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Abstract: In this paper are proved a few properties about convergent sequences into a real 2-normed
space (L,[|,-|) and into a 2-pre-Hilbert space (L,(--|-)), which are actually generalization of

appropriate properties of convergent sequences into a pre-Hilbert space. Also, are given two
characterization of a 2-Banach spaces. These characterization in fact are generalization of appropriate
results in Banach spaces.
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I. INTRODUCTION
Let L be a real vector space with dimension greater than 1 and, ||-,-|| be a real function defined on

L x L which satisfies the following:
a) Ix,y|=0, foreach x,yeL u | x y|=0 if and only if the set {x, y} is linearly dependent,
b) IIx,yl=ly, x|, foreach x,yelL,
¢) lex,yl=a|-|Ix y], foreach x,yeL and for each ¢ eR,
d) |Ix+vy,zI<Ix, z||+]y,z|, foreach x,y,zeL.
Function ||-,-|| is called as 2-norm of L, and (L,||--|) is called as vector 2-normed space ([1]).
Let n>1 be a natural number, L be a real vector space, dimL>n and (-,-|-) be real function on

LxLxL such that:
i)  (x,x|y)=0,foreach x,yeL u (x,x|y)=0 ifand onlyif a and b are linearly dependent,

i) (x,y|2)=(y,x|z), foreach x,y,zeL,

i) (x,x|y)=(y,y|x), foreach x,yelL,

V) (ax,y|z)=a(x,y|z), foreach x,y,zeL and for each « R, and

V)  (X+Xx,¥Y|2)=(XYy|z2)+(x,Yy|z), foreach xq,X,y,zeL.
Function (-,-|-) is called as 2-inner product, and (L,(-,-|-)) is called as 2-pre-Hilbert space ([2]).

Concepts of a 2-norm and a 2-inner product are two dimensional analogies of concepts of a norm and
an inner product. R. Ehret ([3]) proved that, if (L,(-,-|-)) be 2-pre-Hilbert space, than

1% V= (x,X| y)ll2 , foreach x,yelL (1)

defines 2-norm. So, we get 2-normed vector space (L,||--|]) -

Il. CONVERGENT AND CAUCHY SEQUENCES IN 2-PRE-HILBERT SPACE
The term convergent sequence in 2-normed space is given by A. White, and he also proved a few

properties according to this term. The sequence {x,}n-1 into vector 2-normed space is called as convergent if
there exists xeL such that lim ||x,—x,y|l=0, for every yeL. Vector xeL is called as bound of the
N—oo

sequence {x,}y=1 and we note lim x, =x or x, =X, n—oo, ([4]).
Nn—o0

Theorem 1 ([4]). Let (L,||--|) be a 2-normed space over L.

a)If lim x,=x, limy,=y, lima,=«a and lim g, =4, then
n—o0 N—o0 n—o0 N—a0
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lim (o Xn + Bayn) = ax+ By .
N—o0

o) If lim x, =x and lim x, =y, then x=y. =
N—o0 n—o0

Theorem 2 ([4]). a) Let L be a vector 2-normed space, {X,},-; be the sequencein L and yelL is

such that lim || X, —Xy,, Y [= 0. Then the real sequence {|| x, — X, y [}z is convergent for every xeL .
N—o0

b) Let L be a vector 2-normed space, {x,},—1 be a sequence in L and yelL is such that
lim || X, =X y|=0.Then lim || X, YI=lXx y|. =
n—0 N—00

In [7] H. Gunawan was focused on convergent sequences in 2-pre-Hilbert space (L,(--|-)), and he

gave the term weakly convergent sequence in 2-pre-Hilbert space. According to this he proved a few
corollaries.

Definition 1 ([5]). The sequence {X,}n- in the 2-pre-Hilbert space (L,(-|-)) is called as weakly
convergent if there exists xeL such that lim(x,—X,y|z)=0, for every y,zelL. The vector xeL is
N—o0

w
called as weak limit of the sequence {x,} -, and is denoted as x, —>x, n— .

w w
Theorem 3. Let (L,(,-|-)) be a 2-pre-Hilbert space. If x,—>Xx, yo,—=VY, o, >« and g, > g, for
w
n— oo, then o, X, + By yp > ax+ By, for n —»oo.

Proof. The validity of this theorem is as a direct implication of Definition 1, the fact that every
convergent real sequence is bounded and the following equalities:

lim (apXn + BaYn —ax—By,u|v) = lim (a,x, —ax,u|v)+ lim (5,y, — BY,u|v)
N—oo n—o0 Nn—o0
= lim o, (X, —x,u|v)+ lim (e, —@)(X,u|Vv) +
nN—0 N—00

+ 1 S (yn =y, ulv)+ lim (fy = B)(y,ulv) . m

w w
Corollary 1 ([5]). Let (L,(-]|-)) be a 2-pre-Hilbert space. If x,—>x, y,—Yy, for n—>« and

w
a,feR, then ax, + By, —>ax+py, for n —»oo.
Proof. The validity of this Corollary is as a direct implication of Theorem 3 for o, =, S =4, n2>1.

Lemma 1 ([5]). Let (L,(-,-|-)) be a 2-pre-Hilbert space.
w
a) If X, > X, n— o, thenx, >X, n—>oo.

w w
0) If x,—>x and x, >X', n—>oo, then x=x".m

Theorem 4. Let (L,(,-|-)) be a real 2-pre-Hilbert space. If x, >Xx, y,—>y, a,—>«a and
Bn— B, for n - oo, then

lim (a0 Xn, Bn¥n 1 2) =(ax, By |z), for every zeL. (2)
nN—o0

Proof. Let X, > X, Yy, >V, o, >« and g, > S, for n—oo. Then, Theorem 1 a) implies
lim ||y, —ax,z|=0, lim ||g,y,—BY.z|E0, forevery zeL. 3)
n— N—00

Properties of 2-inner product and the Cauchy-Buniakowsky-Schwarz inequality imply
0<|(anXn, Bnyn [2) —(ax, By |2)|
= (@nXn, Bn¥Yn 12) —(anXn, BY | 2) + (anXn, BY | 2) — (aX, BY | 2) |
<[(anXns Bn¥n 12) = (anXn, BY | 2) |+ | (anXn, BY | 2) = (aX, BY | 2) |
=l (anXn, BnYn = BY D) |+ (anXn —ax, By |2) |
NanXn, 2l BaYn = BY: zl+ llanXq —ax, 2 |- BY. 2.
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Finally, letting n — oo, in the last inequality, by Theorem 2 b) and equality (3) follows the equality (2). m
Corollary 2 ([5]). Let (L,(--|)) be a real 2-pre-Hilbert space. If x, > x and y, >y, forn >,

then lim (X5, Yy 12)=(x,y|z), forevery zeL.
N—o0
Proof. The validity of this Corollary is as a direct implication of Theorem 4, oy =5, =1,n>1. =
Theorem 5. Let {x,},-; be a sequence in 2-pre-Hilbert space L . If
lim || x,, YI=IX y ] and lim (X,. X|y) =(X,X|y), for every yeL,
N—o0 nN—o0

then lim x, =x.
N—o0

Proof. Let ye L. Then

1% =%, Y 1P = (Xg =X, X =X | Y)
= (Xn: Xn 1Y) =2y, X Y) + (X, X | y)
=l %0 ¥ 1P =20, x| Y)+ 1%, Y I,
So,

: 2 : 2 : 2
lim [Ix, =%, y[I°=lim || x5, y [ =2 lim (X, X[ y)+ [ %, y |
n—o n—oo n—o

=2[IxyIf -2(x, x| y)=0.
Finally, arbitrariness of y implies X, > X, n—>w. ®

A. White in [4] gave the term Cauchy sequence in a vector 2-normed space L of linearly independent
vectors y,zelL, i.e. the sequence {x,}n—; in a vector 2-normed space L is Cauchy sequence, if there exist
y,zeL suchthat y and z are linearly independent and

lim || X, —Xm.YIEO and lim ||x,—Xq,2[=0. 4)
m,n—>0 m,n—o0
Further, White defines 2-Banach space, as a vector 2-normed space in which every Cauchy sequence is

convergent and have proved that each 2-normed space with dimension 2 is 2-Banach space, if it is defined
over complete field. The main point in this state is linearly independent of the vectors y and z, and by

equalities (4) are sufficient for getting the proof. Later, this definition about Cauchy sequence into 2-normed
space is reviewed, and the new definition is not contradictory with the state that 2-normed space with
dimension 2 is 2-Banach space.

Definition 2 ([6]). The sequence {x,}n- in a vector 2-normed space L is Cauchy sequence if
lim ||, —Xm.Y[=0, forevery yeL. 4)
m,n—0

Theorem 6. Let L be a vector 2-normed space.

i) If {X,}h=1 is a Cauchy sequence in L, then for every y e L the real sequence {|| Xy, Y [Fre1 IS
convergent.

i) If {x,}ne and {y,}n=1 are Cauchy sequences in L and {&,}h - is Cauchy sequence in R, then
{Xn + Yntnet and {o X dney are Cauchy sequences in L.

Proof. The proof is analogous to the proof of Theorem 1.1, [4]. m

Theorem 7. Let L be a vector 2-normed space, {X,}n-; be a Cauchy sequence in L and {xmk}le be

a subsequence of {x, 3} If lim x,, =x, then lim x, =x.
k—oo K n—c
Proof. Let yeL and &>0 is given. The sequence {X,}n-; is Cauchy, and thus exist n; e N such

that || X, —Xp,Yll<%, for n,p>n;. Further, memk =X, so exist np eN such that ||x, —x y|<%, for

my >n, . Letting ng = max{n;,n,} we get that for n,m, >ng is true that

1% =% Y I X0 =X, s Y1+ 1 Xm, =X, YK §+5 =5,

|
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The arbitrariness of y e L implies lim x, =x. m
N—o0

Theorem 8. Let L be a 2-pre-Hilbert space. If {x,}—; and {y,},1 are Cauchy sequences in L,

then for every z L the sequence {(X, Y, | Z)}ne1 is Cauchyin R.
Proof. Let z e L. The properties of inner product and Cauchy-Buniakovski-Swartz inequality imply
[ (Xns Yn 12) = (Xmy Y [ 2) 1 (Xns Y 12) = (X Y 1 2) 11 (X Y 12) = s Y 1 2) |
= (Xn = Xm» Yn 1 2) |+ 1Ky Yo = Ym [ 2) |
X0 =Xmo 2l 1Y 21+ 1 X 211 Yn = Y 21
Finally, by the last inequality, equality (4) and Theorem 6 i) is true that for given zeL the sequence

{(Xn+ ¥n | )}t is Cauchy sequence. m

I1l. CHARACTERIZATION OF 2-BANACH SPACES
Theorem 9. Each 2-normed space L with finite dimension is 2-Banach space.

Proof. Let L be a 2-normed space with finite dimension, {x,} -1 be a Cauchy sequence in L and
ael.By dimL>1, exist beL such that the set {a,b} is linearly independent. By Theorem 1, [7],

1% lap2=(Ixal? +1xbIA)"?, xeL 5)
defines norm in L, and by Theorem 6, [7] the sequence {x,}~; is Cauchy into the space (L,||-|l;p2) . But
normed space L with finite dimension is Banach, so exist x e L such that lim || x, —X|l,,2=0. So, by (5)

nN—oo
we get

lim || X, —x.al= lim || x, —x,b|=0. (6)

n—oo n—o0
We’ll prove that for every y e L,

lim || x,—X,y|=0. ©)

N—oo
Clearly, if y=aa, then (6) and the properties of 2-norm imply (7). Let the set {y,a} be linearly independent.
Then (L,[|-lly,a2) is a Banach space, and moreover because of the sequence {Xp ey is Cauchy sequence in
(L[l-lly,a2) » exist x" e L such that

lim [ x, —x' ||y,a,2: 0. ©)
Nn—o0

But in space with finite dimension each two norms are equivalent (Theorem 2, [8], pp. 29), and thus exist
m,M >0 such that

m ” Xn — X' ”y,a,ZS” Xn — X' ”a,b,ZS M ” Xn— X' ||y,a,2 '

This implies lim || X, —=X" [l ph 2=0 and moreover lim || x, —X|l;p>=0. So, we may conclude x'=x. By (8),
n—o0 N—00
lim || X, =X |ly.a,2=0, and thus (7) holds. Finally the arbitrariness of y implies the validity of the theorem i.e.
nN—oo
the proof of the theorem is completed. m

Definition 3. Let L be a 2-normed space and {x,}n be a sequence in L. The series > X, is
n=1

m
called as summable in L if the sequence of its partial sums {Sp}m_1. Sm = 2 X, convergesin L. If {s,}n1
n=1

o0 o0
converges to s, then s is called as a sum of the series ’ x,, and isnoted as s= )" X,
n=1 n=1

The series ) x,, is called as absolutely summable in L if for each yeL holds > || x,, Y[l <.
n=1 n=1

Theorem 10. The 2-normed space L is 2-Banach if and only if each absolutely summable series of
elementsin L issummablein L.

|
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Proof. Let L be a 2-Banach space, {x,}r; be a sequence in L and for each yeL holds
o0 o0
> 1 Xn, Y[l < oo . Then the sequence {sy,}m-1 of partial sums of the series 3" x,, is Cauchyin L, because of
n=1 n=1
| Sk = Smo Y IF Xma + Xma2 +oF Xk Y IS Xmas Y+ X2y Y X VT
for every y e L and for every m,k >1. But, L is a 2-Banach space, and thus the sequence {s;,}m1 converge
in L. That means, the series > X,, is summablein L.
n=1
Conversely, let each absolutely summable series be summable in L. Let {z,},; is a Cauchy
sequencein L and yelL.Let m eN issuch that ||z, -2y, yll<1, for m>my . By induction we determine

1 i -
My, Ma,... such that m, <my,, and for each m>m, holds ||zm—zmk,y||£k—2. Letting X, =z, —Zp,

k=12,..., weget D [Ix. ylI<> L <. The arbitrarily of yeL implies the series > X, is absolutely
k=1 k=1

2
K k=1
- - X - - k71
summable. Thus, by assumption, the series kzlxk is summable in L. But, z, =z, + Z‘ixi . Hence, the
= 1=

subsequence {zmk}ﬁozl of the Cauchy sequence {z,},-; converge in L. Finally, by Theorem 7, the sequence

{z,}- convergein L. It means L is 2-Banach space. m
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