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I. INTRODUCTION  

The United Nations estimates that tens of millions of mines lie buried around the world. Anti-personnel 

mines and anti-tank mines have not been cleared out in our living earth and can be found in more than 70 

countries. The detection of landmines is an important mission to save lives for many innocent victims. Detection 

of anti-personnel non-metallic landmines using Ground Penetrating Radar (GPR) has shown promising results in 

recent years [1]. 

A GPR senses electrical in-homogeneities caused by a dielectric contrast [2]. A related key problem is 

how to extract the mines scattered signals from the received data when the contrast is very weak (e.g., when the 

GPR used for the detection of non-metallic anti-personnel (plastic) landmine in the presence of soil) implying 

that the landmine GPR signal is very weak. [3]. 

The largest contrast typically exists between the air and the soil and therefore GPR is typically 

characterized by a very large ground bounce. If a landmine is buried at a shallow depth, then the GPR, which is 

used to detect and localize AP mines, will lead to several problems especially if the surface of the soil is rough 

or the soil is inhomogeneous. Unfortunately, this technology can suffer false alarm rates as high as that of metal 

detectors. Thus, it is clear that signal processing of the GPR data is needed in order to extract useful information 

for the target. Signal-processing algorithms, which filter out clutter signals and select objects to be declared as 

mines, is considered the most critical part of the GPR system.  

There are two distinct types of GPR: Time-domain and frequency domain. Time domain or impulse 

GPR transmits discrete pulses of nanosecond duration and digitizes the returns at GHz sample rates. Frequency 

domain GPR systems transmit single frequencies uniquely, either as a series of frequency steps, or as a chirp. 

The amplitude and the phase of the returned signal are measured, and the resulting data is converted 

back to the time domain [4]. Clutter signal sources are the cross-talk between the transmitter and the receiver 

antennas as well as scattering from the ground surface and within the soil. In addition other objects are generally 

buried under the ground, which appear as targets. 

The clutter signal due to the reflection from the ground surface is the main problem. In case, the target 

is buried deeply below the surface, the backscattered signal from the surface can easily be distinguished from 

that of the target. The signals can be separated, in this situation, by a time gating technique. However, if the 

target is shallowly buried near the surface interface, gating is not a proper solution, as the backscattered signal 

from both the target and the surface will arrive almost simultaneously. The detection problem can thus be 

described as how to separate the target signal from the ground surface reflection. 

ABSTRACT: This paper illustrates clutter reduction in stepped-frequency ground penetrating 

radar (SFGPR) data for anti-personal landmines detection. Ground reflected clutter is often a 

performance limiting factor in ground-penetrating radar (GPR) detection of near surface targets 

including antipersonnel mines. In this paper the Non-linear principal component analysis (NLPCA) , 

as a method for blind source separation is used to separate the clutter and the target signals. The 

algorithm has been experimentally evaluated and compared with principal component analysis 

(PCA) algorithm using different non-metallic AP landmines with different depths. The experimental 

data have been collected by using frequency stepped GPR system covering two ranges from 1 GHz to 

4GHz and from range 1.5 GHz to 20GHz, from laboratory measurements. The test gives good result, 

in agreement with the theory. The surface reflection and the reflection within the earth have been 

removed approximately for both data. Based on these results the NLPCA showed significant 

improvement compared to the PCA. 
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Several signal processing approaches have been suggested to improve the performance of GPR systems. 

These include: simple mean scan subtraction [3], two-dimensional digital filtering [5], wavelet packet 

decomposition [3], likelihood ratio test [3], [6], parametric system identification [7], and Kalman filter [4], [6]. 

Most of these methods depend on the background signal estimation by taking the mean value of the unprocessed 

ensemble collected GPR data, followed by employing the simple mean scan subtraction. Although these methods 

have been used widely in GPR applications. 

Various researchers have shown interest in subspace techniques including Singular Value 

Decomposition (SVD) [3], [8], Linear Discriminant Analysis (LDA) [9], Principal Component Analysis (PCA) 

[10], [11], and Independent Component Analysis (ICA) [10], [12]–[14]. 

Because of its computational and conceptual simplicity, a linear transformation is often assumed for 

such a representation. As such a transformation linearly mixes the target and clutter signals, it is usually 

expressed as a so-called mixing matrix. 

The main goal of the detection here is to estimate the target and clutter signals (source signals) without 

any knowledge of the mixing matrix. Such a problem is usually called blind source separation.  

Within the class of linear methods, the optimal information preserving transformation is given by 

principal component analysis (PCA) [15],  Reduction of dimensionality by PCA has been shown to facilitate 

many types of multivariate analysis, including data validation and fault detection quality, correlation and 

prediction, and data visualization. The feature variables in PCA, also called factors, are linear combinations of 

the original problem variables. The coefficients of the linear transformation are such that if the feature 

transformation is applied to the data set and then reversed, there will be a minimum sum of squares difference 

between the original and reconstructed data. 

However, PCA suffers from two important limitations. First, it assumes that the relationships between 

variables are linear, and second, its interpretation is only sensible if all of the variables are assumed to be scaled 

at the numeric level (interval or ratio level of measurement). These assumptions are frequently not justified, and 

therefore, PCA as linear transformation may not always be the most appropriate method of analysis. To 

circumvent these limitations, an alternative, referred to as nonlinear principal components analysis (NLPCA), 

[16].  

The aim of this article is to review and examine nonlinear principal component analysis (PCA) criterion 

in blind source separation (BSS). The numerical studies on NLPCA reported in the literature are only limited to 

some simple toy problems.  The potentials and the drawbacks of the technique are not well understood yet. Our 

aim is thus to analyze the NLPCA features in the case of real data. 

 

II. BLIND SOURCE SEPARATION 
Recovering signals from only the mixed observations without knowing the priori information of both 

the source signals and the mixing process is often referred to as Blind Source Separation (BSS). The most 

elementary class of such methods is based on linear mixture models that combine source signals or mixture 

components as weighted linear sum. Such linear blind source separation methods have a wide spectrum of 

applications. 

We consider the standard signal model used in BSS which is given by Equation (1)  

 

                           js
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j
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or in the matrix notation as given by Equation (2)  

 

                                sAx                                     (2) 

 

Here       Ttnststs  , ...... ,1   is the source vector at time t.       Ttxtxtx m  , ...... ,1  is a vector of sensor 

signals (observed variables).The components of the m dimensional data vector x(t) are some linear mixtures of 

the source signals. The m × n mixing matrix A is an unknown full rank constant matrix. 

BSS consists of identifying mixing matrix A and/or retrieving the source signals without resorting to any a priori 

information about A; it uses only the information carried by the received signals themselves, hence, the term 

blind. Therefore, the objective of BSS is to find an inverse (un-mixing) system, sometimes termed a 

reconstruction system. In order to estimate the all primary source signals s(t) or only some of them with specific 

properties. This estimation is performed on the basis of only the output signals       Ttytyty n  , ...... ,1  and 
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the sensor signals. Then the BSS problem is to determine a constant un-mixing (weight, separating) matrix W 

(where W is n × m) so that the solution is sought in the form as given in Equation (3)  

 

              ttyts Wx


                      (3) 

Different methods have been developed to find such a linear representation, including singular value 

decomposition [17], factor analysis [18], principal components analysis [19], independent component analysis 

[20], dependent component analysis [21],non-negative matrix factorization [22], projection pursuit [23], etc. 

 

III. PRINCIPAL COMPONENT ANALYSIS 
A central problem in signal processing is to find a suitable representation of the data, using a suitable 

transformation. In most cases, the representation is sought as a linear transform of the observed variables as 

given in Equation (4)  

                       Y = W X                                          (4) 

 

where X and Y are m × n matrices related by linear transformation A. The purpose of principal 

component  analysis is to derive a relatively small number of decorrelated linear combination (principal 

component) of a set of random zero-mean variables while retaining as much of the information from the original 

variables as possible [24]. The basic idea in PCA is to find the rows of the     Ttyty n  , ...... ,1  that explain the 

maximum amount of variance possible by N linearly transformed components. 

Although the basic goal in PCA is to decorrelate the data by performing an orthogonal projection, we 

often reduce the dimension of the data from m to n (n <m) to remove unwanted components in the signal. In 

practice, the computation of A can be simply ccomplished using the covariance matrix. 

The covariance matrix (Cx) reads then Equation (5) 
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The eigenvector and eigenvalue matrices of (Cx ) Φ and Λ, respectively, are computed as: 

Cx    Φ = Φ Λ 

where Λ = diag( λ1 , λ2 , ..., λn ) , and  λ1 , λ2 , ..., λn are the eigenvales. If one assumes that eigenvalues are sorted 

in a decreasing order, λ1  ≥ λ2  ≥, ..., ≥ λn , then the n leading eigenvectors matrix A is given by Equation (6) 

                     A = [Φ1 , Φ2 , ..., Φn ]                           (6) 
 

 

In the application of landmine detection in GPR signals, the PCA can be used to detect landmines and 

reduce the noise [25]. By selecting some components which mainly carry mine information, say Ak we can 

remove the clutter. The reconstructed signal space in the original GPR signal space is then We select the matrix 

A to be a matrix where each row pk  is an eigenvector of XX
T
 (the principal components of X) . In the standard 

numerical approach for extracting the principal components, first the covariance matrix  Cx=1/n ( XX
T
 ) is 

computed and then its eigenvectors and (corresponding) associated eigenvalues are determined by one of the 

known numerical algorithms. 

However, if the input data vectors have a large dimension (GPR data), then the covariance matrix Cx 

becomes very large and it may be difficult to compute the required eigenvectors. A neural network approach 

with adaptive learning algorithms enables us to find the eigenvectors and the associated eigenvalues directly 

from the input vectors x(t) without a need to compute or estimate the very large covariance matrix Cx. 

Computing the sample covariance matrix itself is very costly. Furthermore, the direct diagonalization of a matrix 

or eigenvalue decomposition can be extremely costly since this operation is of complexity O (m
3
). 

 

IV. NONLINEAR PRINCIPAL COMPONENTS ANALYSIS: 
In the field of GPR signal processing, it is important to reduce the dimensionality of data. As a method 

of dimensionality reduction, principal component analysis (PCA) is considered to be an appropriate way to 

perform such data reduction. 

PCA is an orthogonal transformation of a coordinate system in which we describe data. A basis of the 

objective coordinate system efficiently represents data distributed on a linear hyper plane as the coordinate value 

that is called a principal component. 
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PCA suffers from two important limitations. First, it assumes that the relationships between variables 

are linear, and second, its interpretation is only sensible if all of the variables are assumed to be scaled at the 

numeric level (interval or ratio level of measurement).  

PCA may not always be the most appropriate method of analysis. To circumvent these limitations, an 

alternative, referred to as nonlinear principal components analysis. 

Some methods of nonlinear principal component analysis (NLPCA) have been developed [26, 27]. 

These methods can be classified into three categories. One is the application of a sandglass-type multi-layered 

perceptron (MLP). The other method is based of a partial linear approximation. In these methods, the number of 

principal components has to be specified in advance. The third method is Kernel PCA recently proposed by 

Scholköpf [28]. Kernel PCA is a method that executes the linear PCA algorithm for the image of input data 

mapped by a nonlinear mapping function. Consequently, the method constructs the ordered principal 

components. However, the adequate way to determine the nonlinear mapping function for a given data set is not 

known. Moreover, the method has to solve an eigen- equation for a covariance matrix of the image of data in 

order to obtain an eigen base. The method also requires calculations of kernel functions between an objective 

data and all training data to calculate a principal component score. 

Nonlinear principal component analysis (NLPCA) as a nonlinear gen eralisation of standard principal 

component analysis (PCA) means to generalize the principal components from straight lines to curves. Fig.1 

presents the geometry principle curves. In such cases, it may be more appropriate to assume that the feature 

subspace is defined by nonlinear functions of the process variables.  

It is more appropriate to assume that the hidden factors are nonlinear functions of the observed variables. 

Furthermore, the reconstruction of the variables from the factors may also be a nonlinear mapping. In general, 

we assume that the m-dimensional observation vector       Ttxtxtx m  , ...... ,1  is generated by an underlying 

feature vector        Ttytyty n  , ...... ,1    ( n < m) via nonlinear continuous function as given by Equation (7)  

                             ,xy        eS                           (7) 
 

and a nonlinear reconstruction function from y onto the reconstructed vector  as x


 as  given by Equation (8) 

 

                  yx 


        rS                (8) 
 

where eS  and rS  are the sets of nonlinear functions. The coding function φ from 
m  to

n  and the decoding 

function ψ from 
n  to 

m  are members of some classes eS  and rS  of nonlinear functions. The data 

nonlinearly correspond to the principal components through the nonlinear extraction function and the nonlinear 

reconstruction function. 

Our problem is to minimize the mean square reconstruction error is given by Equation (9) 

 2
xxEE


  

 

                                    2
 xxEE                                 (9)          
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Figure 1  Set of ellipsoid data demonstrates the difference between nonlinear PCA and standard PCA. 

The data (dots) are much better represented by the monoparametric nonlinear principal curve (ellipse) than by 

the linear principal component curve (straight line). 

When we find the optimal  ψ and φ, we can efficiently describe the data with fewer principal 

components than that of PCA. Clearly, the solution to the nonlinear PCA problem depends on both the choice of 

the sets eS and rS  and the distribution of x. Ordinary (linear) PCA is now a special case for eS , rS  being the 

set of linear mappings. In this work, we introduce nonlinear reconstruction functions that map a vector in the 

principal component space into the original input space as given by Equation (10) 
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where yi represents the score of the input vector with respect to the ith principal component, and ix


 is 

the n-dimensional vector reconstructed by the ith reconstruction function utilizing the representation of the 

original input vector x in the i-dimensional principal component space. 

The ith component of the extraction function i and the ith reconstruction function i  are paired in the 

following manner (Equation (11)) 

                                                            

    

    

    xyyx

xyx

xx

mnnn 





,,....,

,

11

2122

111

.

.

.







                      (11) 

 
The functions of each pair are adjusted to minimize the mean square reconstruction error in the above 

order. Therefore, yi can be regarded as the ith significant nonlinear principal component. 

The unique recovery of the hidden parameters is impossible in general because there are infinite solutions to the 

NLPCA minimization problem. Indeed, if a pair of functions )( ),( 11  achieves the minimum error 

      
2

11 xxE   then so does any pair   ))(( )),(( 1
1

1 qq  
 for any invertible function q( ). Nevertheless, 

the following sets are unique and can be considered as problem inherent [29]: 

1)  The set   nyyI    all,  of contours      x:x yyI   for the function φ. 

2)  n-parametric surface      all,  nyy     generated by ψ. 

  is called the n-parametric nonlinear principal component surface of (Fig. 1). 

 

V. GPR MEASUREMENTS 
The data have been acquired with a bistatic-stepped frequency GPR system at IESK, Magdeburg 

University, Germany. The system consists of a network analyzer (Rohde & Schwarz) and two ultra-wideband 

(UWB) transmitting and receiving antennas [30]. A wooden box with dimensions 1.1 × 1.1 × 1.1 m whose 

internal sides are covered by absorption material and is filled by sand of 0.5 m height has been used. The 

transmitting and receiving antennas are mounted on a 2D scanning system and were placed above the ground 

surface at height 30 cm. 
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The measurement grid covers the area bounded by x = 27 → 76 cm and y = 39 → 89 cm with a 

distance between the measurements of 1 cm in both x and y directions. The measurements then form a two 

dimensional matrix, referred to as a B-scan. Column vector of the B-scan matrix (image) is called an A-scan and 

it represents the data, at each individual point on the surface of the soil. Using this experimental setup, two 

different measurements were made. In the first measurement the radar system was operated in the frequency 

range from 1 GHz to 4 GHz and the number of samples was 1024 for each A-scan. 

In the second measurement the radar system was operated in the frequency range from 1.5 GHz to 20 

GHz and the number of samples was 1601 for each A-scan. Examples of A-scans in the presence and absence of 

a landmine for both measurements in the frequency domain  are displayed in Fig. 2 and Fig. 3. PMN anti-

personal landmine was used at different depths. 

Sample B-Scans showing PMN targets at depth 0, 3, 6, 9, 12 and 21 cm are displayed in Fig.4. 

 

VI. EXPERIMENTAL RESULTS 
To examine the ability of a non-linear principal component technique for the elimination or reduction of 

the clutter in raw GPR data, the non-linear principal component technique has been applied to both 

measurements. The algorithm has been applied to different landmines and different depths. Fig.5 show the data 

after applying the non-linear principal component technique to the data in Fig.4.In almost cases, the target 

signals have been extracted from the GPR data, and most of the clutter signal (cross-talk and air-ground 

interface) has been removed for the target.  However for the small targets and for deep depth the clutter has not 

been removed completely and the result of applying the NLPCA is the same as applying  linear transform. Non-

linear principal component have been compared with principal component analysis. The signal-to-noise ratios 

(SNR) [31] have been used to compare between the two methods. 

 

The results show that NLPCA have offers a significant improvement as compared to PCA. 

 
 

 

Figure 2 B-Scans of PMN anti-personal landmine at depth 0, 3, 6, 9, 12 and 21cm, respectively. 
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Figure 3 B- Scans  of the data after applying the non-linear principal Component  technique to the data in 

 

VII. CONCLUSION  
The main purpose of this communication has been the study of non-linear principal component test of 

GPR data.An algorithm for de-noising the GPR data has been described and has been explored for clutter 

reduction and non-metallic landmine detection from SF-GPR signals. The reflection from the surface has been 

removed or has been at least significantly reduced. From the results NLPCA showed significant improvement 

over PCA. On the other hand, the numerical implementation of PCA is an easier. 
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