, y | z)$, for every $z \in L$.

Proof. The validity of this Corollary is as a direct implication of Theorem 4, $\alpha_n = \beta_n = 1, n \ge 1$.

Theorem 5. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in 2-pre-Hilbert space L. If

$$\lim_{n \to \infty} ||x_n, y|| = ||x, y|| \text{ and } \lim_{n \to \infty} (x_n, x \mid y) = (x, x \mid y) \text{, for every } y \in L,$$

then $\lim_{n \to \infty} x_n = x$.

Proof. Let $y \in L$. Then

$$\|x_n - x, y\|^2 = (x_n - x, x_n - x \mid y)$$

= $(x_n, x_n \mid y) - 2(x_n, x \mid y) + (x, x \mid y)$
= $\|x_n, y\|^2 - 2(x_n, x \mid y) + \|x, y\|^2$,

So,

$$\lim_{n \to \infty} ||x_n - x, y||^2 = \lim_{n \to \infty} ||x_n, y||^2 - 2\lim_{n \to \infty} (x_n, x | y) + ||x, y||^2$$
$$= 2 ||x, y||^2 - 2(x, x | y) = 0.$$

Finally, arbitrariness of y implies $x_n \rightarrow x$, $n \rightarrow \infty$.

A. White in [4] gave the term Cauchy sequence in a vector 2-normed space L of linearly independent vectors $y, z \in L$, i.e. the sequence $\{x_n\}_{n=1}^{\infty}$ in a vector 2-normed space L is Cauchy sequence, if there exist $y, z \in L$ such that y and z are linearly independent and

$$\lim_{m,n\to\infty} \|x_n - x_m, y\| = 0 \text{ and } \lim_{m,n\to\infty} \|x_n - x_m, z\| = 0.$$
(4)

Further, White defines 2-Banach space, as a vector 2-normed space in which every Cauchy sequence is convergent and have proved that each 2-normed space with dimension 2 is 2-Banach space, if it is defined over complete field. The main point in this state is linearly independent of the vectors y and z, and by equalities (4) are sufficient for getting the proof. Later, this definition about Cauchy sequence into 2-normed space is reviewed, and the new definition is not contradictory with the state that 2-normed space with dimension 2 is 2-Banach space.

Definition 2 ([6]). The sequence $\{x_n\}_{n=1}^{\infty}$ in a vector 2-normed space L is Cauchy sequence if

$$\lim_{m,n\to\infty} ||x_n - x_m, y|| = 0, \text{ for every } y \in L.$$
(4)

Theorem 6. Let *L* be a vector 2-normed space.

- *i)* If $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in L, then for every $y \in L$ the real sequence $\{||x_n, y||\}_{n=1}^{\infty}$ is convergent.
- *ii)* If $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences in *L* and $\{\alpha_n\}_{n=1}^{\infty}$ is Cauchy sequence in **R**, then $\{x_n + y_n\}_{n=1}^{\infty}$ and $\{\alpha_n x_n\}_{n=1}^{\infty}$ are Cauchy sequences in *L*.

Proof. The proof is analogous to the proof of Theorem 1.1, [4]. ■

Theorem 7. Let *L* be a vector 2-normed space, $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in *L* and $\{x_{m_k}\}_{k=1}^{\infty}$ be a subsequence of $\{x_n\}_{n=1}^{\infty}$. If $\lim_{k \to \infty} x_{m_k} = x$, then $\lim_{n \to \infty} x_n = x$.

Proof. Let $y \in L$ and $\varepsilon > 0$ is given. The sequence $\{x_n\}_{n=1}^{\infty}$ is Cauchy, and thus exist $n_1 \in \mathbb{N}$ such that $||x_n - x_p, y|| < \frac{\varepsilon}{2}$, for $n, p > n_1$. Further, $\lim_{k \to \infty} x_{m_k} = x$, so exist $n_2 \in \mathbb{N}$ such that $||x_{m_k} - x, y|| < \frac{\varepsilon}{2}$, for $m_k > n_2$. Letting $n_0 = \max\{n_1, n_2\}$ we get that for $n, m_k > n_0$ is true that

$$x_n - x, y \parallel \leq \parallel x_n - x_{m_k}, y \parallel + \parallel x_{m_k} - x, y \parallel < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

The arbitrariness of $y \in L$ implies $\lim_{n \to \infty} x_n = x$.

Theorem 8. Let L be a 2-pre-Hilbert space. If $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences in L,

then for every $z \in L$ the sequence $\{(x_n, y_n | z)\}_{n=1}^{\infty}$ is Cauchy in **R**.

Proof. Let $z \in L$. The properties of inner product and Cauchy-Buniakovski-Swartz inequality imply

 $|(x_n, y_n | z) - (x_m, y_m | z)| \le |(x_n, y_n | z) - (x_m, y_n | z)| + |(x_m, y_n | z) - (x_m, y_m | z)|$

 $= |(x_n - x_m, y_n | z)| + |(x_m, y_n - y_m | z)|$

 $\leq ||x_n - x_m, z|| \cdot ||y_n, z|| + ||x_m, z|| \cdot ||y_n - y_m, z||.$

Finally, by the last inequality, equality (4) and Theorem 6 *i*) is true that for given $z \in L$ the sequence $\{(x_n, y_n | z)\}_{n=1}^{\infty}$ is Cauchy sequence.

III. CHARACTERIZATION OF 2-BANACH SPACES

Theorem 9. Each 2-normed space L with finite dimension is 2-Banach space.

Proof. Let *L* be a 2-normed space with finite dimension, $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in *L* and $a \in L$. By dim L > 1, exist $b \in L$ such that the set $\{a, b\}$ is linearly independent. By Theorem 1, [7],

$$\|x\|_{a,b,2} = (\|x,a\|^2 + \|x,b\|^2)^{1/2}, \ x \in L$$
(5)

defines norm in L, and by Theorem 6, [7] the sequence $\{x_n\}_{n=1}^{\infty}$ is Cauchy into the space $(L, \|\cdot\|_{a,b,2})$. But normed space L with finite dimension is Banach, so exist $x \in L$ such that $\lim_{n \to \infty} \|x_n - x\|_{a,b,2} = 0$. So, by (5)

we get

$$\lim_{n \to \infty} \|x_n - x, a\| = \lim_{n \to \infty} \|x_n - x, b\| = 0.$$
(6)

We'll prove that for every $y \in L$,

$$\lim_{n \to \infty} ||x_n - x, y|| = 0.$$
⁽⁷⁾

Clearly, if $y = \alpha a$, then (6) and the properties of 2-norm imply (7). Let the set $\{y, a\}$ be linearly independent. Then $(L, \|\cdot\|_{y,a,2})$ is a Banach space, and moreover because of the sequence $\{x_n\}_{n=1}^{\infty}$ is Cauchy sequence in $(L, \|\cdot\|_{y,a,2})$, exist $x' \in L$ such that

$$\lim_{n \to \infty} ||x_n - x'||_{y,a,2} = 0.$$
(8)

But in space with finite dimension each two norms are equivalent (Theorem 2, [8], pp. 29), and thus exist m, M > 0 such that

$$m \| x_n - x' \|_{y,a,2} \le \| x_n - x' \|_{a,b,2} \le M \| x_n - x' \|_{y,a,2},$$

This implies $\lim_{n \to \infty} ||x_n - x'||_{a,b,2} = 0$ and moreover $\lim_{n \to \infty} ||x_n - x||_{a,b,2} = 0$. So, we may conclude x' = x. By (8), $\lim_{n \to \infty} ||x_n - x||_{y,a,2} = 0$, and thus (7) holds. Finally the arbitrariness of y implies the validity of the theorem i.e. the proof of the theorem is completed.

Definition 3. Let *L* be a 2-normed space and $\{x_n\}_{n=1}^{\infty}$ be a sequence in *L*. The series $\sum_{n=1}^{\infty} x_n$ is

called as *summable* in L if the sequence of its partial sums $\{s_m\}_{m=1}^{\infty}$, $s_m = \sum_{n=1}^{m} x_n$ converges in L. If $\{s_m\}_{m=1}^{\infty}$

converges to s, then s is called as a sum of the series $\sum_{n=1}^{\infty} x_n$, and is noted as $s = \sum_{n=1}^{\infty} x_n$

The series $\sum_{n=1}^{\infty} x_n$ is called as *absolutely summable* in *L* if for each $y \in L$ holds $\sum_{n=1}^{\infty} ||x_n, y|| < \infty$.

Theorem 10. The 2-normed space L is 2-Banach if and only if each absolutely summable series of elements in L is summable in L.

| IJMER | ISSN: 2249-6645 |

Proof. Let *L* be a 2-Banach space, $\{x_n\}_{n=1}^{\infty}$ be a sequence in *L* and for each $y \in L$ holds $\sum_{n=1}^{\infty} ||x_n, y|| < \infty$. Then the sequence $\{s_m\}_{m=1}^{\infty}$ of partial sums of the series $\sum_{n=1}^{\infty} x_n$ is Cauchy in *L*, because of

 $\parallel s_{m+k} - s_m, y \parallel = \parallel x_{m+1} + x_{m+2} + \ldots + x_{m+k}, y \parallel \leq \parallel x_{m+1}, y \parallel + \parallel x_{m+2}, y \parallel + \ldots + \parallel x_{m+k}, y \parallel,$

for every $y \in L$ and for every $m, k \ge 1$. But, L is a 2-Banach space, and thus the sequence $\{s_m\}_{m=1}^{\infty}$ converge in L. That means, the series $\sum_{n=1}^{\infty} x_n$ is summable in L.

Conversely, let each absolutely summable series be summable in L. Let $\{z_n\}_{n=1}^{\infty}$ is a Cauchy sequence in L and $y \in L$. Let $m_1 \in \mathbb{N}$ is such that $||z_m - z_{m_1}, y|| < 1$, for $m \ge m_1$. By induction we determine $m_2, m_3, ...$ such that $m_k < m_{k+1}$ and for each $m \ge m_k$ holds $||z_m - z_{m_k}, y|| \le \frac{1}{k^2}$. Letting $x_k = z_{m_{k+1}} - z_{m_k}$, k = 1, 2, ..., we get $\sum_{k=1}^{\infty} ||x_k, y|| \le \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$. The arbitrarily of $y \in L$ implies the series $\sum_{k=1}^{\infty} x_k$ is absolutely summable. Thus, by assumption, the series $\sum_{k=1}^{\infty} x_k$ is summable in L. But, $z_{m_k} = z_{m_1} + \sum_{i=1}^{k-1} x_i$. Hence, the subsequence $\{z_{m_k}\}_{k=1}^{\infty}$ of the Cauchy sequence $\{z_n\}_{n=1}^{\infty}$ converge in L. Finally, by Theorem 7, the sequence

 $\{z_n\}_{n=1}^{\infty}$ converge in L. It means L is 2-Banach space.

REFERENCES

- [1] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28, 1965, 1-42
- [2] C. Diminnie, S. Gähler, and A. White, 2-Inner Product Spaces, Demonstratio Mathematica, Vol. VI, 1973, 169-188
- [3] R. Ehret, Linear 2-Normed Spaces, doctoral diss., Saint Louis Univ., 1969
- [4] A. White, 2-Banach Spaces, Math. Nachr. 1969, 42, 43-60
- [5] H. Gunawan, On Convergence in n-Inner Product Spaces, Bull. Malaysian Math. Sc. Soc. (Second Series) 25, 2002, 11-16
- [6] H. Dutta, On some 2-Banach spaces, General Mathematics, Vol. 18, No. 4, 2010, 71-84
- [7] R. Malčeski, K. Anevska, Families of norms generated by 2-norm, American Journal of Engineering Research (AJER), e-ISSN 2320-0847 p-ISSN 2320-0936, Volume-03, Issue-05, pp-315-320
- [8] S. Kurepa, Functional analysis, (Školska knjiga, Zagreb, 1981)
- [9] A. Malčeski, R. Malčeski, Convergent sequences in the n-normed spaces, Matematički bilten, 24 (L), 2000, 47-56 (in macedonian)
- [10] A. Malčeski, R. Malčeski, n-Banach Spaces, Zbornik trudovi od vtor kongres na SMIM, 2000, 77-82, (in macedonian)
- [11] C. Diminnie, S. G\u00e4hler, and A. White, 2-Inner Product Spaces II, Demonstratio Mathematica, Vol. X, No 1, 1977, 525-536
- [12] R. Malčeski, Remarks on n-normed spaces, Matematički bilten, Tome 20 (XLVI), 1996, 33-50, (in macedonian)
- [13] R. Malčeski, A. Malčeski, A. n-seminormed space, Godišen zbornik na PMF, Tome 38, 1997, 31-40, (in macedonian)
- [14] S. G\u00e4hler, and Misiak, A. Remarks on 2-Inner Product, Demonstratio Mathematica, Vol. XVII, No 3, 1984, 655-670
- [15] W. Rudin, Functional Analysis, (2nd ed. McGraw-Hill, Inc. New York, 1991)