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I. INTRODUCTION  
 Many authors in the past few years have studied the flow of immiscible viscous electrically conducting 

fluids and their different transport phenomena. This fluid is also called dusty Rivlin-Ericksen second order fluid. 

The influence of dust particles on visco-elastic fluid flow has its importance in many applications such as 

extrusion of plastic in the manufacture of rayon and Nylon. Saffman et al., (1962) studied the stability of a 

laminar flow of dusty gas with uniform distribution of dust particles. Michel (1965) considered the Kelvin-

Helmholtz instability of the dusty gas. Michael and Miller (1965) discussed the motion of the dusty gas enclosed 

in the same infinite space above a rigid plane boundary. 

 Liu (1966) discussed the differential equation describing the relaxation phenomenon for the flow induced in an 

incompressible dusty gas by an infinite plate performing oscillations in its own plane . Reddy (1972) examined 

unsteady laminar flow  of a fluid with uniform distribution of dust particles through a rectangular channel 

.Sastry and Seetharmaswamy (1982) studied the MHD dusty viscous flow through a circular pipe. Khare and 

Singh (2010) investigated  the MHD flow of a dusty viscous incompressible fluid confined between two vertical 

walls with volume fraction of dust  .we have studied  the unsteady dusty  visco-elastic liquid in a channel 

bounded by two parallel plate 

                                      

II.  FORMULATION AND SOLUTION OF THE PROBLEM 
We have studied the unsteady dusty visco-elastic liquid in a channel  bounded by two parallel plates. 

the change in velocity profiles for dust and liquid particles has been depicted graphically .the X-axis is taken 

along  the plate and the Y-axis is normal to it . The basic equations of hydromagnetic flow  are  

 

∂𝑢1
′

∂𝑡 ′
+  𝑢′

1. ∇ 𝑢1
′ = −

1

ρ
∇𝑝′ +  𝛾 ′ + 𝛽∇ ∇2𝑢1

′ +
k N0

ρ′(1+c2)
 𝑢2

′ − 𝑢1
′                                                     (1) 

∂𝑢1
′

∂𝑡 ′
+  𝑢2

′ . ∇ 𝑢2
′ =

𝐾

𝑚
 𝑢1

′ − 𝑢2
′                                                                                                                 (2) 

  div𝑢1
′ = 0           ,  div𝑢2

′ = 0                                                                                                             (3) 

                                                                                                                               

where  𝑢1
′ , 𝑢2

′ is the velocity  vector of fluid and dust particles respectively,𝑝′ the pressure 𝜌 is the density of the 

fluid, 𝛾 ′is kinematic coefficient of viscosity , 𝑡 ′ is the time, 𝑚 is the mass of dust particles, N0 is the number 

density of dust particles ,k the stokes resistance coefficient c is the non-newtonian factor, On the following 

equations we take  the following  assumptions    

1) The flow is fully developed. 

2) The fluid is electrically neutral. 

ABSTRACT:- In this paper we study an unsteady flow of a dusty fluid through an inclined channel with 

influence of pulsatile pressure gradient by the     effect of  uniform  magnetic field . we solve the equations 

by using variable separable method and Fourier transform techniques. The graphs drawn for the velocities 

of both fluid and dust phase give us the relationship between the variables which is increasing or 

decreasing. 
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3) Fluid properties are invariable. 

4) The dust particles are spherical in shape and are uniformly distributed. 

5) Chemical reaction, mass transfer and radiation between the particles and fluid are not considered. 

6) The temperature is uniform within a particle. 

7) Interaction between particles themselves is not considered. 

8) The displacement current  is zero . 

9) The Hall effects are negligible  . 

10) Only the electromagnetic body forces are present. 

11) Viscous dissipation is neglected. 

12) The buoyancy force is neglected. 

13) The number density of the dust particles is constant through  the motion. 

Maxwell’s  equations, together with Ohm’s  law and the law of electromagnetic  conservation are written in the case 

of zero –displacement and hall current as: 

∇ × 𝐵 = 𝐽                                                                                                                                              (4) 

∇ × 𝐸 =
−𝜕𝐵

𝜕𝑡
                                                                                                                                         (5) 

𝐽 = 𝜍1(𝐸 + 𝑉 × 𝐵)                                                                                                                               (6) 

∇. 𝐵 = 0                                                                                                                                                (7)   

 ∇. 𝐸 = 0                                                                                                                                               (8) 
∂𝑢1

′

∂𝑡 ′
= −

1

ρ

∂P ′

∂x ′
+ (𝛾 ′ + 𝛽

𝜕

∂𝑡 ′
)

∂2𝑢1
′

∂y2  𝑢1
′ +

k N0

ρ′(1+c2)
 𝑢2

′ − 𝑢1
′                                                                       (9) 

∂𝑢2
′

∂𝑡 ′
=

𝐾

𝑚
 𝑢1

′ − 𝑢2
′                                                                                                                                (10) 

Which are  to be solved  subject to the boundary conditions  

 𝑡 ′ = 0          ,            𝑢1
′ = 𝑢2

′ = 0   

𝑡 ′ > 0           ,        −
1

ρ

∂P ′

∂x ′
= c1    (constant)                                                                                      (11) 

𝑦′ = ±ℎ       ,           𝑢1
′ = 𝑢2

′ = 0        

Changing  it into non dimensional form by  putting 

𝑦′ = 𝑦ℎ  , 𝑥 ′ = 𝑥ℎ , 𝑡 ′ =
t h2

γ′
 ,  𝑢1

′ =
𝑢 γ′

ℎ
 ,  𝑢2

′ =
𝑣 γ′

ℎ
,  P′ =

ρ′pγ′2

h2  , k =
𝑚𝛾 ′

𝜍ℎ2 , 𝑁0 =
𝑙𝜌

𝑚
    , we get 

𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+  1 − 𝜆

𝜕

𝜕𝑡
 

𝜕2𝑢

𝜕𝑦2 +
𝑙

σ(1+c2)
 (𝑢 − 𝑣)                                                                                   (12) 

𝜍

𝑚

𝜕𝑣

𝜕𝑡
= 𝑢 − 𝑣                                                                                                                                      (13) 

 t = 0      ∶   𝑢 = 𝑣 = 0   
t > 0       :          𝑢 = 0   𝑎𝑡 𝑦 = ±1                                                                                                   (14) 

Where    𝜆 =
−𝛽

ℎ2      ,         𝑐1 = −
𝜕𝑝

𝜕𝑥
 

𝜕𝑢

𝜕𝑡
= 𝑐1 +  1 − 𝜆

𝜕

𝜕𝑡
 

𝜕2𝑢

𝜕𝑦2 +
𝑙

σ(1+c2)
 (𝑢 − 𝑣)                                                                 (15) 

Applying the laplace Transform ,we have (14)&(16) 

𝑆𝑢 =
𝑐1

𝑆
+  1 − 𝜆𝑆 

𝜕2𝑢 

𝜕𝑦2 +
𝑙

σ(1+c2)
 (𝑢 − 𝑣 )                                                                                         (16)   

𝜍

𝑚
𝑆𝑣  = 𝑢 − 𝑣                                                                                                                                      (17) 

Where              𝑢 =  𝑢𝑒−𝑆𝑡∞

0
𝑑𝑡  ,             𝑣 =  𝑣𝑒−𝑆𝑡∞

0
𝑑𝑡    

The boundary condition (15) are transformed  to                                        

  𝑢 = 𝑣 = 0   𝑎𝑡   𝑦 = ±1                                                                                                                   (18) 

Solving equation (17)& (18) with (19)  

 
𝑑2𝑢 

𝑑𝑦2 − 𝑀2𝑢 +
𝑐1

𝑆 1−𝜆𝑆 
= 0                                                                                                                  (19)                                        

                                                          

  where                   𝑀2 =
𝑆 1+c2  m+σS +𝑙S

 1−𝜆𝑆 (1+c2) m+σS 
                                                                                     (20)                   

By solving the above differential equation by special solution and general solution 

 
𝑑2𝑢 

𝑑𝑦2 − 𝑀2𝑢 = −
𝐶1

𝑆 1−𝜆𝑆 
 

At first  we find the solution for 

.
𝑑2𝑢 

𝑑𝑦2 − 𝑀2𝑢 = 0 
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Then the solution is         𝑢  𝑦 = 𝑐1𝑒
𝑀𝑦 +𝑐2𝑒

−𝑀𝑦  

Now for  this term    −
𝐶1

𝑆 1−𝜆𝑆 
   suppose equal to 𝐶∗  

then      
𝑑2𝑢 

𝑑𝑦2 − 𝑀2𝑢 = 𝐶∗  

Substitute 𝑦 = 𝐴  in above  equation   
𝑑𝑦

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2 = 0          𝑡ℎ𝑎𝑡 𝑚𝑒𝑎𝑛𝑠       𝑀2 𝐴 = −𝐶∗   

𝑀2 𝐴 =
−𝐶1

𝑆 1 − 𝜆𝑆 
 

Then  

𝐴 =
𝐶1

𝑆 1 − 𝜆𝑆 𝑀2
 

now the  solution is       𝑢 𝑦 = 𝑐1𝑒
𝑀𝑦 +𝑐2𝑒

−𝑀𝑦 +
𝑐

𝑆 1−𝜆𝑆 𝑀2 

we have  𝑢 = 0     𝑎𝑡    𝑦 = ±1 

0 = 𝑐1𝑒
𝑀𝑦 +𝑐2𝑒

−𝑀𝑦 +
𝑐

𝑆 1−𝜆𝑆 𝑀2 

0 = −𝑐1𝑒
−𝑀𝑦 +𝑐2𝑒

𝑀𝑦 +
𝑐

𝑆 1−𝜆𝑆 𝑀2 

By solving the last equations  𝑐1 = 𝑐2   then  the  solution   is 

 𝑢 𝑦 = 𝑐1 𝑒
𝑀𝑦 + 𝑒−𝑀𝑦  +

𝑐

𝑆 1−𝜆𝑆 𝑀2 

Now  again  substitute   𝑢 = 0    𝑎𝑡   𝑦 = 1    to find  relation between   c and 𝑐1 

0 = 𝑐1 𝑒
𝑀 + 𝑒−𝑀 +

𝑐

𝑆 1 − 𝜆𝑆 𝑀2
 

𝑐 = −𝑐1 𝑒
𝑀 + 𝑒−𝑀 𝑆 1 − 𝜆𝑆 𝑀2 

𝑐1 =
−𝑐

 𝑒𝑀 + 𝑒−𝑀 𝑆 1 − 𝜆𝑆 𝑀2
 

𝑢 𝑦 = 𝑐1 𝑒
𝑀𝑦 + 𝑒−𝑀𝑦  − 𝑐1 𝑒

𝑀 + 𝑒−𝑀  
 

𝑢 𝑦 = 𝑐1[𝑒𝑀𝑦 + 𝑒−𝑀𝑦 −  𝑒𝑀 + 𝑒−𝑀 ] 
 

𝑢 𝑦 = 𝑐1 𝑒
𝑀 + 𝑒−𝑀  

𝑒𝑀𝑦 + 𝑒−𝑀𝑦

𝑒𝑀 + 𝑒−𝑀
− 1  

 

𝑢 𝑦 =
−𝑐

𝑆 1 − 𝜆𝑆 𝑀2
 

𝑒𝑀𝑦 + 𝑒−𝑀𝑦

2
𝑒𝑀 + 𝑒−𝑀

2

− 1  

 

𝑢 𝑦 =
𝑐

𝑆 1 − 𝜆𝑆 𝑀2
 1 −

𝑒𝑀𝑦 + 𝑒−𝑀𝑦

2
𝑒𝑀 + 𝑒−𝑀

2

  

 

𝑢 𝑦 =
𝑐

𝑆 1 − 𝜆𝑆 𝑀2
 1 −

cosh 𝑀𝑦

cosh 𝑀
  

 

 𝑢 =
𝑐1

 𝑀2𝑆(1−𝜆𝑆 )
 1 −

cosh 𝑀𝑦

cosh 𝑦
                                                                                                              (21) 

 

 𝑣 =  
𝑚𝑐1

 𝑀2𝑆(1−𝜆𝑆  )(𝑚+𝜍𝑆)
 1 −

cosh 𝑀𝑦

cosh 𝑦
                                                                                                 (22) 

 

Applying Laplace inversion formula 

𝑢 =
1

2𝜋𝑖
 𝑢 

𝛿+𝑖∞

𝛿−𝑖∞
𝑒𝑠𝑡  𝑑𝑡                                                                                                                       (23) 

Here 𝛿  is the greatest then the real part of all the singularity  of 𝑢   

𝑢 =
1

2𝜋𝑖
 

𝑐1

𝑀2𝑆 1−𝜆𝑆  

𝛿+𝑖∞

𝛿−𝑖∞
 1 −

cosh 𝑀𝑦

cosh 𝑦
 𝑒𝑠𝑡  𝑑𝑡         

Similarly for 𝑣 and taking inversion laplace transform  and with the help of calculus 

 0f  residues, the above equation (22)& (23) yields.  
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 𝑢 =    
𝑐1

𝑅2  1 −
cosh 𝑅𝑦

cosh 𝑅
  

   +
4𝑐1

𝜋
 

 −1 𝑟 cos  
2𝑟 + 1

2
 𝜋 1 − 𝜍𝑆1 

2(1 + 𝜆𝑆1)𝑒−𝑠1𝑡

(2𝑟 + 1)𝑐11
′

 

∞

𝑟=1

+
4𝑐1

𝜋
 

 −1 𝑟 cos  
2𝑟 + 1

2
 𝜋 1 − 𝜍𝑆2 

2(1 + 𝜆𝑆2)𝑒−𝑠2𝑡

(2𝑟 + 1)𝑐11
′′

                                                                    (24)

∞

𝑟=1

 

                                 

And 

 

𝑣 =
𝑐1

𝑅2
 1 −

cosh 𝑅𝑦

cosh 𝑅
 +

4𝑐1

𝜋
 

 −1 𝑟 cos  
2𝑟 + 1

2
 𝜋 1 − 𝜍𝑆1  1 + 𝜆𝑆1 𝑒

−𝑠1𝑡

 2𝑟 + 1 𝑐11
′

 +     

∞

𝑟=1

 

 

            
4𝑐1

𝜋
 

 −1 𝑟 cos  
2𝑟+1

2
 𝜋 1−𝜍𝑆2 (1+𝜆𝑆2)𝑒−𝑠2𝑡

(2𝑟+1)𝑐11
′′  ∞

𝑟=1                                   (25) 

 

Where 

                      𝑅=𝑀2    at 𝑆 → 0    𝑐11
′ =

1+𝑙−2𝑆2𝜍+𝜍2𝑆1
2+𝜆𝑆1

2𝜍𝑙

1−𝑠1𝜍+𝜆𝑠1−𝜆𝑠1
2𝜍

 

 

𝑐11
′′ =

1 + 𝑙 − 2𝑆2𝜍 + 𝜍2𝑆2
2 + 𝜆𝑆2

2𝜍𝑙

1 − 𝑠2𝜍 + 𝜆𝑠2 − 𝜆𝑠2
2𝜍

 

 

𝑆1 =
−𝑌1+𝑌

2𝜍(1−𝜋2𝜆(
2𝑟+1

2
)2)

 ,  𝑆2 =
−𝑌1−𝑌

2𝜍(1−𝜋2𝜆(
2𝑟+1

2
)2)

 

 

𝑌1 = 1 + 𝑙 + 𝜋2𝜍(
2𝑟 + 1

2
)2 − 𝜋2𝜆(

2𝑟 + 1

2
)2 

 

𝑌 =  𝑌1
2 − 4𝜍  1 − 𝜋2𝜆  

2𝑟+1

2
 

2

 × 𝜋2  
2𝑟+1

2
 

2

                                      (26) 

 

Now we apply some values for non-newtonian factor in above relation for 𝑢 𝑎𝑛𝑑 𝑣 which represented fluid and 

dust velocity respectively .  We make tables with change values of  other variables  start by visco-elastic 

parametr  𝜆  then mass   𝑚  and density   𝜌 as following 

 

 
Table No. (1) 
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 (m=1   , N=1   ,   K=1   ,   𝐶1 = 1, 𝜌 = 1     ,    t=2    ,      𝜍 = 1) 

 

 
 

 Table (1) reveals as the non-newtonian factor of fluid increases, the velocity of fluid phase increases 

for every visco-elastic parameter (𝜆) .it is evident from the relation (24) that the non-newtonian factor of fluid  is 

present in denominator of term 𝑅2 which is  in the denominator of the expression of the velocity fluid ,then the 

non-newtnian factor (c) is represented in the numerator but the term 𝑅 which in the cosh is small effective 

comparing with 𝑅2 in the denominator of that relation . the above graph  supported our data in the table. 

 

 
Table No. (2) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

non-newtonian factor c 

flu
id

 v
el

oc
ity

 a
t 

la
m

da
=

1.
1,

1.
2,

1.
25

,1
.3

 

 

lamda=1.1

lamda=1.2

lamda=1.25

lamda=1.3
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(m=1   , N=1   ,   K=1   ,   𝐶1 = 1   ,      𝜌 = 1     ,    t=2    ,      𝜍 = 1) 

 

 
  

 Table (2) reveals as the non-newtonian factor of dust increases , the velocity of dust phase increases for 

every visco-elastic parameter (𝜆) . it is evident  from the relation  (25) that the non-newtonian factor of dust is 

present in denominator of term 𝑅2 which is in the denominator of the expression of the velocity dust ,then the 

non-newtonian factor  (c) is represented in the numerator but the term 𝑅 which in the cosh  is small effective 

comparing with 𝑅2 in the denominator of that relation .the above graph  supported our data in the table (2). 

 

 
Table No.(3) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.46

0.47

0.48

0.49

0.5

0.51

non-newtonian factor  c 

d
u
s
t 

v
e
lo

c
it
y
 a

t 
la

m
d
a
=

 1
.1

 ,
 1

.2
 ,

 1
.2

5
 ,

 1
.3

 

 

lamda=1.1

lamda=1.2

lamda=1.25

lamda=1.3
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 (𝜆 = 1   , N=1   ,   K=1   ,  𝐶1 = 1   ,     𝜌 = 1     ,    t=2    ,   𝜍 = 0.8) 

 
   

 Table (3) reveals as the non-newtonian factor of fluid increases , the velocity of fluid phase increases 

for every visco-elastic parameter (𝑚) . it is evident  from the relation  (24) that the non-newtonian factor of fluid 

is present in denominator of term 𝑅2 which is in the denominator of the expression of the velocity fluid ,then the 

non-newtonian factor  (c) is represented in the numerator but the term 𝑅 which in the cosh  is small effective 

comparing with 𝑅2 in the denominator of that relation. The above graph supported our data in the table (3). 

 

 

 
Table No.(4) 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

non-newtonian factor c 

flu
id

 v
el

oc
ity

 a
t 

m
=

1,
 1

.5
 ,

 2
 ,

 2
.5

 

 

m=1

m=1.5

m=2

m=2.5
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(𝜆 = 1, N=1,   K=1   ,  𝐶1 = 1, 𝜌 = 1     ,    t=2    ,      𝜍 = 0.8) 

 
  

 By the same method table (4) reveals as the non-newtonian factor of dust increases , the velocity of 

dust phase increases for every visco-elastic parameter (𝑚) . it is evident  from the relation  (25) that the non-

newtonian factor of dust is present in denominator of term 𝑅2 which is in the denominator of the expression of 

the velocity dust ,then the non-newtonian factor  (c) is represented in the numerator but the term 𝑅 which in the 

cosh  is small effective comparing with 𝑅2 in the denominator of that relation.The above graph supported our 

data in the table (4). 

            

III. CONCLUSION 
 Unsteady flow of a dusty visco-elastic fluid through a channel is studie .  First and  second figures 

show as   the value of  velocity of the fluid and dust particles  increase then the  value of non-newtonian factor  

increase. Third and forth figures show the same relation but with change values of mass for the phase of  fluid 

and  dust. 

 
REFERENCES 

[1]. C. B. Singh and P. C Ram, “Unsteady Flow of an Elec-trically Conducting Dusty Viscous Liquid Through a 

Channel,” indian Journal of Pure and Applied Mathe-matics, Vol. 8, No. 9,1977, 1022-1028. 

[2]. K. K. Singh, “Unsteady Flow of Conducting Dusty Vis-cous Liquid in an Annulas,”  Acta Ciecia Indica, Vol. 3, 

No. 3, 1977, p. 264. 

[3]. M. L. Sharma, “MHD Flow of a Conducting Dusty Vis-cous  Liquid through a Long Elliptic Duct with Pressure 

Gradient as function of   a Time,” Ph.D Thesis Agra Uni-versity, Agra, 1980        

[4]. Barret O’Nell, Elementary Differential Geometry, Academic  Press, New York (1966).    

[5]. D.C. Dalal, N. Datta, S.K. Mukherjea, Unsteady natural convection of a dusty fluid in an infinite rectangular 

channel 

[6]. International Journal of Heat and Mass Transfer, 41, No. 3 (1998), 547-562. and Mass Transfer, 41, No. 3 (1998), 

547-562. and Mass Transfer, 41, No. 3 (1998), 547-562. 

[7]. Sa_man P. G., On the stability of laminar ow of a dusty gas, Journal of Fluid Mechanics, 13 (1962), 120{128. 

[8]. Samba P., Siva Rao, Unsteady ow of a dusty viscous liquid through circular cylinder, Def. Sci. J., 19 (1969), 

135{138. 

[9]. Bhattacharya, T.K. (1994): Hydro magnetic flow of a dusty viscous fluid through an annulus with time dependent 

pressure  gradient. Journal of MACT. Vol. 27, pp. 1-5. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.46

0.47

0.48

0.49

0.5

0.51

0.52

non-newtonian factor c 

d
u
s
t 

v
e
lo

c
it
y
 a

t 
m

=
1
,1

.5
,2

.5
,

 

 

m=1.1

m=1.5

m=2

m=2.5



Preparation of Papers for International Journal of Modern Engineering Research  

| IJMER | ISSN: 2249–6645 |                          www.ijmer.com                   | Vol. 5 | Iss. 9 | September 2015 | 9 | 

[10]. Bjerkness, V. (1900): Meteorologiache Zeitschrift, 17, pp. 97-106. 

[11]. Chamkha, Ali. J. (1996): Boundary layer laminar flow of a dusty compressible gas over a flat surface. Journal of 

fluid Engineering, Vol. 118, pp.179-185. 

[12]. Tyn Myint-U, Partial Di_ erential Equations of Mathematic Physics, American Elsevier Publishing Company, 

New York, 1965. 

[13]. Yang Lei and Bakhtier F.,Three-dimensional mixed convection ows in a horizontal annulus with a heated rotating 

[14]. Inner circular cylinder, Int. Journal of Heat and Mass Transfer, 35(1992), 1947{1956. 


