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I. INTRODUCTION 
For continuum flow transmission system, Lisnianski [1] proposed a discrete approximation approach 

based on the universal generating function technique to estimate boundary points of several reliability measures 

for continuum state systems.  Levitin [12] gives one approach for reliability evaluation of flow transmission 

system for series-parallel systems and bridge system . Ga ́miz et .al [4] propose a method to build a structure 

function for a continuum flow transmission system by using multivariate nonparametric regression techniques, 

which took certain analytical restrictions on the variable of interest into account  

For discrete flow transmission system, there are has been numerous studies in this field. Since the 

discrete case can always be approached by enumeration method, the research focus on developing efficient 

Algorithm for large flow transmission systems, which is also known as multistate network or capacitated flow 

network. Assume that all MPs and MCs are known in advance, the study focus on developing efficient 

algorithm to find d-MPs or d-MCs, which representing the system state vectors with capacity of  . Then the 

reliability can be calculated using Inclusion-Exclusion method, Sum of Disjoint method and etc. More related 

work could be found in Yeh [17-19], Lin [22], Coit et.al [8], Kapur et.al [15], Jane and Laih [6][7].  

Few study for multistate flow transmission system conduct the maintenance issue. Yeh [20] first 

introduced maintenance problem into multistate flow system in terms of maintenance cost, which is defined as 

the overall cost of restoring a system from its failed state back to its original state. Lin [23] studied the 

maintenance issue in cloud computing network (CCN), which extended Yeh‘s work, that the components in the 

CCN should be capacity recovered to their highest capacities when only   units of data can be sent. Todinov [10] 

proposed a framework for analysis and optimization of repairable flow network, where the repairable network is 

that a renewal of failed component is taking place after a certain delay for repair. Each edge is characterized by 

a cumulative time to failure distribution and a cumulative time to repair distribution. 

The first study on mathematical modeling of selective maintenance can refer to Rice et.al [21]. Chen 

et.al [2] first studied the selective maintenance optimization for multi-state systems. Cassady et.al [3] considered 

that the lifetime of the components follow Weibull distribution, and several maintenance actions can be select 

consist of capacity recovery, and corrective or preventive replacement. Rajagopalan et.al [13] proposed a series 

of four improvements on the enumerative solution procedure for selective maintenance problem.  

Lust et.al [16] developed a heuristics and exact method based on a branch and bound procedure to 

study the optimal selective maintenance problem, to pick out a subset of actions to undertake whose total 

execution duration fits in the time window and that yields maximum reliability when the system is restarted after 

the maintenance period. Maillart et.al [9] considered a corrective selective maintenance model that identifies 
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which components to replace in the finitely long period of time between missions performed by a series-parallel 

system. A stochastic dynamic program is formed and suggestion had been made that future work should 

concentrate on single-mission problem. Liu and Huang [24] formulate the multi-state system using universal 

generating function method and proposed a Generic Algorithm to solve this complicated optimization problem 

where both multi-state systems and imperfect maintenance models are taken into account. Zhu et.al [5] studied a 

cost-based selective maintenance decision-making method for manufacturing system, in which machines are 

connected in series or in parallel. An algorithm combining the heuristic rules and Tabu search is proposed to 

solve the presented selective maintenance model. 

 

II. SYSTEM DESCRIPTION AND ASSUMPTIONS 
Considering a flow transmission system under multi-phased missions, due to the random failures and 

other unexpected factors, the capacity of each component in such a system can be regarded as statistically 

independent and continuum valued. For example, the transportation line of military logistic system may 

experience random damage, when attacked by its enemy during the mission. Thus, the capacity of delivering 

supply for each transportation line is a random variable at an arbitrary time t , with a certain distribution. The 

performance of the system at an arbitrary time t  is defined as the expected flow transmitting capacity of the 

system at time t .  

However, as time goes, the component will experience a gradual deterioration caused by the changing 

of its physical property. We take the military logistic system as an example again; the transportation line will 

deteriorate over a period of time caused by the environment. The continuous operation and loading also 

deteriorate the roadmap as well. Thus, the performance of each component in flow transmission system is 

characterized by capacity and time. The capacity represents the current state of the component, while the time, 

which affects the distribution of the capacity, represents the deterioration of the entire component. The 

performance of the system is defined as the expected flow transmitting capacity during the mission time period.   

After each mission, the system is inspected and the current capacity of each component can be 

evaluated. Then the distribution of capacity is updated. In order to complete the next mission with higher 

reliability, certain maintenance actions will be performed during the interval to improve either the capacity, or 

the distribution of capacity, or both. However, due to the limitation of time and available resources, not all the 

maintenance actions can be performed. Therefore, the selective maintenance strategy is necessary. 

 

2.1. Single component and assumptions 
For a single component, the performance index is capacity. The Beta distribution is adopted to describe 

the capacity of the component. Beta distribution is a continuous probability distribution on the interval  0,1 . 

Without loss of generosity, assume that the capacity of the component i  follows a Beta distribution with 

parameter a  and b . Both a   and b   are positive shape parameters. The probability distribution of the 

capacity is given as:  

 
 

   
   

1 11 , 0,1if x x x x
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                                (1) 
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0

xx e dx

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0
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is normalization constant to 

ensure that probability integrates to unity.  

In real applications, it is reasonable to assume that the capacity of a component will be its maximum 

value at the beginning and deteriorate as time goes. Thus, the capacity at earlier age is more likely to remain in 

high value and goes down as component ages. In order to capture this character, further assume that the 

parameter a  is fixed and parameter b  is a function of time t , which follows distribution with parameter l . 

According to characters of Bata distribution, if a  is fixed to be 1, the PDF has an increasing trend while b  is 

below 1 and decreasing; the PDF has a decreasing trend while b
 
 is above 1 and increasing. To illustrate this 

idea, consider the parameter  b
 
 as a function of time t  given below: 

   , 0,t t t                                                         (2) 

 

Thus, the probability distribution function is: 
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As it can be seen (Fig. 1) that when 1    and 0.1   , the distribution of capacity changes as time t  

increases. 

 

Fig.1. Probability distribution of Beta distribution when  1   and    0.1t t  
 

 

In reality, the Beta distribution needs to be modified to fit the distribution of capacity. The parameter 

a  and b  should be estimated based on availble data. Since it is not the focus of this project, the a  is assumed 

to be deterministic as 1 and b  , as function of time  t , is given as follows: 

   1 , 0,tt e t      

Thus, the Beta distribution is given as: 
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2.2.System description and assumptions 

A flow transmission system consist of n  components, the capacity of component i  at time t is a 

random variable, denote as ( ), {1,2,..., }iX t i n . Without loss of generosity, ( ) [0,1]iX t   , 0 means the 

capacity of the component is 0 and 1 means the maximal capacity of component. Let ( , )if x t  denote the 

probability distribution function for capacity of component i  at time t , the output expectation is used. For 

single component i , the capacity expectation at any arbitrary time t  is defined as  

  

E X
i
,t( ) = x

i
´ f

i
x

i
,t( )dx

i

0

1

ò
 

For the system, let ( , )X t denote the capacity of the system at time t . The capacity expectation of the system 

at any arbitrary time t  is defined as [ ( , )]E X t . 

However, for any time period 0[0, ]T t , the component experienced a gradual deterioration, which affects the 

probability distribution of the capacity. Thus, the average capacity expectation during the time period should be 

adopt to express the performance of the system, which is given as follows[14]: 

0

0

0

[ ( , )]

t

E X t

t


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Assume that the system has been put into operation for time period
0 0[0, ]T t , which also known as 

the effective age of the system. And the system is shut down for maintenance before the next mission (with time 

period of 
1 1[0, ]T t ).  

Assume that the capacity of each component at time 
0t  has been inspected, denoted by 

ix , 

[0,1)ix  ; the capacity of each component can only take any number between 0 and the current capacity in the 

future, denote as ( ) [0, ]i iX t x , [0,1]ix  . The probability density function of capacity is also updated. 

However, the deterioration of the component, which is known as the distribution of capacity, cannot be 

inspected due to limitation of time and cost. Take the military logistic system as an example; it might be easy to 

detect the current capacity of the transportation line, such as lower capacity due to damage on the road. 

However, the deterioration of the road is hard to inspect. 

 

III. MAINTENANCE OPTIONS AND CORRESPONDING RESOURCES CONSUMED 
Four maintenance options are available in the proposed method: Strategy without actions; capacity 

recovery, which restores the capacity of the component to maximum and leave the distribution of the capacity at 

current stage; performance improvement, which restores the capacity of the component to maximum and 

improve the distribution of the capacity with specified degree and replacement. Further assume that all four-

decision variables are binary{0,1}  and only one action can be made on each component. 

 

3.1 Strategy without actions 

Under this alternative, the capacity of the current component remains, which is denoted as ix , 

 0,1ix  . The distribution of capacity is therefore updated. 

We take the Beta distribution as an example, the PDF of the capacity of the component is 

 
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The distribution of capacity is updated as  

  0( )

11 , [0, ]
t t

t e t t
  

    

The corresponding cost and time is 0. 

 

3.2 Capacity recovery 

Take the Beta distribution as an example, the PDF of the capacity of the component after this scenario is 

fi x,t( ) =
G a + b t( )éë ùû

G a( )G b t( )éë ùû
1- x( )

b t( )-1
xa-1, x Î 0,1[ ]

 
The distribution of capacity remains at: 

  0( )

11 , [0, ]
t t

t e t t
  

    

A binary decision variable iU  is defined to denote whether to perform the capacity recovery on the 

component i . 

1,  Perfrom minimal repair on component ;

0,  Otherwise;
i

i
U


 


 

The total time for component i  under ‗capacity recovery‘ include the fixed time 
f

it and capacity 

restoring time 
r

it  (To be simplified, this value is known based on difference between the current capacity and 

maximal capacity for component i ), which is 
M f r

i i iT t t  . 
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The total cost for component i  under ‗capacity recovery‘ include the fixed cost 
f

ic  and capacity 

restoring cost 
r

ic  (To be simplified, this value is known based on difference between the current capacity and 

maximal capacity for component i ), which is 
M f r

i i iC c c  .  

 

3.3 Performance improvement 

Under this alternative, the capacity of component is restored to previous maximum capacity. 

Meanwhile, the distribution of capacity for the component is improved by specified degree. The idea of age 

reduction is used.  

Take the Beta distribution as an example, the PDF of the capacity of the component after this scenario 

is 

( ) 1 1[ ( )]
( , ) (1 ) , [0,1]

[ ] [ ( )]

t

i

t
f x t x x x

t

  

 

  
  
 

 

The distribution of capacity for the component is improved by age reduction factor b  

0( )

1( ) 1 , [0, ], (0,1)
t b t

t e t t b
   

     

Since the age reduction model is adopted for ‗performance improvement‘, the age reduction factor 

b can be any value between 0 and 1, where 0 indicate the same situation as capacity recovery and 1 indicate the 

same situation as replacement. Without loss of generosity, the age reduction factor is assumed to be 

deterministic ( 0b ) in the analytical example and different levels in numerical example.  

A binary decision variable iV  is defined to denote whether to perform performance improvement on 

the component i . 

1,  Perfrom imperfect repair on component ;

0,  Otherwise;
i

i
V


 


 

The total time for component i  under ‗performance improvement‘ includes the fixed time 
f

it , capacity 

time 
r

it  (To be simplified, this value is pre calculated based on difference between the current capacity and 

maximal capacity for component i ) and the performance improvement time , which is
I f r b

i i i iT t t t   . 

The total cost for component  under ‗performance improvement‘ includes the fixed cost 
f

ic , capacity 

restoring cost 
r

ic  (To be simplified, this value is pre calculated based on difference between the current capacity 

and maximal capacity for component i ) and the performance improvement cost 
b

ic which 

is
I r f b

i i i iC c c c   .  

 

3.4 Replacement 

Under this alternative, a brand new component is taking place of the current component. The capacity 

of component is updated to previous maximum capacity. Meanwhile, the distribution of capacity for the 

component is updated with effective age of 0. 

Take the Beta distribution as an example, the PDF of the capacity of the component after this scenario 

is 

fi x,t( ) =
G a + b t( )éë ùû

G a( )G b t( )éë ùû
1- x( )

b t( )-1
xa-1, x Î 0,1[ ]

 
The distribution of capacity for the component is updated as 

1( ) 1 , [0, ]tt e t t     

A binary decision variable iW  is defined to denote whether to perform replacement on the component 

i . 

1,  Perfrom replacement on component ;

0,  Otherwise;
i

i
W


 

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The total time for component i  under replacement include the fixed time 
f

it and replacement time 
p

it , which is 

R f p

i i iT t t  . 

The total cost for component i  under replacement include the fixed cost 
f

ic  and replacement cost 
p

ic , which is 

R f p

i i iC c c  .  

IV. MODELING OF SELECTIVE MAINTENANCE 
For each component i , the total cost is: 

M I R

i i i i i i iC U C V C W C     
 

The total cost for system is 

1

n

i

i

C C



. 

For each component i , the total time is: 
M I R

i i i i i i iT U T V T W T     
 

The total time spend on the system is  

T = Ti

i=1

n

å
. 

Assume the cost limit is 0C , and the time limit is 0T , the nonlinear programming model for the selective 

maintenance strategy to maximize the average expected capacity for next mission is given as:

 
 

1

0

1

0

0

[ ( , )]

:

. .

1,  0,1, 2,....,

, ,  are binary

t

i i i

i i i

E X t

Max
t

s t

U V W i n

C C

T T

U V W



   











 

The first constraint ensure that each component can be perform only one maintenance action or 

Strategy without actions; the second and third constraints are cost and time limitation.  

 

4.1 Analytical example 

In this section, consider a simple flow transmission system composed of two independent components 

connected in parallel as shown in Figure 1. 

 

 
Figure 1 flow transmission system consist of 2 components connected in parallel 

 

Thus, the structure function for the system is: 

     1 2,X t x t x t    

The expected capacity of the systems is 



Optimal Selective Maintenance Strategy for  Continuum Flow Transmission System 

| IJMER | ISSN: 2249–6645 |                   www.ijmer.com         | Vol. 6 | Iss. 10 | October 2016 | 11 | 

     
1 1

1 2

0 0

, , ,E X t xf x t dx xf x t dx        

The average expected capacity for next mission is 

 
1

0

1

,

t

E X t

t

  
 

Assume that capacity of each component follows a Beta distribution with the following parameters: 

     32
1 2 1 21, 2; 1 , 1 , 0,

tt

t e t e t   


         

After the previous mission, the current capacity of each component is inspected as 1 20.8, 0.6x x  . The cost 

related for each component is given as follows: 

Fixed costs are all the same: 1 2 100f fc c  ; the costs to restore the capacity are: 1 200fc  , 2 400fc  ; the 

costs to improve the distribution of capacity are: 1 500bc  , 2 700bc  ; the age reduction factor is 0 0.75b  ; 

the costs for replacement are: 1 1500pc  , 2 1600pc  . 

The time related for each component is given as follows: 

Fixed time is all the same: 1 2 10f ft t  ; the time to restore the capacity is: 1 20rt  , 2 40rt  ; the time to 

improve the distribution of capacity are: 1 50bt  , 2 70bt  ; the time for replacement is: 1 150pt  , 2 160pt  .  

The effective age for all the components is  100, 1,2,...,5f

ic i  0 2t   year; the time period for next mission 

is 1 3t  year. The total cost constraint is 0 2100C   and the total time constraint is
0 190T  . The probability 

distribution after each maintenance options is given: 
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Capacity recovery:  
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     
2

3

1 , 0,1 , 0,3

t

e
x x t





   


 
 

 

Performance improvement: 
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 

 

       

 

 

 

0 0

1.50 0

2 2

0 0

0 0

0 0

3

0 0
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2 2

1 1 1 1

1 1.5
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3

1 1 1 1

2

3

1 1 2

, 1 1 , 0,1 , 0,3

11 1

1 1

, 1

1 1

t t b t

t t b

t t b t

e e

t t b t

t t b

e

t t b

e e

f x t x x x x t

ee

e

f x t x x

e

  
 

 


  
 

  

  


 


  

 


   
       
         

   
      
  

 
    
   

 
   

 

     
1.5

3

1.5

3

1.5

3

2

1 , 0,1 , 0,3

1

t

t

e

t

e

x x t

e












 
 

     
 

  
 

 

Replacement: 

 

 

       

 

 

       

2 2

3 3
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1 1 1 1

1

2 2
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1 1 1 1

2
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1 1 2
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1 1 1

1 1 2

, 1 1 , 0,1 , 0,3

1 1 1
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t t

t t

e e

t t

t t

e e

t t

e e

f x t x x x x t

e e

e e

f x t x x x x t

e e

 

 

 

  

 

 

  

 

   
       
   

      
   

       
   

   
       
   

      
   

       
   

 

 

Thus the total cost and time for each maintenance option is given in Table 1 

 

Table 1 total cost and time for each maintenance option 

Component Strategy without 

actions 

Capacity recovery Performance 

improvement 

Replacement 

Cost Time Cost Time Cost Time Cost Time 

1 0 0 300 30 800 80 1500 150 

2 0 0 500 50 1100 120 1600 160 

 

After calculation of average expected capacity under each maintenance strategy,  

he total cost constraint is 0 2100C   and the total time constraint is 0 190T  . The optimal maintenance 

strategy is Do ‗capacity recovery‘ on component 1 and replacement on component 2; the Average expected 

capacity for next mission with time period of 3 years is 1.1951. 

 

4.2More general model with more complex system 

In the previous model, the imperfect maintenance was assumed with only one specific degree. Since the 

age reduction model was adopted in this project, the age reduction factor was assumed to be fixed, denote as 0b . 

But generally, 0b can take any value between 0 and 1, which indicating different effort when doing 

maintenance. Thus the effective age of the component can be taken all the value from 0, which refer to 

replacement, to the current clock age 0t , which refer to capacity recovery. Thus, Let is  denote different 

maintenance options for each component, the corresponding probability density function, related cost and time 

can be seen in Table 2: 

 

Table 2 Probability density functions after each maintenance option 

si

 

Maintenance 

Options 

Failure Rate Function Cost Time 

0 Strategy 

without 

actions 

fi x,t + t0( ),x Î 0,xi[ ],t Î 0,t1[ ] 0 0 

1 Capacity 

recovery 
f
i

x,t + t
0( ), x Î 0,1[ ],t Î 0, t

1[ ] ci

f + ci

r
 ti

f + ti

r
 

… Performance … … … 
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i  improvement f
i

x,t + b ´ t
0( ), x Î 0,1[ ],t Î 0,t

1[ ]
 

ci

f + ci

r + 1- b( )´ ci

p

 

ti

f + ti

r + 1- b( )´ ti

p

 … … … … 

N Replacement      1, , 0,1 , 0,if x t x t t   ci

f + ci

r + ci

p
 ti

f + ti

r + ti

p
 

 

While the maintenance options increases, the size of the system can also be much larger and complex. 

If there are M components, each component can be performed N maintenance options, the total combinatorial 

maintenance strategies for the system can be as much as 
NM . Thus, Meta-heuristic Algorithm is possible to 

search the optimal solution. 

 

4.3 Development of GA approach  

In general, the widely used Meta-heuristic Algorithms fall into four major categories, including  genetic 

algorithm (GA), Tabu search, simulated annealing algorithm, and ant colony optimization (ACO). These 

algorithmes have been proved as efficient and effective approaches to search the global optimal solution (or 

approximate global optimal solution) of combinational, and non-linear programming problems[15]. There have 

been some reported works, which apply the Meta-heuristic Algorithms for selective maintenance problems. Liu 

and Huang [15] formulate the multi-state system using universal generating function method and proposed a 

Generic Algorithm to solve this complicated optimization problem where both multi-state systems, and 

imperfect maintenance models are taken into account. Zhu et.al [6][5] studied a cost-based selective 

maintenance decision-making method for manufacturing system, in which machines are connected in series or 

in parallel. An algorithm combining the heuristic rules and Tabu search is proposed to solve the presented 

selective maintenance model.In this project, The Genetic Algorithm (GA) will be selected as the approach to 

find the optimal solution. GA is the most widely used evolutionary for solving various optimization problems 

because the convergence can be controlled that the chance of falling into local optimal solution can be rare.  

Applying the idea of [15], the solution, which is known as chromosome, is represented by integral string 

 1 2, ,..., ,...,i MS s s s s  

Where is  is a decimal digit representing the maintenance options for component i . 0 is N  . In 

reality, the number of performance improvement options N may take any finite number according to the 

requirement of decision maker.  

 

4.4 Numerical example  

In this section, the structure of the system used in [18] is reconsidered. Consider a flow transmission 

system composed of two independent subsystems connected in series, one containing three components 

connected in parallel and the other two connected in parallel as shown in Figure 2.  

 

 
Figure 2 Flow transmission system consist of 5 components 

 

Thus, the structure function for the system is: 

         1 2 3 4 5( , ) ,X t Min x t x t x t x t x t         

The expected capacity of the systems is 

           
1 1 1 1 1

1 2 3 4 5

0 0 0 0 0

( , ) , , , , , ,E X t Min xf x t dx xf x t dx xf x t dx xf x t dx xf x t dx
 

    
 
      

The expected capacity for next mission is 

 
1

0

1

,

t

E X t

t

  
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Assume that capacity of each component follows a Beta distribution with the following parameters: 

     1, 1,2,...,5 ; 1 , 1,2,...,5
t

i
i ii t e i 



      

After the previous mission, the current capacity of each component is inspected as 

 1 0.2 , 1,2,...,5ix i i    

The cost related for each component is given as follows: 

Fixed costs are all the same:  100, 1,2,...,5f

ic i  ; the costs to restore the capacity 

are:  200 , 1,2,...,5r

ic i i   ; For the cost to improve the overall deterioration, we assume the age reduction 

factor can take number from 0 to 1 with increment of 0.1. Assume the costs for replacement are 

 1500, 1,2,...,5p

ic i  , and then the costs are given:  

       1 1 1500, 1,2,...,5 ; 0.1 , 1,2,...,9jb p

i j i j jc b c b i b j j           

The time related for each component is given as follows: 

Fixed time are all the same:  10, 1,2,...,5f

it i  ; the costs to restore the capacity are: 

 20 , 1,2,...,5r

it i i   ; For the costs to improve the overall deterioration, assume the age reduction factor 

can take number from 0 to 1 with increment of 0.1. Assume the time for replacement are 

 160, 1,2,...,5p

it i  , then the time are given:  

       1 1 160, 1,2,...,5 ; 0.1 , 1,2,...,9jb p

i j i j jt b t b i b j j           

The effective age for all the components is 0 5t   year; the time period for next mission is 1 4t  year. The total 

cost constraint is 
0 4000C   and the total time constraint is

0 450T  . The probability distribution after each 

maintenance options is given: 

Strategy without actions:  

 

 

       

0
50

0

5

1 1 1 1

5

1 1 2

1 1

1 1 1

,

  1,2,...,5 ; 1 0.2 , 1,2,...,5 ; 0, ; 0,4

t t t

i i

t t t

i i
e e

t t t
i i ii i

i

i i

i i

e e
x x x

x x x
e e

f x t
x x

where i x i i x x t

 
 

 
 

   

 
 

   
       

               
               
    

     

 

Capacity recovery:  

 

 

     

     

0

50

0

5

1 1 1 1

5

1 1 2

, 1 1

11 1

  1,2,...,5 ; 0,1 ; 0,4

t t t

i i

t t t

i i

e e

i t t t

ii

e e

f x t x x x

ee

where i x t

 
 

 
 

   

 


   
       
   

    
   

      
  

  

 

Performance improvement: 

 

 

     

       

0

50

0

5

1 1 1 1

5

1 1 2

, 1 1

1 1 1

  1,2,...,5 ; 0,1 ; 1 0.1 , 1,2,...,9 ; 0,4

j j

t b t t bj j

i i

j j

t b t t b

i i

e e

i t b t t b

i i

j

e e

f x t x x x

e e

where i x b j j t

   
 

   
 

   

   
 

   
       
          

   
       

      

      

 

Replacement: 

 

 

     

     

1 1 1 1

1 1 2

, 1 1

1 1 1

  1,2,...,5 ; 0,1 ; 0,4

t t
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t t

i i

e e

i t t

i i

e e

f x t x x x

e e

where i x t

 

 

   

 

   
       
   

    
   

       
   

  
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The Algorithm is implemented through Matlab. Detailed code can be found in Appendix B. It consist 

of three parts: main function, which calls the original GA in Matlab optimization; fitness function, which 

calculate the average expected capacity for next 4 years mission; constraint function, which specify the cost and 

time limitation.  

 

The GA gives optimal answer:  

 

Table 3 Optimal maintenance strategy using GA 

Component Maintenance 

Options 

Total cost Total time Expected Average 

capacity 

1 Strategy without actions 4000 410 1.2492 

2 Capacity recovery 

3 Strategy without actions 

4 Performance improvement 

with age reduction factor 

0.7b   
5 Performance improvement 

with age reduction factor 

0.3b   
 

V. CONCLUSION AND FUTURE WORK 
This paper focuses on the optimal selective maintenance strategy for flow transmission system. There 

are many real world systems that can be modeled under this scenario, such as logistic systems during military 

operations; transportation systems; water distribution systems and etc. Due to many random damages, such as 

attack from opponents, traffic accident, bad weather or even earthquakes, the capacity of each component is a 

random variable at ant time point and the expected average capacity of the whole system during each mission is 

also stochastic. Meanwhile, the distribution of the capacity of each component will experienced a gradual 

deterioration due to the changing of its physical characters caused by corrosion, continuous loading of material 

and etc. Thus, its aging process affects the distribution of capacity for each component.  

For such system in a multi-phased mission, the selective maintenance is performed under both time and 

cost constraints. The Beta distribution is adopted to model the behavior of capacity. The average expected 

capacity of the system is used as an index to evaluate the performance of the system. Four maintenance options, 

namely Strategy without actions, capacity recovery, performance improvement and replacement are introduced.  

As for the analytical example, a parallel system is studied, and the performance improvement scenario 

takes only one specific level. A more general model is introduced afterwards, where the performance 

improvement can take several levels from capacity recovery to replacement. A genetic Algorithm is adopted to 

solve the given numerical example with more complex system. Since the idea implemented in this project has 

not been studied maturely, there are still many concepts needs to be defined more clearly, or even more close to 

real application. The future work should be carried as follows: Study a few real world applications that can be 

modeled as flow transmission system and investigate their property and degradation process; Find a new 

distribution function or modify the Beta distribution to fit the behavior of real flow transmission 

component;Define the more realistic maintenance options for flow transmission system;Study the maintenance 

issue of flow transmission system with both discrete and continuous case. 
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