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I. Introduction 
Fluid non-Newtonian does not show a linear relationship between stress and strain rate and received a 

lot of attention due to the increasing applications of industrial and technological field, such as polymer 

solutions, paints, blood and heavy oils. No model alone that can describe the behavior of all fluids non-

Newtonian because of complex behavior.  

Thus, it was suggested many of the foundational equations of non-Newtonian fluid models. The 

Burgers’ fluid is one of them which cannot be described a typical relation between shear stress and the rate of 

strain, for this reason many models of constitutive equations have been proposed for these fluids[7,8,11]. Many 

applications of this type of fluid can be found in [1,2,15,18]. Many of the developments in the theory of 

viscoelastic flows have been mainly restricted to the formulations of the basics equation and constitutive models 

[12,16], and many applications of fractional calculus can be found in turbulence and fluid dynamics, stochastic 

dynamical system and nonlinear control theory [3,14,19].   

Recently, Tong and Liu [6] studied the unsteady rotating flows of a non- Newtonian fluid in an annular 
pipe with Oldroyd- B fluid model. Tong … etc [5] discussed the flow of Oldroyd- B fluid with fractional 

derivative in an annular pipe. Hyder … etc [17] discussed the flow of a viscoelastic fluid with fractional 

Burgers’ model in an annular pipe. Tong … etc [4] discussed the flow of generalized Burgers’ fluid in an 

annular pipe. Khan [13] investigated the (MHD) flow of generalized Oldroyd- B fluid in a circular pipe. Later 

on [10] investigated the slip effects on MHD flow of a generalized Oldroyd- B fluid with fractional derivative.   

In this paper, our aim is to steady the effects of MHD on the unsteady flow of a viscoelastic fluid with 

fractional generalized Burgers’ fluid model in an annular pipe. The exact solution for velocity distribution is 

established by using the finite Hankel transform and discrete Laplace transform of the sequential fractional 

derivatives.  

 

II. Governing Equations 
The constitutive equations for an incompressible fractional Burger’s fluid given by 
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 where T  denoted the cauchy stress, Ip  is the indeterminate spherical stress, S is the extra stress tensor, 
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in which 

tD  and 


tD  are the fractional differentiation operators of order  and   based on the Riemann- 

Liouville definition, defined as 
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here (.)  denotes the Gamma function and 
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The model reduced to the generalized Oldroyd- B model when  02  and if, in addition to that, 

1   the ordinary Oldroyd- B model will be obtained. 

We consider the MHD flow of an incompressible generalized Burger’s fluid due to an infinite accelerating 

plate. For unidirectional flow, we assume that the velocity field and shear stress of the form  

),(,),( tretrw z SSV                                                                                                                        (6) 

where ze  is the unit vector along z - direction .Substituting equation (6) into (1) and taking account of the initial 

condition  
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where 0SSSS rzrr   . Furthermore, it assumes that the conducting fluid is permeated by an imposed 

magnetic field 0[0,H ,0]H  which acts in the positive  - direction. In the low- magnetic Reynolds number 

approximation, the magnetic body force is represented as 2

0H w , where   is the electrical conductivity of the 

fluid. Then in the presence of a pressure gradient in the z- direction, the equation of motion yields the following 

scalar equation: 
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where   is the constant density of the fluid. Eliminating rzS between Eqs. (8) and (10), we obtain the following 

fractional differential equation   
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where 



v   is the kinematic viscosity and 

2
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M




  is the magnetic dimensionless number. 

III. Plane Poiseuille Flow 
Consider that the flow problem of an incompressible generalized Burgers’ fluid is initially at rest 

between two infinitely long coaxial cylinders of radii 0R and 1R  ( 0R ). At time  0t  the fluid is generated 

due to a constant pressure gradient that acts on the liquid in the z- direction . Referring to Eq. (11), the 

corresponding fractional partial differential equation that describe such flow takes the form 
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where 
dx

dp



1
A   is the constant pressure gradient 

The associated initial and boundary conditions are as follows  
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To obtain the exact analytical solution of the above problem (12)- (14), we first apply Laplace 
transform principle [9] with respect to t, we get 
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where ),( srw is the image function of ),( trw and s  is a transform parameter. 

We use the finite Hankel transform [9], defined as follows 
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where ik are the positive roots of equation 0)( 10 ikRB and )()()()()( 0000000 iiiii kRJrkYkRYrkJrkB   

where (.)0J and (.)0Y are the Bessel functions of the first and second kinds of order zero. 

Now applying finite Hankel transform to Eqs. (15)-(16) with respect to r, we get 
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Now, writing Eq. (19) in series form as  
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where nnndndccbk   )()()(21 . And its discrete inverse Laplace transform  [20] 

will take the form  
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Finally, the inverse finite Hankel transform gives the analytic solution of velocity distribution 
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3.1 The limiting cases 

1- Making the limit of Eq.(23) when 0  and 0M  (c=d=0) , we can get similar solution  velocity 

distribution for unsteady flows of a viscelastic fluid with the fractional Burgers’ model, as obtained in Ref[17]. 

Thus the velocity field reduces to  
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where nnnbk   221 . 

 

2- Making the limit of Eq.(23) when 0 , 02   (b=0) and 0M  (c=d=0) , we can get the  velocity 

distribution for a generalized Oldroyd- B fluid. Thus the velocity field reduces to  
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where 1k n n     . 

 

IV. Numerical Results And Discussion: 
In this work, we have discussed the MHD flow of generalized Burger’s fluid in an annular pipe. The 

exact solution for the velocity field u  is obtained by using the discrete Laplace and finite Hankel transforms. 

Moreover, some figures are plotted to show the behavior of various parameters involved in the expressions of 

velocityu .  

A comparison between the magnetic parameter effect M (Panel a) and no magnetic parameter effect  

(M=0)  (Panel b) is also made graphically in Figs 1-5.   

Figs. 1 and 2 provide the graphically illustrations for the effects of the non- integer fractional parameter 

 and   on the velocity fields. The velocity is increasing with the increased the    and   for both cases 

( M 0 & M 0 ). 

Fig. 3 provides the graphical illustration for the effect of relaxation parameter 1  on the velocity fields. 

The velocity is decreased with the increase of 1  for both cases ( M 0 & M 0 ). 

Figs. 4 and 5 are prepared to show the effect of the material parameter 2  and the retardation parameter 

3 on the velocity field. The velocity is increasing with the increase of 2  and 3  for the both cases 

( M 0 & M 0 ).  

Fig. 6 is established to show the behavior of the magnetic parameter M for small as well as for long 

time.  It is observed in (Panel a)  that for short time 0.1t   the increase in magnetic field  M will decrease the 

velocity profile, while quite the opposite effect is observed for long time 0.5t  in (Panel b) i.e., the increase in 

magnetic field M will increase the velocity profile.   

Comparison shows that the velocity profile with magnetic field effect is larger when compared with the 

velocity profile without magnetic field effect. The effect is explained on the long time. 
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Fig. 1. The velocity for different value of  when keeping other parameters fixed a) M 3  b) M 0  

 

    
Fig. 2. The velocity for different value of  when keeping other parameters fixed a) M 3  b) M 0  

 

    
Fig. 3. The velocity for different value of 

1 when keeping other parameters fixed a) M 3  b) M 0  
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Fig. 4. The velocity for different value of 

2 when keeping other parameters fixed a) M 3  b) M 0  

 

   
Fig. 5. The velocity for different value of 

3 when keeping other parameters fixed a) M 3  b) M 0  

 

   
Fig. 6. The velocity for different value of M when keeping other parameters fixed a) 0.1t   b) 0.5t   
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