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I. INTRODUCTION 
As of late more consideration is paid to the supply chain systems due to increasing expenses, 

globalization of assets, globalization of economy, expanded verities of items and prerequisites of lower reaction 

time. As a result of substantial variability in the impacting conditions, essential suppositions of the EOQ model  

obliges incessant changes as per the inventory. As of late the thoughtfulness regarding an alternate essential 

perspective known as decaying properties of things has been generally examines for the exact demonstrating of 

supply chain systems. 

Since numerous other essential variables may be considered to more practical model arrangement. 

Numerous analysts have officially proposed the various types of EOQ models for diverse things, like no-

shortage inventory model with constant speed decay, inventory model with Weibull-distributed deteriorating 

rate, inventory model with discount and partial backordering and so on. 

Finally in this paper the enhanced PSO is tested for the EOQ problem considering inventory model 
with deteriorating items is taken [1], which considered that the demand function is exponentially decreasing and 

the backlogging rate is inversely proportional to the waiting time for the next replenishment. The objective of 

the problem is to minimize the total relevant cost by simultaneously optimizing the shortage point and the length 

of cycle. The rest of the paper is organized as the section 2 presents a brief literature review of related articles 

while in section 3 mathematical modeling for the considered EOQ problem is presented. The section 4 describes 

the PSO and the enhanced PSO algorithms followed by the simulation results in section 5. Finally in the section 

6 the conclusion drawn on the basis of simulation results is presented.    

 

II. LITERATURE REVIEW 
This section presents some of the important literatures related to this work. Kai-Wayne Chuang et al. 

[2] studied pricing strategies in marketing, with objective to find the optimal inventory and pricing strategies for 

maximizing the net present value of total profit over the infinite horizon. The studied two variants of models: 

one without considering shortage, and the other with shortage. Lianxia Zhao [7] studied an inventory model 

with trapezoidal type demand rate and partially backlogging for Weibull-distributed deterioration items and 

derived an optimal inventory replenishment policy. Liang Yuh Ouyang et al. [1] presented an EOQ inventory 

mathematical model for deteriorating items with exponentially decreasing demand. Their model also handles the 

shortages and variable rate partial backordering which dependents on the waiting time for the next 

replenishment. Jonas C.P. Yu [4] developed a deteriorating inventory system with only one supplier and one 

buyer. The system considers the collaboration and trade credit between supplier and buyer. The objective is to 
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maximize the total profit of the whole system when shortage is completely backordered. The literature also 

discuss the negotiation mechanism between supplier and buyer in case of shortages and payment delay. Kuo-

Lung Hou et al. [10] presents an inventory model for deteriorating items considering the stock-dependent selling 
rate under inflation and time value of money over a finite planning horizon. The model allows shortages and 

partially backlogging at exponential rate. Ching-Fang Lee et al. Al [14], considered system dynamics to propose 

a new order system for integrated inventory model of supply chain for deteriorating items among a supplier, a 

producer and a buyer. The system covers the dynamics of complex relation due to time evolution. Michal 

Pluhacek et al [15] compared the performance  of  two  popular evolutionary  computational  techniques  

(particle  swarm optimization and differential evolution) is compared in the  task  of  batch  reactor  geometry  

optimization.  Both algorithms are enhanced with chaotic pseudo-random number generator (CPRNG) based on 

Lozi chaotic map.  The application of Chaos Embedded Particle Swarm Optimization for PID Parameter Tuning 

is presented in [16]. Magnus Erik et al [17] gives a list of good choices of parameters for various optimization 

scenarios which should help the practitioner achieve better results with little effort. 

 

III. MATHEMATICAL MODELING OF SYSTEM AND PROBLEM FORMULATION 
The mathematical model in this paper is rendered from reference [1] with following notation and 

assumptions. 

Notation:  

𝑐1  : Holding cost, ($/per unit)/per unit time.  

𝑐2  : Cost of the inventory item, $/per unit. 

𝑐3  : Ordering cost of inventory, $/per order.  

𝑐4  : Shortage cost, ($/per unit)/per unit time.  
𝑐5  : Opportunity cost due to lost sales, $/per unit.  
𝑡1 : Time at which shortages start.  
𝑇 : Length of each ordering cycle.  
𝑊 : The maximum inventory level for each ordering cycle.  
𝑆 : The maximum amount of demand backlogged for each ordering cycle.  

𝑄 : The order quantity for each ordering cycle.  
𝐼𝑛𝑣 𝑡   : The inventory level at time t. 

Assumptions:  

1. The inventory system involves only one item and the planning horizon is infinite.  

2. The replenishment occurs instantaneously at an infinite rate.  

3. The deteriorating rate, 𝜃 (0 < 𝜃 < 1), is constant and there is no replacement or repair of deteriorated units 

during the period under consideration.  

4. The demand rate 𝑅(𝑡), is known and decreases exponentially.  

𝑅 𝑡 =  
𝐴𝑒−𝜆𝑡 , 𝐼 𝑡 > 0
𝐷 , 𝐼 𝑡 ≤ 0

  

Where 𝐴 (> 0) is initial demand and 𝜆 (0 < 𝜆 <  𝜃) is a constant governing the decreasing rate of the demand. 

5. During the shortage period, the backlogging rate is variable and is dependent on the length of the waiting time 

for the next replenishment. The longer the waiting time is, the smaller the backlogging rate would be. Hence, the 

proportion of customers who would like to accept backlogging at time 𝑡 is decreasing with the waiting time 

(𝑇 − 𝑡) waiting for the next replenishment. To take care of this situation we have defined the backlogging rate 

to be 
1

1+ 𝛿 𝑇−𝑡 
 when inventory is negative. The backlogging parameter 𝛿 is a positive constant 𝑡1 < 𝑡 < 𝑇. 

 

3.1 Model Formulation 

Here, the replenishment policy of a deteriorating item with partial backlogging is considered. The 

objective of the inventory problem is to determine the optimal order quantity and the length of ordering cycle so 

as to keep the total relevant cost as low as possible. The behavior of inventory system at any time is depicted in 

Figure 1. 
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Figure 1: Inventory level 𝐼𝑛𝑣 𝑡  𝑣𝑠. 𝑡  𝑡𝑖𝑚𝑒 . 

 

Replenishment is made at time 𝑡 = 0 and the inventory level is at its maximum 𝑊. Due to both the 

market demand and deterioration of the item, the inventory level decreases during the period [0, 𝑡1] , and 

ultimately falls to zero at 𝑡 = 𝑡1. Thereafter, shortages are allowed to occur during the time interval [𝑡1 ,𝑇] and 

all of the demand during the period [𝑡1 ,𝑇] is partially backlogged. 

As described above, the inventory level decreases owing to demand rate as well as deterioration during 

inventory interval [0, 𝑡1]. Hence, the differential equation representing the inventory status is given by 
𝑑𝐼𝑛𝑣 𝑡 

𝑑𝑡
+ 𝜃𝐼𝑛𝑣 𝑡 = −𝐴𝑒−𝜆𝑡 , 0 ≤ 𝑡 ≤ 𝑡1 ……… . (3.1)  

with the boundary condition 𝐼 0 =  𝑊. The solution of equation (1) is 

𝐼𝑛𝑣 𝑡 =
𝐴𝑒−𝜆𝑡

𝜃 − 𝜆
  𝑒 𝜃−𝜆  𝑡1−1 − 1 , 0 ≤ 𝑡 ≤ 𝑡1 ……… (3.2) 

So the maximum inventory level for each cycle can be obtained as 

𝑊 = 𝐼𝑛𝑣 0 =
𝐴

𝜃 − 𝜆
 𝑒1

 𝜃−𝜆 𝑡
− 1 ………………… . . (3.3) 

During the shortage interval [𝑡1 ,𝑇], the demand at time 𝑡 is partly backlogged at the fraction 
1

1+𝛿 𝑇−𝑡 
 Thus, the 

differential equation governing the amount of demand backlogged is as below. 
𝑑𝐼𝑛𝑣 𝑡 

𝑑𝑡
=

𝐷

1 + 𝛿 𝑇 − 𝑡 
, 𝑡1 < 𝑡 ≤ 𝑇…………… . (3.4) 

with the boundary condition 𝐼 𝑡1 = 0 . The solution of equation (3.4) can be given by  

𝐼𝑛𝑣 𝑡 =
𝐷

𝛿
{ln[1 + 𝛿(𝑇 −𝑡)] − ln[1 + 𝛿(𝑇 − 𝑡1)]}, 𝑡1 ≤ 𝑡 ≤ 𝑇……… . (3.5) 

Let 𝑡 = 𝑇 in (3.5), we obtain the maximum amount of demand backlogged per cycle as follows: 

𝑆 = −𝐼𝑛𝑣 𝑇 =
𝐷

𝛿
ln 1 + 𝛿 𝑇 − 𝑡1  …………… (3.6) 

Hence, the order quantity per cycle is given by 

𝑄 = 𝑊 + 𝑆 =
𝐴

𝜃 − 𝜆
 𝑒 𝜃−𝜆 𝑡1 − 1 +

𝐷

𝜆
ln 1 + 𝛿 𝑇 − 𝑡1  ………… . . (3.7)  

The inventory holding cost per cycle is 

𝐻𝐶 =  𝑐1𝐼𝑛𝑣 𝑡 𝑑𝑡 =
𝑐1𝐴

𝜃 𝜃 − 𝜆 
𝑒−𝜆𝑡1  𝑒𝜃𝑡1 − 1 −

𝜃

𝜆
 𝑒𝜆𝑡1 − 1  ……… . . (3.8) 

𝑡1

0

  

The deterioration cost per cycle is  
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𝐷𝐶 = 𝑐2[𝑊− 𝑅 𝑡 𝑑𝑡]
𝑡1

0

 

= 𝑐2[𝑊− 𝐴𝑒−𝜆𝑡 ]
𝑡1

0

 

= 𝑐2𝐴  
1

𝜃 − 𝜆
 𝑒 𝜃−𝜆 𝑡1 − 1 −

1

𝜆
 1 − 𝑒−𝜆𝑡1  …… . . (3.9) 

The shortage cost per cycle is  

𝑆𝐶 = 𝑐4  − 𝐼 𝑡 𝑑𝑡 
𝑇

𝑡1

 = 𝑐4𝐷   
𝑇 − 𝑡1

𝛿
−

1

𝛿2
ln 1 + 𝛿 𝑇 − 𝑡1     … . (3.10) 

The opportunity cost due to lost sales per cycle is 

𝐵𝐶 = 𝑐5   1 −
1

1 + 𝛿 𝑇 − 𝑡 
 𝐷 𝑑𝑡 = 𝑐5𝐷    𝑇 − 𝑡1 −

1

𝛿
ln 1 + 𝛿 𝑇 − 𝑡1   … (3.11)

𝑇

𝑡1

 

Therefore, the average total cost per unit time per cycle is 

𝑇𝑉𝐶 ≡ 𝑇𝑉𝐶(𝑡1 ,𝑇) 

= (holding cost + deterioration cost + ordering cost + shortage cost + opportunity cost due to lost sales)/ length 

of ordering cycle 

 

𝑇𝑉𝐶 =
1

𝑇
 

𝑐1𝐴

𝜃 𝜃 − 𝜆 
𝑒−𝜆𝑡1   𝑒𝜃𝑡1 − 1 −

𝜃

𝜆
 𝑒𝜆𝑡1 − 1  + 𝑐2𝐴  

𝑒 𝜃−𝜆 𝑡1 − 1

𝜃 − 𝜆
−

1 − 𝑒−𝜆𝑡1

𝜆
 

+ 𝑐3𝐷 
𝑐4

𝜆
+ 𝑐5  𝑇 − 𝑡1 −  

ln 1 + 𝛿 𝑇 − 𝑡1  

𝛿
    

 

𝑇𝑉𝐶 =
1

𝑇
 
𝐴 𝑐1 + 𝜃𝑐2 

𝜃 𝜃 − 𝜆 
 𝑒 𝜃−𝜆 𝑡1 −  𝜃 − 𝜆 𝑡1 − 1 −

𝐴 𝑐1 + 𝜃𝑐2 

𝜃𝜆
 1 − 𝜆𝑡1 − 𝑒−𝜆𝑡1 + 𝑐3

+
𝐷 𝑐4 + 𝛿𝑐5 

 𝛿
  𝑇 − 𝑡1 −

ln 1 + 𝛿 𝑇 − 𝑡1  

𝛿
  …… . .… (3.12) 

The objective of the model is to determine the optimal values of 𝑡1 and 𝑇 in order to minimize the average total 

cost per unit time, TVC. The optimal solutions 𝑡1
∗ and 𝑇∗ need to satisfy the following equations: 

𝜕 𝑇𝑉𝐶

𝜕𝑡1

=
1

𝑇
 
𝐴 𝑐1 + 𝜃𝑐2 

𝜃
 𝑒 𝜃−𝜆 𝑡1 − 𝑒−𝜆𝑡1 −

𝐷 𝑐4 + 𝛿𝑐5 

𝛿
 1 −

1

1 + 𝛿 𝑇 − 𝑡1 
  = 0……… (3.13) 

and  

𝜕 𝑇𝑉𝐶

𝜕𝑇
=

1

𝑇2
 
𝐷 𝑐4 + 𝛿𝑐5 

𝛿
 
 𝑇 − 𝑡1  𝛿𝑡1 − 1 

1 + 𝛿 𝑇 − 𝑡1 
+

1

𝛿
ln 1 + 𝛿 𝑇 − 𝑡1    −

𝐴 𝑐1 + 𝜃𝑐2 

𝜃 𝜃 − 𝜆 
 𝑒 𝜃−𝜆 𝑡1 − 𝑐3 

= 0… (3.14) 

 

IV. PARTICLE SWARM OPTIMIZATION (PSO) 
The PSO algorithm is inspired by the natural swarm behavior of birds and fish. It was introduced by 

Eberhart and Kennedy in 1995 as an alternative to other ECTs, such as Ant Colony Optimization, Genetic 

Algorithms (GA) or Differential Evolution (DE). Each particle in the population represents a possible solution 

of the optimization problem, which is defined by its cost function. In each iteration, a new location (combination 

of cost function parameters) of the particle is calculated based on its previous location and velocity vector 
(velocity vector contains particle velocity for each dimension of the problem).  

The PSO algorithm works by simultaneously maintaining several candidate solutions in the search 

space. During each iteration of the algorithm, each candidate solution is evaluated by the objective function 

being optimized, determining the fitness of that solution. Each candidate solution can be thought of as a particle 

“flying” through the fitness landscape finding the maximum or minimum of the objective function. 

Initially, the PSO algorithm chooses candidate solutions randomly within the search space. It should be 

noted that the PSO algorithm has no knowledge of the underlying objective function, and thus has no way of 

knowing if any of the candidate solutions are near to or far away from a local or global maximum. The PSO 

algorithm simply uses the objective function to evaluate its candidate solutions, and operates upon the resultant 

fitness values. 

Each particle maintains its position, composed of the candidate solution and its evaluated fitness and its 
velocity. Additionally, it remembers the best fitness value it has achieved thus far during the operation of the 

algorithm, referred to as the individual best fitness and the candidate solution that achieved this fitness, referred 

to as the individual best position or individual best candidate solution. Finally, the PSO algorithm maintains the 
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best fitness value achieved among all particles in the swarm, called the global best fitness, and the candidate 

solution that achieved this fitness, called the global best position or global best candidate solution. 

The PSO algorithm consists of just three steps, which are repeated until some stopping condition is 
met: 

1. Evaluate the fitness of each particle 

2. Update individual and global best fitness’s and positions 

3. Update velocity and position of each particle 

4. Repeat the whole process till the  

 

The first two steps are fairly trivial. Fitness evaluation is conducted by supplying the candidate solution 

to the objective function. Individual and global best fitness’s and positions are updated by comparing the newly 

evaluated finesses against the previous individual and global best fitness’s, and replacing the best fitness’s and 

positions as necessary. 

The velocity and position update step is responsible for the optimization ability of the PSO algorithm. 
The velocity of each particle in the swarm is updated using the following equation: 

𝑣 𝑖 + 1 = 𝑤 ∗ 𝑣 𝑖 + 𝑐1 ∗ (𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖 ) + 𝑐2 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖  ……… (4.1) 

𝑊𝑒𝑟𝑒:  
𝑣(𝑖 + 1) −  𝑁𝑒𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
𝑣(𝑖)  −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
𝑐1  , 𝑐2  −  𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑠. 
𝑝𝐵𝑒𝑠𝑡 −  𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
𝑔𝐵𝑒𝑠𝑡 −  𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 

𝑥(𝑖)  −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
The new position of a particle is then given by (4.2), where 𝑥(𝑖 +  1) is the new position: 

𝑥 𝑖 + 1 = 𝑥 𝑖 + 𝑣 𝑖 + 1 ………… . . (4.2) 
 

Each of the three terms (𝑤 ∗ 𝑣 𝑖 , 𝑐1 ∗ (𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖 ) 𝑎𝑛𝑑 𝑐2 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖   of the velocity update 

equation have different roles in the PSO algorithm. The first term 𝑤 is the inertia component, responsible for 

keeping the particle moving in the same direction it was originally heading. The value of the inertial coefficient 

𝑤 is typically between 0.8 and 1.2, which can either dampen the particle’s inertia or accelerate the particle in its 
original direction. Generally, lower values of the inertial coefficient speed up the convergence of the swarm to 

optima, and higher values of the inertial coefficient encourage exploration of the entire search space. 

The second term 𝑐1 ∗  𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖   called the cognitive component, acts as the particle’s memory, 

causing it to tend to return to the regions of the search space in which it has experienced high individual fitness. 

The cognitive coefficient 𝑐1 is usually close to 2, and affects the size of the step the particle takes 

toward its individual best candidate solution 𝑝𝐵𝑒𝑠𝑡. 

The third term 𝑐2 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖  , called the social component, causes the particle to move to the 

best region the swarm has found so far. The social coefficient 𝑐2 is typically close to 2, and represents the size of 

the step the particle takes toward the global best candidate solution 𝑔𝐵𝑒𝑠𝑡 the swarm has found up until that 
point. 

 

4.1 Enhanced PSO 

In the Enhanced PSO direct output iterations of the chaotic map were used for the generation of real 

numbers for the main PSO formula that determines new velocity, thus the position of each particle in the next 

iteration (See 𝑅𝑎𝑛𝑑 in equation (4.1) in section 5). The concept of embedding chaotic dynamics into 

evolutionary algorithms is presented in [15][16]. The two different maps which are used here are 

 

4.1.1 Logistic map  

The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, shows the 
complex, chaotic behavior from very simple non-linear dynamical equations. Mathematically, the logistic map 

is written 

𝑋𝑛+1 = 𝜇𝑋𝑛  1 −𝑋𝑛  …………… (4.3) 

 

4.1.2. lozi map  

The Lozi map is a simple discrete two-dimensional chaotic map. The map equations are given in (17).  

𝑋𝑛+1 = 1 − 𝑥 𝑋𝑛  + 𝑏𝑌𝑛 ………… . (4.4𝑎) 

𝑌𝑛+1 = 𝑋𝑛 ……………… . (4.4𝑏) 
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V. SIMULATION AND RESULTS 
To test the PSO and Enhanced PSO algorithms for finding the optimal solution of the problem as 

discussed in section (3), the equation (3.13) and (3.14) is taken as the fitness function, while the values of 𝑡1 and 

𝑇 are to be searched for satisfying the fitness function. The other variables are taken as follows: 

 

Table I 

Variable Name Variable Value 

𝐴 12 

𝜃 0.08 

𝛿 2 

𝜆 0.03 

𝑐1 0.5 

𝑐2 1.5 

𝑐3 10 

𝑐4 2.5 

𝑐5 2 

𝐷 8 

  
The exact solution found analytically in [1] was 𝑡1 = 1.4775 and 𝑇 = 1.8536. Which provides the optimal 

maximum inventory level 𝑊 =  18.401 units, the optimal order quantity 𝑄 =  20.1183 units and the minimum 

average total cost per unit time 𝑇𝑉𝐶 =  $11.1625. 

While the PSO based technique with following configuration- 

 

Table II 

Variable Name Variable Value 

𝑐1 (PSO Const.) 2 

𝑐2 (PSO Const.) 1 

𝑤𝑚𝑎𝑥  0.9 

𝑤𝑚𝑖𝑛  0.1 

Total Particles 100 

Maximum Iterations 100 

𝜇 (𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑀𝑎𝑝) 4 (Only For E-PSO) 

𝑘 (𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑀𝑎𝑝) 0.63 (Only For E-PSO) 

𝑎 (𝐿𝑜𝑧𝑖 𝑀𝑎𝑝) 1.7 (Only For E-PSO) 

𝑏 (𝐿𝑜𝑧𝑖 𝑀𝑎𝑝) 0.5 (Only For E-PSO) 
 

The equation (3.12) can be directly selected as objective function for the PSO algorithm hence it avoids the 

complex differentiations required for analytical methods. 

Using the equation (3.12) as objective function the results obtained by all three PSO as listed below- 
 

Table III: 

Technique 𝑡1  𝑇 𝑇𝑉𝐶 

PSO 1.4785 1.8550 11.1625 

PSO1 1.4772 1.8532 11.1625 

PSO2 1.4771 1.8531 11.1625 

Analytical 1.4775 1.8536 11.1625 
 

Every algorithm Provides the minimum value of 𝑇𝑉𝐶 =  $11.1625, although at different 𝑡1 and 𝑇. 
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Figure 2: Comparison for the value of objective function (fitness value) at each iteration of all three PSO (PSO 

= standard PSO, PSO1 = PSO with Single Chaotic Map, PSO2 = PSO with Double Chaotic Map. 

 

Also if we try to use the objective function by combining the equation (13) and (14) 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑠 𝑒𝑞 13  + 𝑎𝑏𝑠(𝑒𝑞 14 ) 

Using the above given equation as objective function the results obtained by all three PSO as listed below 

Technique 𝑡1 𝑇 𝑜𝑏𝑗 
PSO 1.4776 1.8538 0.3417e-3 

PSO1 1.4776 1.8537 0.4098e-3 

PSO2 1.4775 1.8537 0.1943e-3 

Analytical 1.4775 1.8536 0 

 

 
Figure 3: Comparison for the value of objective function (fitness value) at each iteration of all three PSO. The 

best fitness value achieved in the process is 1.943 ∗ 10−04  by PSO2 which almost equal to 0. 
 

VI. CONCLUSIONS 
This paper presented an enhanced PSO algorithm for efficient solution of classical economic order 

quantity (EOQ) model problem. The simulation results shows that the enhanced PSO not only converges 

quickly about half of the iterations of standard PSO but also provides much closer solution. Hence the presented 

approach can solve the EOQ problem much efficiently than standard PSO and can be preferred for complex 

EOQ models where analytical solution required extensive analysis or normal PSO fails to produce required 

closeness to solution.  
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