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I. Introduction 
The notions of compactness and connectedness are useful and fundamental notions of not only general 

topology but also of other advanced branches of mathematics. Many researchers have investigated the basic 

properties of compactness and connectedness. The productivity and fruitfulness of these notions of compactness 

and connectedness motivated mathematicians to generalize these notions. In the course of these attempts many 

stronger and weaker forms of compactness and connectedness have been introduced and investigated. Recently, 

S.Pious Missier and J.Arul Jesti have introduced the concept of 𝑆𝑔
∗-open sets[3], and introduced some more 

functions in 𝑆𝑔
∗-open sets. The aim of this paper is to introduce the concept of  𝑆𝑔

∗-compactness and  𝑆𝑔
∗-

connectedness and to investigate some of its characterizations. 

 

II. Preliminaries 
Throughout this paper (X, τ), (Y, σ ) and (Z,  ) (or X,Y and Z) represent non-empty topological spaces on 

which no separation axioms are assumed unless explicitly stated. For a subset A of a space (X, τ), 𝑆𝑔
∗C𝑙(A) and 

𝑆𝑔
∗𝐼𝑛𝑡(A) denote the 𝑆𝑔

∗-closure and the 𝑆𝑔
∗-interior of A respectively.  

Definition 2.1: A subset A of a topological space (X,𝜏) is called a 𝑺𝒈
∗ -open set [3] if there is an open set U in X 

such that U⊆A⊆ 𝑠𝐶𝑙∗(U). The collection of all 𝑆𝑔
∗-open sets in (X, τ) is denoted by 𝑆𝑔

∗O(X,𝜏). 

Definition 2.2: A subset A of a topological space (X,𝜏) is called a 𝑺𝒈
∗ -closed set[3] if X\A is 𝑆𝑔

∗-open. The 

collection of all 𝑆𝑔
∗-closed sets in (X, τ) is denoted by 𝑆𝑔

∗𝐶(X,𝜏). 

Theorem 2.3 [3]:(i)Every open set is 𝑆𝑔
∗-open 

(ii)Every closed set is 𝑆𝑔
∗-closed set 

(iii)Every 𝑆𝑔
∗-open set is semi-open 

Definition 2.4: A topological space  𝑋, 𝜏  is said to be 𝑺𝒈
∗ -𝑻𝟏

𝟐 
space [4] if  every 𝑆𝑔

∗-open set of X is open in X.  

Definition 2.5: A topological space  𝑋, 𝜏  is said to be 𝑺𝒈
∗ -locally indiscrete space [5] if  every 𝑆𝑔

∗-open set of X 

is closed in X.  

Definition 2.6: A mapping 𝑓: 𝑋 → 𝑌 is said to be 𝑺𝒈
∗ -continuous [4] if the inverse image of every open set in Y 

is 𝑆𝑔
∗-open in X. 

Defintion 2.7: A mapping 𝑓: 𝑋 → 𝑌 is said to be 𝑺𝒈
∗ -irresolute[4] if the inverse image of every 𝑆𝑔

∗-open set in Y 

is 𝑆𝑔
∗-open in X. 

Definition 2.8: A function 𝑓: 𝑋 → 𝑌 is said to be contra- 𝑺𝒈
∗ -continuous [5] if the inverse image of every open 

set in Y is 𝑆𝑔
∗-closed in X. 

Definition 2.9: A mapping 𝑓: 𝑋 → 𝑌 is said to be strongly 𝑺𝒈
∗ -continuous [4]if the inverse image of every 𝑆𝑔

∗-

open set in Y is open in X. 

Definition 2.10: A mapping 𝑓: 𝑋 → 𝑌 is said to be perfectly 𝑺𝒈
∗ -continuous [4]if the inverse image of every 𝑆𝑔

∗-

open set in Y is open and closed in X. 

Definition 2.11: A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to be slightly 𝑺𝒈
∗ -continuous[7] if the inverse image of 

every clopen set in 𝑌 is 𝑆𝑔
∗-open in 𝑋. 

ABSTRACT: The determination of this paper is to introduce two new spaces , namely 𝑆𝑔
∗-compact and 𝑆𝑔

∗-

connected spaces.  Additionally some properties of these spaces are investigated.   

Mathematics Subject Classification: 54A05 

Keywords and phrases: 𝑆𝑔
∗-open set, 𝑆𝑔

∗-closed set, 𝑆𝑔
∗-compact space and  𝑆𝑔

∗-connected space 



 𝑆𝑔
∗-Compact and  𝑆𝑔

∗-Connected Spaces 

| IJMER | ISSN: 2249–6645 |                        www.ijmer.com                           | Vol. 5 | Iss.2| Feb. 2015 | 18| 

Definition 2.12: A mapping 𝑓:  𝑋, 𝜏 →  𝑌, 𝜎  is said to be totally 𝑺𝒈
∗ -continuous[7] if the inverse image of 

every open set in  𝑌, 𝜎  is 𝑆𝑔
∗-clopen in  𝑋, 𝜏 . 

Definition 2.13: A topological space (𝑋, 𝜏) is said to be compact[8](resp. semi-compact[2]) if every open(resp. 

semi-open) cover of  (𝑋, 𝜏) has a finite subcover. 

Definition 2.14:   A topological space   𝑋, 𝜏  is said to be connected[8](resp. semi-connected[1]) if X cannot be 

expressed as the union of two non-empty open (resp. semi-open) sets in X. 

 

III.  𝑺𝒈
∗ -Compactness 

Definition 3.1: A collection {𝐴𝑖 : 𝑖 ∈ Λ} of 𝑆𝑔
∗-open sets in a topological space (𝑋, 𝜏) is called a 𝑺𝒈

∗ -open cover 

of a subset 𝐴 in (𝑋, 𝜏) if 𝐴 ⊂  𝐴𝑖.𝑖∈Λ  

Definition 3.2:A topological space (𝑋, 𝜏)is called 𝑺𝒈
∗ -compact if every 𝑆𝑔

∗-open cover of  (𝑋, 𝜏) has a finite 

subcover. 

Definition 3.3:A subset  𝐴 of a topological space  (𝑋, 𝜏) is called 𝑺𝒈
∗ -compact relative to 𝑿 if for every 

collection  𝑈𝑖 : 𝑖 ∈ Λ  of a 𝑆𝑔
∗-open subsets of 𝑋 such that 𝐴 ⊂∪  𝑈𝑖 : 𝑖 ∈ Λ , there exists a finite subset Λ0 of Λ 

such that 𝐴 ⊂∪ {𝑈𝑖 : 𝑖 ∈ 𝛬0}. 

Definition 3.4: A subset B of a topological space X is said to be 𝑺𝒈
∗ -compact if B is 𝑆𝑔

∗-compact as a subspace 

of X. 

Theorem 3.5: (i) Every 𝑆𝑔
∗-compact space is compact. 

           (ii) Every semi-compact space is 𝑆𝑔
∗-compact. 

Proof:  (i) and (ii) follows from definition 2.13 and from definition 3.2. 

Theorem 3.6: Every 𝑆𝑔
∗-closed subset of a 𝑆𝑔

∗- compact space  𝑋, 𝜏  is 𝑆𝑔
∗-compact relative to  𝑋, 𝜏 . 

Proof: Let A be a 𝑆𝑔
∗-closed subset of a 𝑆𝑔

∗- compact space  𝑋, 𝜏 . Then Ac is 𝑆𝑔
∗-open in  𝑋, 𝜏 . Let  𝑈𝑖 : 𝑖 ∈ Λ  

be a cover of A by 𝑆𝑔
∗-open subsets of X such that 𝐴 ⊂∪  𝑈𝑖 : 𝑖 ∈ Λ . So 𝐴𝑐 ∪  𝑈𝑖 : 𝑖 ∈ 𝛬 = 𝑋. Since  𝑋, 𝜏  is 𝑆𝑔

∗- 

there exists a finite subset Λ0 of Λ such that 𝐴 ⊂ 𝐴𝑐 ∪  𝑈𝑖 : 𝑖 ∈ Λ =X. Then 𝐴 ⊂∪  𝑈𝑖 : 𝑖 ∈ Λ  and hence A is 

𝑆𝑔
∗-compact relative to X. 

Theorem 3.7: Let 𝑓:  𝑋, 𝜏 → (𝑌, 𝜎) be a surjective 𝑆𝑔
∗-continuous map. If  𝑋, 𝜏  is 𝑆𝑔

∗-compact, then (𝑌, 𝜎) is 

compact. 

Proof: Let  𝐴𝑖 : 𝑖 ∈ Λ  be an open cover of Y. Since 𝑓 is 𝑆𝑔
∗-continuous, {𝑓−1 𝐴𝑖 : 𝑖𝜖Λ} is a 𝑆𝑔

∗-open cover of X. 

Also, since X is 𝑆𝑔
∗-compact, it has a finite subcover, say {𝑓−1 𝐴1 , 𝑓−1 𝐴2 ,…𝑓−1 𝐴𝑛 }. The surjectiveness of 

𝑓 implies {𝐴1 , 𝐴2 , … , 𝐴𝑛 } is a finite subcover of Y and hence Y is compact. 

Theorem 3.8: Let 𝑓:  𝑋, 𝜏 → (𝑌, 𝜎) be a 𝑆𝑔
∗-irresolute surjective  map. If  𝑋, 𝜏  is 𝑆𝑔

∗-compact, then (𝑌, 𝜎) is 

𝑆𝑔
∗-compact. 

Proof: Let  𝐴𝑖 : 𝑖 ∈ Λ  be a 𝑆𝑔
∗-open cover of Y. Since 𝑓 is 𝑆𝑔

∗-irresolute, {𝑓−1 𝐴𝑖 : 𝑖𝜖Λ} is a 𝑆𝑔
∗-open cover of 

X. Also, since X is 𝑆𝑔
∗-compact, it has a finite subcover, say {𝑓−1 𝐴1 ,𝑓−1 𝐴2 ,…𝑓−1 𝐴𝑛 }. Now 𝑓 is onto  

implies {𝐴1 , 𝐴2 ,… , 𝐴𝑛} is a finite subcover of Y and hence Y is 𝑆𝑔
∗-compact. 

Theorem 3.9: If a map 𝑓:  𝑋, 𝜏 → (𝑌, 𝜎) is 𝑆𝑔
∗-irresolute and a subset 𝐵 of  𝑋, 𝜏  is 𝑆𝑔

∗-compact relative to X, 

then the image 𝑓(𝐵) is 𝑆𝑔
∗-compact relative to 𝑌. 

Proof: Let  𝐴𝑖 : 𝑖 ∈ Λ  be any collection of 𝑆𝑔
∗-open subsets of 𝑌 such that 𝑓(𝐵) ⊂∪  𝐴𝑖 : 𝑖 ∈ Λ . Then 𝐵 ⊂∪

 𝑓−1(𝐴𝑖): 𝑖 ∈ Λ  holds. Since by hypothesis 𝐵 is 𝑆𝑔
∗-compact relative to 𝑋, there exists a finite subset Λ0 of Λ 

such that 𝐵 ⊂∪  𝑓−1(𝐴𝑖): 𝑖 ∈ Λ0 . Therefore we have 𝑓(𝐵) ⊂∪  𝐴𝑖 : 𝑖 ∈ Λ0  which shows that 𝑓(𝐵) is 𝑆𝑔
∗-

compact relative to 𝑌. 

Theorem 3.10: If a surjective map 𝑓:  𝑋, 𝜏 → (𝑌, 𝜎) is strongly 𝑆𝑔
∗-continuous and  𝑋, 𝜏  is a compact space, 

then (𝑌, 𝜎) is 𝑆𝑔
∗-compact. 

Proof: Let  𝐴𝑖 : 𝑖 ∈ Λ  be a 𝑆𝑔
∗-open cover of Y. Since 𝑓 is strongly 𝑆𝑔

∗-continuous, {𝑓−1 𝐴𝑖 : 𝑖𝜖Λ} is a open 

cover of X. Thus the open cover has a finite subcover, say {𝑓−1 𝐴1 , 𝑓−1 𝐴2 ,…𝑓−1 𝐴𝑛 } as X is compact. 

The surjectiveness of 𝑓 implies {𝐴1 , 𝐴2 ,… , 𝐴𝑛} is a finite subcover of Y and hence Y is 𝑆𝑔
∗-compact. 

Corollary 3.11: If a surjective map 𝑓:  𝑋, 𝜏 → (𝑌, 𝜎) is perfectly 𝑆 𝑔
∗ -continuous and  𝑋 , 𝜏   is a compact 

space, then (𝑌 , 𝜎 ) is 𝑆 𝑔
∗ -compact. 

Proof: Since every perfectly 𝑆 𝑔
∗ -continuous function is strongly 𝑆 𝑔

∗ -continuous, the result follows from 

theorem 3.10. 
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IV. 𝑺𝒈
∗ -Connectedness 

Definition 4.1: A topological space  𝑋 , 𝜏   is called a 𝑆 𝑔
∗ -connected space if X cannot be written as a  disjoint 

union of two nonempty 𝑆 𝑔
∗ -open sets. 

Example 4.2: Let 𝑋 =  𝑎 , 𝑏 , 𝑐   with  𝜏 = ∅ , 𝑋 ,  𝑎   . Then 𝑆 𝑔
∗ 𝑂 𝑋 ,𝜏  =  ∅ ,𝑋 ,  𝑎  ,  𝑎 , 𝑏  , {𝑎 , 𝑐 }  and it is 

𝑆 𝑔
∗ -connected. 

Theorem 4.3: Every 𝑆 𝑔
∗ -connected space is connected.  

Proof: Let  𝑋 , 𝜏   be a 𝑆 𝑔
∗ -connected space. Suppose that  𝑋 , 𝜏   is not connected, then 𝑋 = 𝐴 ∪ 𝐵  where A 

and B are disjoint nonempty open sets in  𝑋 , 𝜏  . Since every open set is a 𝑆 𝑔
∗ -open set,  𝑋 , 𝜏   is not a 𝑆 𝑔

∗ -

connected space and so  𝑋 , 𝜏   is connected. 

Remark 4.4: The converse of theorem 4.3  is not true as can be seen from the following example. 

Example 4.5: Let 𝑋 = {𝑎 , 𝑏 , 𝑐 , 𝑑 } and 𝜏  = {𝑋 ,𝜙, {𝑎 }, {𝑏 , 𝑐 }, {𝑎 , 𝑏 , 𝑐 }}. Clearly  𝑋 , 𝜏   is connected.  The 

𝑆 𝑔
∗ -open sets of 𝑋  are {𝑋 ,𝜙, {𝑎 }, {𝑏 , 𝑐 }, {𝑎 , 𝑏 , 𝑐 }, {𝑏 , 𝑐 , 𝑑 }}. Here  𝑋 , 𝜏   is not 𝑆 𝑔

∗ -connected because 

𝑋 =  𝑎  ∪ {𝑏 , 𝑐 , 𝑑 } where  𝑎   and {𝑏 , 𝑐 , 𝑑 } are non-empty 𝑆 𝑔
∗ -open sets. 

Theorem 4.6: A contra 𝑆 𝑔
∗ -continuous image of a 𝑆 𝑔

∗ -connected space is connected. 

Proof: Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a contra 𝑆 𝑔
∗ -continuous map of a 𝑆 𝑔

∗ -connected space  𝑋 , 𝜏   onto a 

topological space (𝑌 , 𝜎 ). Suppose (𝑌 , 𝜎 ) is not connected. Let 𝐴  and 𝐵  form a disconnection of 𝑌 . Then 𝐴  

and 𝐵  are clopen and 𝑌 = 𝐴 ∪ 𝐵  where 𝐴 ∩ 𝐵 = ∅ . Since 𝑓  is contra 𝑆 𝑔
∗ -continuous, 𝑋 = 𝑓 −1 𝑌  =

𝑓 −1 𝐴 ∪ 𝐵 = 𝑓 −1 𝐴  ∪ 𝑓 −1(𝐵). Thus 𝑋  is the union of disjoint nonempty 𝑆 𝑔
∗ -open sets in  𝑋 , 𝜏  . Also 

𝑓 −1 𝐴  ∩ 𝑓 −1 𝐵 = ∅ . Hence 𝑋  is not 𝑆 𝑔
∗ -connected which is a contradiction. Therefore 𝑌  is connected. 

Theorem 4.7: For a subset A of a topological space  𝑋 , 𝜏  , the following are equivalent. 

(i)  𝑋 , 𝜏   is 𝑆 𝑔
∗ -connected. 

(ii) The only subsets of  𝑋 , 𝜏   which are both 𝑆 𝑔
∗ -open and 𝑆 𝑔

∗ -closed are the empty set ∅  and X. 

(iii) Each 𝑆 𝑔
∗ -continuous map of  𝑋 , 𝜏   into a discrete space (𝑌 ,𝜎 ) with atleast two points is a constant map. 

Proof: (i)⟹(ii): Suppose that 𝑆 ⊂ 𝑋  is a proper subset, which is both 𝑆 𝑔
∗ -open  and 𝑆 𝑔

∗ -closed. Then 𝑆 𝑐  is 

also 𝑆 𝑔
∗ -open  and 𝑆 𝑔

∗ -closed. Therefore 𝑋 = 𝑆 ∪ 𝑆 𝑐  is a disjoint union of two nonempty 𝑆 𝑔
∗ -open sets which 

contradicts the fact that X is 𝑆 𝑔
∗ -connected. Hence 𝑆 = ∅  or 𝑆 = 𝑋 . 

(ii) ⟹(i): Suppose that 𝑋 = 𝐴 ∪ 𝐵  where A and B are disjoint nonempty 𝑆 𝑔
∗ -open sets in  𝑋 , 𝜏  . Since 

𝐴 = 𝐵 𝑐 , A is 𝑆 𝑔
∗ -closed. But  by assumption 𝐴 = ∅ , which is a contradiction. Hence (i) holds. 

(ii) ⟹ (iii): Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a 𝑆 𝑔
∗ -continuous map where (𝑌 ,𝜎 ) is a discrete space with atleast two 

points. Then 𝑓 −1( 𝑦  ) is 𝑆 𝑔
∗ -closed and 𝑆 𝑔

∗ -open for each 𝑦 ∈ 𝑌  and 𝑋 =∪ {𝑓 −1  𝑦   : 𝑦 ∈ 𝑌 }. By 

assumption, 𝑓 −1  𝑦   = ∅  or 𝑓 −1  𝑦   = 𝑋 . If 𝑓 −1  𝑦   = ∅   for all 𝑦 ∈ 𝑌 , then 𝑓  will not be a map. 

Hence, there exists only one point say 𝑦 1 ∈ 𝑌  such that 𝑓 −1  𝑦   ≠ ∅  and  𝑓 −1  𝑦 1  = 𝑋  which shows that 
f is a constant map. 

(iii) ⟹(ii):Let 𝑈 be both 𝑆 𝑔
∗ -open and 𝑆 𝑔

∗ -closed in  𝑋 , 𝜏  . Suppose that 𝑈 ≠ ∅ . Define 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) 

by 𝑓  𝑈 = {𝑦 1} and 𝑓 (𝑈 𝑐 ) = {𝑦 2} for some distinct points 𝑦 1 and 𝑦 2 in (𝑌 , 𝜎 ), then 𝑓  is 𝑆 𝑔
∗ -continuous. 

By assumption, 𝑓  is a constant map. Therefore 𝑦 1 = 𝑦 2 and so 𝑈 = 𝑋 . 
Theorem 4.8: Let  𝑋 , 𝜏   be 𝑆 𝑔

∗ -connected. Then each contra 𝑆 𝑔
∗ -continuous map of  𝑋 , 𝜏   into a discrete 

space (𝑌 , 𝜎 ) with atleast two points is a constant map. 

Proof: Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a contra 𝑆 𝑔
∗ -continuous map where (𝑌 , 𝜎 ) is a discrete space with atleast 

two points. Then 𝑋  is covered by 𝑆 𝑔
∗ -open and 𝑆 𝑔

∗ -closed covering {𝑓 −1  𝑦   : 𝑦 ∈ 𝑌 }. Since  𝑋 , 𝜏   is 𝑆 𝑔
∗ -

connected, the only subsets of  𝑋 , 𝜏   which are both 𝑆 𝑔
∗ -open and 𝑆 𝑔

∗ -closed are the empty set ∅  and X. 

Therefore 𝑓 −1  𝑦   = ∅  or 𝑓 −1  𝑦   = 𝑋 . If 𝑓 −1  𝑦   = ∅   for all 𝑦 ∈ 𝑌 , then 𝑓  fails to be a map. Then, 

there exists only one point say 𝑦 ∈ 𝑌  such that 𝑓 −1  𝑦   ≠ ∅  and  𝑓 −1  𝑦   = 𝑋  which shows that f is a 

constant map. 

Theorem 4.9: If 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) is a 𝑆 𝑔
∗ -continuous surjection and  𝑋 , 𝜏   is 𝑆 𝑔

∗ -connected, then (𝑌 , 𝜎 ) is 

connected. 

Proof: Suppose (𝑌 , 𝜎 ) is not connected. Then 𝑌 = 𝐴 ∪ 𝐵  where 𝐴  and 𝐵  are disjoint nonempty open subsets 

of (𝑌 , 𝜎 ). Since 𝑓  is 𝑆 𝑔
∗ -continuous and onto, 𝑋 = 𝑓 −1 𝐴  ∪ 𝑓 −1(𝐵) where 𝑓 −1(𝐴 ) and 𝑓 −1(𝐵) are disjoint 

nonempty 𝑆 𝑔
∗ -open sets in  𝑋 , 𝜏  . This contradicts the fact that  𝑋 , 𝜏   is 𝑆 𝑔

∗ -connected and hence (𝑌 , 𝜎 ) is 

connected. 

Theorem 4.10: If a surjective map 𝑓 :  𝑋 , 𝜏  → (𝑌 ,𝜎 ) is 𝑆 𝑔
∗ -irresolute and  𝑋 , 𝜏   is 𝑆 𝑔

∗ -connected, then 

(𝑌 , 𝜎 ) is 𝑆 𝑔
∗ -connected. 

Proof: If possible assume that 𝑌  is not 𝑆 𝑔
∗ -connected. Then 𝑌 = 𝐴 ∪ 𝐵  where 𝐴  and 𝐵  are nonempty disjoint 

𝑆 𝑔
∗ -open sets of  (𝑌 , 𝜎 ). Since 𝑓  is 𝑆 𝑔

∗ -irresolute, 𝑓 −1(𝐴 ) and 𝑓 −1(𝐵) are 𝑆 𝑔
∗ -open sets in  𝑋 , 𝜏  . Since 𝑓  is 

onto, 𝑓 −1(𝐴) and 𝑓 −1(𝐵) are nonempty. Now 𝑋 = 𝑓 −1 𝑌  = 𝑓 −1 𝐴 ∪ 𝐵 = 𝑓 −1 𝐴 ∪ 𝑓 −1(𝐵). Thus 𝑋  is 
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the union of disjoint nonempty 𝑆 𝑔
∗ -open sets in  𝑋 , 𝜏  . This contradicts the fact that  𝑋 , 𝜏   is 𝑆 𝑔

∗ -connected 

and hence (𝑌 , 𝜎 ) is 𝑆 𝑔
∗ -connected. 

Theorem 4.11: If a surjective map 𝑓 :  𝑋 , 𝜏  →  𝑌 , 𝜎   is strongly 𝑆 𝑔
∗ -continuous and  𝑋 , 𝜏   is a connected 

space, then (𝑌 , 𝜎 ) is 𝑆 𝑔
∗ -connected. 

Proof: Similar to the proof of the above theorem. 

Theorem 4.12: Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a perfectly 𝑆 𝑔
∗ -continuous map,  𝑋 , 𝜏   a connected space, then 

(𝑌 , 𝜎 ) has an indiscrete topology. 

Proof: Suppose that there exists a proper open set U of  (𝑌 , 𝜎 ), then U is 𝑆 𝑔
∗ -open in (𝑌 , 𝜎 ). Since 𝑓  is 

perfectly 𝑆 𝑔
∗ -continuous, 𝑓 −1(𝑈) is a proper open and closed subset of  𝑋 , 𝜏  . This implies  𝑋 , 𝜏   is not 

connected which is a contradiction. Therefore (𝑌 , 𝜎 ) has an indiscrete topology. 

Theorem 4.13: Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a totally 𝑆 𝑔
∗ -continuous map, from a 𝑆 𝑔

∗ -connected space  𝑋 , 𝜏   
onto any space (𝑌 , 𝜎 ), then (𝑌 , 𝜎 ) is an indiscrete space. 

Proof: Suppose (𝑌 , 𝜎 ) is not indiscrete. Let A be a proper nonempty open subset of (𝑌 , 𝜎 ). Then 𝑓 −1(𝐴) is a 

proper nonempty 𝑆 𝑔
∗ -open and 𝑆 𝑔

∗ -closed subset of  𝑋 , 𝜏  , which is a contradiction to the fact that  𝑋 , 𝜏   is 
𝑆 𝑔

∗ -connected. Then (𝑌 , 𝜎 ) must be indiscrete. 

Theorem 4.14: If 𝑓  is a contra 𝑆 𝑔
∗ -continuous map from a 𝑆 𝑔

∗ -connected space  𝑋 , 𝜏   onto any space (𝑌 , 𝜎 ), 

then (𝑌 , 𝜎 ) is not a discrete space. 

Proof: Suppose (𝑌 , 𝜎 ) is discrete. Let A be any proper nonempty open and closed subset of (𝑌 , 𝜎 ). Then 

𝑓 −1(𝐴 ) is a proper nonempty 𝑆 𝑔
∗ -open and 𝑆 𝑔

∗ -closed subset of  𝑋 , 𝜏  , which is a contradiction to the fact that 
 𝑋 , 𝜏   is 𝑆 𝑔

∗ -connected. Hence (𝑌, 𝜎 ) is not a discrete space. 

Theorem 4.15: Suppose that 𝑋  is a 𝑆 𝑔
∗ -𝑇 1

2 
 space then 𝑋  is connected if and only if it is 𝑆 𝑔

∗ -connected. 

Proof: Suppose that 𝑋  is connected. Then 𝑋  cannot be written as a union of two non-empty  disjoint proper 

subsets of X. Suppose 𝑋  is not 𝑆 𝑔
∗ -connected. Let 𝐴  and 𝐵  be any two 𝑆 𝑔

∗ -open sets subsets of 𝑋  such that 

𝑋 = 𝐴 ∪ 𝐵 , where 𝐴 ∩ 𝐵 = ∅ . Since 𝑋  is a 𝑆 𝑔
∗ -𝑇 1

2 
 space, every 𝑆 𝑔

∗ -open sets are open. Hence 𝐴  and 𝐵  are 

open sets which contradicts the fact that 𝑋  is not connected. Then 𝑋  is 𝑆 𝑔
∗ -connected. The converse part 

follows from the theorem that every 𝑆 𝑔
∗ -connected space is connected. 

Theorem 4.16: If 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) is slightly 𝑆 𝑔
∗ -continuous surjective function and X is 𝑆 𝑔

∗ -connected 

then Y is connected. 

Proof: Suppose Y is not connected. Then there exists non-empty disjoint open set A and B such that Y=𝐴 ∪ 𝐵 . 

Therefore A and B are clopen sets in Y. Since 𝑓  is slightly 𝑆 𝑔
∗ -continuous and surjective, 𝑓 −1(𝐴 ) and 

𝑓 −1(𝐵)are non-empty disjoint 𝑆 𝑔
∗ -opensets in X. Also 𝑓 −1 𝑌  = 𝑋 = 𝑓 −1 𝐵 . This shows that X is not 𝑆 𝑔

∗ -

connected, a contradiction. Hence Y is connected. 

Theorem 4.17: If 𝑓  is slightly 𝑆 𝑔
∗ -continuous function from a connected space (𝑋 , 𝜏 ) onto a space (𝑌 , 𝜎 ) then 

Y is not a discrete space. 

Proof: Suppose that Y is a discrete space. Let A be a proper nonempty open subset of Y. Then 𝑓 −1(𝐴) is 

nonempty 𝑆 𝑔
∗ -clopen subset of X, which is a contradiction to the fact that X is 𝑆 𝑔

∗ -connected. Hence Y is not a 

discrete space. 

Theorem 4.18: A space X is 𝑆 𝑔
∗ -connected if every slightly 𝑆 𝑔

∗ -continuous from X into any 𝑇 𝑜  space Y is 

constant. 

Proof: Let every slightly 𝑆 𝑔
∗ -continuous function from a space X into Y be constant. If X is not 𝑆 𝑔

∗ -connected 

then there exists a proper nonempty 𝑆 𝑔
∗ -clopen subset A of X . Let (𝑌 , 𝜎 ) be such that Y= 𝑎 , 𝑏  𝜎 =

{∅ , 𝑦 ,  𝑎  ,  𝑏  } be a topology. Let 𝑓 :𝑋 → 𝑌  be any function such that𝑓  𝐴  = {𝑎 } and 𝑓  𝑋 − 𝐴 =  𝑏  . 
Then f is a non-constant and slightly 𝑆 𝑔

∗ -continuous function such that Y is 𝑇 𝑜  which is a contradiction. Hence 

Y is 𝑆 𝑔
∗ -connected. 

Theorem 4.19: A space  𝑋 , 𝜏   is 𝑆 𝑔
∗ -connected if and only if every totally 𝑆 𝑔

∗ -continuous function from a 

space  𝑋 , 𝜏   into any 𝑇 0 space (𝑌 , 𝜎 ) is a constant map. 

Proof: Suppose 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) is a totally 𝑆 𝑔
∗  -continuous function where (𝑌 , 𝜎 ) is a 𝑇 0-space. Suppose 

that f is not a constant map, then we can select two points 𝑥 and 𝑦  such that 𝑓  𝑥  ≠ 𝑓  𝑦  . Since (𝑌 , 𝜎 ) is a 

𝑇 0-spaceand 𝑓 (𝑥 ) and 𝑓 (𝑦 ) are distinct points of Y,there exists an open set G in (𝑌 , 𝜎 ) containing 𝑓 (𝑥 ) but 

not 𝑓 (𝑦 ). Since 𝑓  is a totally 𝑆 𝑔
∗ -continuous function, 𝑓 −1(𝐺 ) is a 𝑆 𝑔

∗ -clopen subset of  𝑥 , 𝜏  . Clearly 

𝑥 ∈ 𝑓 −1(𝐺 ) and 𝑦 ∉ 𝑓 −1 𝐺 . Now 𝑋 =  𝑓 −1 𝐺  ∪   𝑓 −1 𝐺   
c

 which is the union of non-empty 𝑆 𝑔
∗ -open 

subsets of X. Thus X is not 𝑆 𝑔
∗ -connected space,which contradicts the fact that X is 𝑆 𝑔

∗ -connected. Hence f is a 

constant map. 

Conversely, suppose (𝑋 , 𝜏 ) is not a 𝑆 𝑔
∗ -connected space there exists a proper non-empty 𝑆 𝑔

∗ -clopen subset 𝐴  

of 𝑋 . Let 𝑌 = {𝑎 , 𝑏 } and 𝜏 =  𝑌 , ∅ ,  𝑎  ,  𝑏     be a topology for 𝑌 . Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a function 



 𝑆𝑔
∗-Compact and  𝑆𝑔

∗-Connected Spaces 

| IJMER | ISSN: 2249–6645 |                        www.ijmer.com                           | Vol. 5 | Iss.2| Feb. 2015 | 21| 

such that 𝑓  𝐴  = {𝑎 } and 𝑓  𝑌 \𝐴 =  𝑏  . Then 𝑓 is non-constant and totally 𝑆 𝑔
∗ -continuous such that 𝑌  is 

𝑇 0, which is a contradiction. Hence X must be 𝑆 𝑔
∗ -connected. 

Theorem 4.20: Let 𝑓 :  𝑋 , 𝜏  → (𝑌 , 𝜎 ) be a totally 𝑆 𝑔
∗ -continuous function & 𝑌  is a 𝑇 1-space. If A is a non-

empty 𝑆 𝑔
∗ -connected subset of X. Then 𝑓 (𝐴 )is singleton. 

Proof: Suppose that 𝑓 (𝐴 )is not a singleton . Let 𝑓 (𝑥
1
) = 𝑦 1 ∈ 𝐴  and 𝑓 (𝑥

2
) = 𝑦 2 ∈ 𝐴 . Since 𝑦 1,𝑦 2 ∈ 𝑌  

and Y is a 𝑇 1-space, there exists an open set G in (𝑌 , 𝜎 ) containing y,but not 𝑦 2. Since 𝑓  is totally 𝑆 𝑔
∗ -

continuous, 𝑓 −1(𝐺) is 𝑆 𝑔
∗ -continuous, 𝑓 −1(𝐺) is 𝑆 𝑔

∗ -clopen set containing 𝑥 1 but not 𝑥 2. Now 𝑋 =

𝑓 −1 𝐺  ∪   𝑓 −1 𝐺   
c

. Thus we have expressed X as a union of two non-empty 𝑆 𝑔
∗ -open sets. This contradicts 

the fact that X  is  𝑆 𝑔
∗ -connected. Therefore 𝑓 (𝐴 ) is singleton. 

Theorem 4.21: Every semi-connected space is 𝑆 𝑔
∗ -connected.  

Proof: Let  𝑋 , 𝜏   be a semi-connected space. Suppose that  𝑋 , 𝜏   is not 𝑆 𝑔
∗ -connected, then 𝑋 = 𝐴 ∪ 𝐵  

where A and B are disjoint nonempty 𝑆 𝑔
∗ -open sets in  𝑋 , 𝜏  . Since every 𝑆 𝑔

∗ -open set is semi-open,  𝑋 , 𝜏   is 
not a semi-connected space which is a contradiction and hence  𝑋 , 𝜏   is 𝑆 𝑔

∗ -connected. 

Remark 4.22: The converse of  theorem 4.21 is not true as can be seen from the following example. 

Example 4.23: Let 𝑋 = {𝑎 , 𝑏 , 𝑐 ,𝑑 } and 𝜏  = {𝑋 ,𝜙,  𝑎  ,  𝑏  ,  𝑐  ,  𝑎 , 𝑏  ,  𝑏 , 𝑐  ,  𝑎 , 𝑐  , {𝑎 , 𝑏 , 𝑐 }}. Then 

𝑆𝑂  𝑋 , 𝜏  = 

{𝑋 ,𝜙,  𝑎  ,  𝑏  ,  𝑐  ,  𝑎 , 𝑏  ,  𝑏 , 𝑐  ,  𝑎 , 𝑐  ,  𝑎 , 𝑑  ,  𝑏 , 𝑑  ,  𝑐 , 𝑑  ,  𝑎 , 𝑏 , 𝑐  ,  𝑎 , 𝑐 , 𝑑  ,  𝑎 , 𝑏 , 𝑑  ,  𝑏 , 𝑐 , 𝑑  } 
and 𝑆 𝑔

∗ 𝑂 𝑋 ,𝜏  = 𝜏   Here  𝑋 , 𝜏   is 𝑆 𝑔
∗ -connected but not semi-connected because 𝑋 =  𝑎  ∪ {𝑏 , 𝑐 , 𝑑 } 

where  𝑎   and {𝑏 , 𝑐 , 𝑑 } are non-empty disjoint semi-open sets. 
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