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ABSTRACT:- In this paper we study an unsteady flow of a dusty fluid through an inclined channel with
influence of pulsatile pressure gradient by the  effect of uniform magnetic field . we solve the equations
by using variable separable method and Fourier transform techniques. The graphs drawn for the velocities
of both fluid and dust phase give us the relationship between the variables which is increasing or
decreasing.
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I. INTRODUCTION

Many authors in the past few years have studied the flow of immiscible viscous electrically conducting
fluids and their different transport phenomena. This fluid is also called dusty Rivlin-Ericksen second order fluid.
The influence of dust particles on visco-elastic fluid flow has its importance in many applications such as
extrusion of plastic in the manufacture of rayon and Nylon. Saffman et al., (1962) studied the stability of a
laminar flow of dusty gas with uniform distribution of dust particles. Michel (1965) considered the Kelvin-
Helmholtz instability of the dusty gas. Michael and Miller (1965) discussed the motion of the dusty gas enclosed
in the same infinite space above a rigid plane boundary.
Liu (1966) discussed the differential equation describing the relaxation phenomenon for the flow induced in an
incompressible dusty gas by an infinite plate performing oscillations in its own plane . Reddy (1972) examined
unsteady laminar flow of a fluid with uniform distribution of dust particles through a rectangular channel
.Sastry and Seetharmaswamy (1982) studied the MHD dusty viscous flow through a circular pipe. Khare and
Singh (2010) investigated the MHD flow of a dusty viscous incompressible fluid confined between two vertical
walls with volume fraction of dust .we have studied the unsteady dusty visco-elastic liquid in a channel
bounded by two parallel plate

1. FORMULATION AND SOLUTION OF THE PROBLEM

We have studied the unsteady dusty visco-elastic liquid in a channel bounded by two parallel plates.

the change in velocity profiles for dust and liquid particles has been depicted graphically .the X-axis is taken
along the plate and the Y-axis is normal to it . The basic equations of hydromagnetic flow are
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where uy, u,is the velocity vector of fluid and dust particles respectively,p’ the pressure p is the density of the
fluid, y is kinematic coefficient of viscosity , t' is the time, m is the mass of dust particles, N, is the number
density of dust particles ,k the stokes resistance coefficient c is the non-newtonian factor, On the following
equations we take the following assumptions

1) The flow is fully developed.
2) The fluid is electrically neutral.
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3) Fluid properties are invariable.

4) The dust particles are spherical in shape and are uniformly distributed.
5) Chemical reaction, mass transfer and radiation between the particles and fluid are not considered.
6) The temperature is uniform within a particle.

7) Interaction between particles themselves is not considered.

8) The displacement current is zero .

9) The Hall effects are negligible .

10) Only the electromagnetic body forces are present.

11) Viscous dissipation is neglected.

12) The buoyancy force is neglected.

13) The number density of the dust particles is constant through the motion.

Maxwell’s equations, together with Ohm’s law and the law of electromagnetic conservation are written in the case
of zero —displacement and hall current as:

VxB=] (4)
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Which are to be solved subject to the boundary conditions

t=0 , U =u, =0

t>0 _lor constant 11

L= ( ) (11)
y' =+h U =u; =0

Changing it into non dimensional form by putting
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Applying the Iaplace Transform ,we have (14)&(16)
P

Su——+(1—/1$) m(u—v) (16)
ZSh=u—7v (17)
m 00 00
Where = [ ue>tdt, U= [, vetdt
The boundary condition (15) are transformed to

i=v=0 at y=+1 (18)
Solving equation (17)& (18) with (19)

d%u 2— c1 _

dy? METSE sa-1s) 0 49

2
where 2 — S(+c?)(moS)HS (20)

(1-28)(1+c2)(m+cS)
By solving the above differential equation by special solution and general solution

d* M2 = C1

dy? T 5(1-28)

At first we find the solution for
LT prg=o

dy?
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Then the solutionis  @(y) = ¢;e™’ +ce™

. G X
Now for this term Sazs) Suppose equal to C
d%a

then -——-M?u=cC"
dy
Substitute y = A in above equation

d d?
2L=2=0 that means M?%*A = —C*
dx dx

2 —
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Then
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now the solutionis  u(y) = cie™” +ce +—s(1_mM2
wehave u=0 at y=+1
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By solving the last equations ¢; = ¢, then the solution is

= My —My _c
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Now again substitute u =0 at y =1 tofind relation between cand c;
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c cosh My
u(}’) = 2 -
S(1 -5 )Mm? 1 cosh M
— c1 _ cosh My
u= M2S(1-1S) (1 cosh y ) (21)
_ mcy _ cosh My
v= M2S(1-1S Y(m+0S) (1 cosh y ) (22)

Applying Laplace inversion formula

= [ et dt (23)
Here § is the greatest then the real part of all the singularity of &

_ 1 8+ico cq __cosh My st
U= do—io M25(1—/15)( cosh y )e dt

Similarly for v and taking inversion laplace transform and with the help of calculus
Of residues, the above equation (22)& (23) yields.
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Now we apply some values for non-newtonian factor in above relation for u and v which represented fluid and
dust velocity respectively . We make tables with change values of other variables start by visco-elastic
parametr A then mass m and density p as following

S. No. Non-newtonian | Dust velocity | Dust velocity | Dust velocity | Dust velocity at
factor ¢ at A=11 |at A=12 |at A=125 A=13
1 01 04381 04631 04737 04931
) 0.2 0.4391 0.4642 04747 04941
3 03 04606 04638 04762 04936
4 04 04625 04677 04782 04974
3 0.3 0.4646 0.4698 0.4803 04994
6 06 04667 04720 04824 05015
7 0.7 0.4687 04741 04845 0.5033
§ 0.8 0.4706 04761 0.4864 0.3054
9 09 04724 04779 04882 0.5071
10 | 04739 0.4793 0.4898 0.5086
Table No. (1)
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m=1 ,N=1 , K=1 , ¢, =1,p=1 , t=2 , o=1)
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Table (1) reveals as the non-newtonian factor of fluid increases, the velocity of fluid phase increases
for every visco-elastic parameter (1) .it is evident from the relation (24) that the non-newtonian factor of fluid is
present in denominator of term R? which is in the denominator of the expression of the velocity fluid ,then the
non-newtnian factor (c) is represented in the numerator but the term R which in the cosh is small effective
comparing with R? in the denominator of that relation . the above graph supported our data in the table.

8.No. | Non-newtonian | Dust velocity | Dust velocity | Dust velocity | Dust velocity at
factor ¢ at =11 |at A=12 |at A=125 41=13
| 0.1 04381 04631 04737 04931
) 02 04391 0464 04747 04941
3 03 04606 04638 04762 04936
4 04 04623 04677 047§) 04974
j 03 4646 (4698 04803 04994
b 06 04667 04720 0484 03015
1 07 4687 04741 04843 05033
8 0§ 04706 04761 04864 03034
9 09 04724 04779 0488 05071
10 I 04739 04793 4808 03086
Table No. (2)
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(m=1 ,N=1 , K=1 , ¢,=1, p=1 , t=2 , o=1)
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Table (2) reveals as the non-newtonian factor of dust increases , the velocity of dust phase increases for
every visco-elastic parameter (A) . it is evident from the relation (25) that the non-newtonian factor of dust is
present in denominator of term R? which is in the denominator of the expression of the velocity dust ,then the
non-newtonian factor (c) is represented in the numerator but the term R which in the cosh is small effective
comparing with R? in the denominator of that relation .the above graph supported our data in the table (2).

8.No. | Non-newtonian factor | Fluid velocity | Fluid velocity | Fluid velocity | Fluid velocity
c m=1 m=15 at m=12 m=25
1 01 06288 03638 03288 03032
] 02 06294 0.3666 03297 0.3062
] 03 06303 03677 03311 03077
4 04 06314 0.3691 0.3328 0.3096
j 03 0.6326 0.5707 0.346 03117
b 06 0.6339 03723 0.3363 03138
) 0.7 06331 0.3739 0.3383 03138
§ 0§ 0.6362 03733 0.3400 03177
9 09 06372 03766 03413 0319
10 1 06382 03778 03429 03210
Table No.(3)
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(A=1 ,N=1 , K=1 , ¢ =1, p=1 , t=2 , 6=0.8)
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Table (3) reveals as the non-newtonian factor of fluid increases , the velocity of fluid phase increases

for every visco-elastic parameter (m) . it is evident from the relation (24) that the non-newtonian factor of fluid
is present in denominator of term R? which is in the denominator of the expression of the velocity fluid ,then the

non-newtonian factor (c) is represented in the numerator but the term R which in the cosh is small effective
comparing with R? in the denominator of that relation. The above graph supported our data in the table (3).

8. No. | Non-newtonian factor | Dust velocity | Dust velocity | Dust velocity | Dust velocity
c m=1 m=15 m=12 m=25
1 01 0.3033 04846 04732 04684
] 0.2 0.5044 04833 04763 0.4693
3 03 0.3038 04870 04779 04711
4 04 0.3074 04889 04799 04731
5 03 0.3093 04910 04820 04733
b 06 03112 04931 04842 04776
1 0.7 0.3130 04932 04864 04798
8 08 03147 04971 04883 04818
9 09 0.3162 04989 04901 04836
10 1 0.3176 0.5004 04917 04833
Table No.(4)
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1,1.5,2.5,

dust velocity at m

(A=1,N=1, K=1 , ¢, =1, p=1 , t=2 , 0¢=0.8)
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By the same method table (4) reveals as the non-newtonian factor of dust increases , the velocity of

dust phase increases for every visco-elastic parameter (m) . it is evident from the relation (25) that the non-
newtonian factor of dust is present in denominator of term R? which is in the denominator of the expression of
the velocity dust ,then the non-newtonian factor (c) is represented in the numerator but the term R which in the

cosh is small effective comparing with R? in the denominator of that relation.The above graph supported our
data in the table (4).

1. CONCLUSION
Unsteady flow of a dusty visco-elastic fluid through a channel is studie . Firstand second figures

show as the value of velocity of the fluid and dust particles increase then the value of hon-newtonian factor
increase. Third and forth figures show the same relation but with change values of mass for the phase of fluid

and dust.
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