Semi-Star-Regular Open Sets and Associated Functions

S. Pious Missier¹, R.Krishnaveni²

¹(P.G.& Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamilnadu,India. ²(Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti, Tamilnadu,India.)

ABSTRACT: The aim of this paper is to introduce various functions associated with semi*regular open sets. Here semi*r-continuous, semi*r-irresolute, contra-semi*r-continuous and contra-semi*r-irresolute functions are defined. Characterizations for these functions are given. Further their fundamental properties are investigated. Many other functions associated with semi*regular open sets and their contra versions are introduced and their properties are studied. In addition strongly semi*r-irresolute functions, contra-strongly semi*r-irresolute functions, semi*r-totally continuous, totally semi*r-continuous functions and semi*r-homeomorphisms are introduced and their properties are investigated. **Keywords:** semi*r-continuous, semi*r-irresolute, semi*regular open, semi*regular closed, pre-semi*regular open function, pre-semi*regular closed function.

I. INTRODUCTION

In 1963, Levine [1] introduced the concept of semi-continuity in topological spaces. Dontchev [2] introduced contra-continuous functions. Crossely and Hildebrand [3] defined pre-semi-open functions. Noiri defined and studied semi-closed functions. In 1997, Contra-open and Contra-closed functions were introduced by Baker. Dontchev and Noiri [4] introduced and studied contra-semi-continuous functions in topological spaces. Caldas [5] defined Contra-pre-semi-closed functions and investigated their properties. S.Pasunkili Pandian [6] defined semi*-pre-continuous and semi*-pre-irresolute functions and their contra versions and investigated their properties. Quite recently, the authors [7] introduced some new concepts, namely semi*regular open sets, semi*regular closed sets, semi*r-Interior, semi*r-Closure of a subset. In this paper various functions associated with semi*regular open sets are introduced and their properties are investigated.

Preliminaries

Throughout this paper X, Y and Z will always denote topological spaces on which no separation axioms are assumed.

Definition 2.1[8]: A subset *A* of a topological space (X, τ) is called (i) generalized closed (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and *U* is open.

(ii) generalized open (briefly g-open) if $X \setminus A$ is g-closed in X.

Definition 2.2: Let *A* be a subset of *X*. Then (i) generalized closure[9] of *A* is defined as the intersection of all g-closed sets containing *A* and is denoted by $Cl^*(A)$.

(ii) generalized interior of A is defined as the union of all g-open subsets of A and is denoted by $Int^*(A)$.

Definition 2.3: A subset *A* of a topological space (X, τ) is (i) semi-open [1] (resp. α -open[6], semi α -open[6], semi-preopen[12], semi*open, semi* α -open[6], semi*-preopen[12]) if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Int(Cl(Int(A)))$, $A \subseteq Cl(Int(Cl(Int(A))))$, $A \subseteq Cl(Int(Cl(Int(A))))$, $A \subseteq Cl(Int(Cl(A)))$, $A \subseteq Cl^*(\alpha Int(A))$, $A \subseteq Cl^*(\alpha Int(A))$, $A \subseteq Cl^*(\alpha Int(A))$, (ii) semi-closed (resp. α -closed[6], semi α -closed[6],

semi-preclosed[12], semi*-closed, semi*a-closed[8], semi*-preclosed[6]) if $Int(Cl(A)) \subseteq A$

 $(\text{resp. } Cl(Int(Cl(A))) \subseteq A, Int(Cl(Int(Cl(A)) \subseteq A, Int^*(Cl(A)) \subseteq A, Int^*(\alpha Cl(A)) \subseteq A, Int^*(pCl(A)) \subseteq A).$

(iii) semi*regular open [7] if A = Cl*(rInt(A) and semi*regular closed if Int*(rcl(A))=A

Definition 2.4: Let *A* be a subset of *X*. Then

(i) The semi*r-interior [7] of A is defined as the union of all semi*regular open subsets of A and is denoted by s*rInt(A).

(ii) The semi*r-closure [7] of A is defined as the intersection of all semi* α -closed sets containing A and is denoted by s*rCl(A).

Definition 2.5: A function $f: X \to Y$ is said to be semi-continuous [1] (resp. contra-semi-continuous [4], semi*continuous, contra-semi*-continuous, semi α -continuous [6]) if $f^1(V)$ is semi-open (resp. semi-closed, semi*open, semi*-closed, semi α -open) in X for every open set V in Y. **Definition 2.6:** A function $f: X \to Y$ is said to be r-continuous (resp. r*-continuous, semi-pre-continuous [14], semi*-pre-continuous [6]) if $f^{1}(V)$ is regular open(resp. r*-open, semi-preopen, semi*-preopen) in X for every open set V in Y.

Definition 2.7: A topological space *X* is said to be

(i) $T_{1/2}$ if every g-closed set in X is closed.

(ii) locally indiscrete if every open set is closed.

(iii)Extremely disconnected if closure of an open set is open.

Theorem 2.8:[7]

- (i) Every Semi*regular open set is Semi* α -open.
- (ii) Every Semi*regular open set is Semi*pre-open.
- (iii) Every Semi*regular open set is Semi*open.
- (iv) Every Semi* regular open set is Semi open.
- (v) Every Semi*regular open set is Semi α -open.
- (vi) Every Semi*regular open set is Semi pre-open.
- (vii) Every Semi*regular open set is regular generalized open set.

(viii)Every Semi*regular open set is generalized pre regular open set.

(ix) Every Semi*regular open is regular weakly generalized open set.

Remark 2.9:[7] Similar results for semi*regular closed sets are also true.

Theorem 2.10: [7] (i) Arbitrary union of semi*regular open sets is also semi*regular open. (ii) If *A* is semi*regular open in *X* and *B* is open in *X*, then $A \cup B$ is semi*regular open in *X*. (iii) A subset *A* of a space X is semi*regular open if and only if *s***rInt*(*A*)=*A*.

Theorem 2.11: [7] For a subset *A* of a space X the following are equivalent: (i) *A* is semi*regular open in X. (ii) $A = Cl^*(rInt(A))$. (iii) $Cl^*(rInt(A)) = Cl^*(A)$.

Theorem 2.12: For a subset *A* of a space X the following are equivalent:
(i) *A* is semi*regular closed in X.
(ii) *Int**(r*Cl*(*A*))=*A*.
(iii) *Int**(r*Cl*(*A*))=*Int**(*A*).

Theorem 2.13: [7] (i) A subset A of a space X is semi*regular closed if and only if s*rCl(A)=A. (ii)Let $A \subseteq X$ and let $x \in X$. Then $x \in s*rCl(A)$ if and only if every semi*regular open set in X containing x intersects A.

Definition 2.14: If *A* is a subset of *X*, the semi*r-Frontier of *A* is defined by $s*rFr(A)=s*rCl(A)\setminus s*rInt(A)$.

Result 2.15: If *A* is a subset of *X*, then $s*rFr(A)=s*rCl(A)\cap s*rCl(X\setminus A)$.

II. SEMI*r-CONTINUOUS FUNCTIONS

In this section we define the semi*r-continuous and contra-semi*r-continuous functions and investigate their fundamental properties.

Definition 3.1: A function $f: X \to Y$ is said to be semi*r-continuous at $x \in X$ if for each open set *V* of *Y* containing f(x), there is a semi*regular open set *U* in *X* such that $x \in U$ and $f(U) \subseteq V$.

Definition 3.2: A function $f: X \to Y$ is said to be semi*r-continuous if $f^{-1}(V)$ is semi*regular open in X for every open set V in Y.

Theorem 3.3: Let $f: X \rightarrow Y$ be a function. Then the following statements are equivalent:

(i) f is semi*r-continuous.

(ii) f is semi*r-continuous at each point $x \in X$.

(iii) $f^{-1}(F)$ is semi*regular closed in X for every closed set F in Y.

(iv) $f(s*rCl(A)) \subseteq Cl(f(A))$ for every subset A of X.

(v) $s * rCl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset *B* of *Y*.

(vi) $f^{-1}(Int(B)) \subseteq s * rInt(f^{-1}(B))$ for every subset *B* of *Y*.

(vii) $Int^*(rCl(f^{-1}(F)))=Int^*(f^{-1}(F))$ for every closed set F in Y.

(viii) $Cl^*(rInt(f^{-1}(V))) = Cl^*(f^{-1}(V))$ for every open set V in Y.

Proof: (i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be semi*r-continuous. Let $x \in X$ and V be an open set in Y containing f(x). Then $x \in f^{-1}$ ¹(V). Since f is semi*r-continuous, $U = f^{-1}(V)$ is a semi*regular open set in X containing x such that $f(U) \subseteq V$.

(ii) \Rightarrow (i): Let $f: X \rightarrow Y$ be semi*r-continuous at each point of X. Let V be an open set in Y.

Let $x \in f^{-1}(V)$. Then V is an open set in Y containing f(x). By (ii), there is a semi*regular open set Ux in X containing x such that $f(x) \in f(Ux) \subseteq V$. (ie) $Ux \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup \{Ux : x \in f^{-1}(V)\}$.

By Theorem 2.10(i), $f^{-1}(V)$ is semi*regular open in *X*.

(i) \Rightarrow (iii): Let F be a closed set in Y. Then $V=Y\setminus F$ is open in Y. Then $f^{-1}(V)$ is semi*regular open in X. Therefore f $f^{-1}(F) = f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is semi*regular closed.

(iii) \Rightarrow (i): Let V be an open set in Y. Then F=Y\V is closed. By (iii), $f^{-1}(F)$ is semi*regular closed. Hence $f^{-1}(F)$ $^{1}(V) = f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is semi*regular open in X.

(iii) \Rightarrow (iv): Let $A \subseteq X$. Let F be a closed set containing f(A). Then by (iii), $f^{-1}(F)$ is a semi*regular closed set containing A. This implies that $s * rCl(A) \subseteq f^{-1}(F)$ and hence $f(s * rCl(A)) \subseteq F$.

(iv) \Rightarrow (v): Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $f(s*rCl(A)) \subseteq Cl(f(A)) \subseteq Cl(B)$. This implies that $s*rCl(A) \subseteq f$ $^{-1}(Cl(B)).$

(v) \Rightarrow (iii): Let B be closed in Y. Then Cl(B)=B. Therefore (v) implies $s*rCl(f^{-1}(B))\subseteq f^{-1}(B)$. Hence $s*rCl(f^{-1}(B))\subseteq f^{-1}(B)$. $f^{-1}(B) = f^{-1}(B)$. By Theorem 2.13(i), $f^{-1}(B)$ is semi*regular closed.

 $(\mathbf{v}) \Leftrightarrow (\mathbf{vi})$: The equivalence of (\mathbf{v}) and (\mathbf{vi}) can be proved by taking the complements.

(vii)⇔(iii): Follows from Theorem 2.12.

(viii) \Leftrightarrow (i): Follows from Theorem 2.11.

Theorem 3.4: (i) Every Semi*r-continuous function is semi*a-continuous function.

(ii) Every Semi*r-continuous function is semi*pre-continuous function.

(iii) Every Semi*r-continuous function is semi*continuous function.

(iv) Every Semi*r-continuous function is semi*a*-continuous function.

(v) Every Semi*r-continuous function is semi pre-continuous function.

Proof: Follows from Theorem 2.8

Remark 3.5: In general the converse of each of the statements in Theorem 3.4 is not true.

Theorem 3.6: If the topology of the space Y is given by a basis B, then a function $f: X \rightarrow Y$ is semi*r-continuous if and only if the inverse image of every basic open set in Y under f is semi*regular open in X.

Proof: Suppose $f: X \rightarrow Y$ is semi*r-continuous. Then inverse image of every open set in Y is semi*regular open in X. In particular, inverse image of every basic open set in Y is semi*regular open in X. Conversely, let V be an open set in Y. Then $V=\cup Bi$ where $Bi\in B$.

Now $f^{-1}(V) = f^{-1}(\bigcup Bi) = \bigcup f^{-1}(Bi)$. By hypothesis, $f^{-1}(Bi)$ is semi*regular open for each i.

By Theorem 2.10(i), $f^{-1}(V) = \bigcup f^{-1}(Bi)$ is semi*regular open. Hence f is semi*r-continuous.

Theorem 3.7: A function $f: X \rightarrow Y$ is not semi*r-continuous at point $x \in X$ if and only if x belongs to the semi*rfrontier of the inverse image of some open set in Y containing f(x).

Proof: Suppose f is not semi*r-continuous at x. Then by Definition 3.1, there is an open set V in Y containing f(x) such that f(U) is not a subset of V for every semi*regular open set U in X containing x. Hence $U \cap (X)^{-1}$ $^{1}(V)\neq \emptyset$ for every semi*regular open set U containing x. By Theorem 2.13(ii), we get $x \in s * rCl(X \setminus f^{-1}(V))$. Also $x \in f^{-1}(V) \subseteq s * rCl(f^{-1}(V)).$ Hence $x \in s * rCl(f^{-1}(V)) \cap s * rCl(X \setminus f^{-1}(V)).$ By the Result 2.15, $x \in s * rFr(f^{-1}(V)).$ On the other hand, let f be semi*r-

continuous at $x \in X$. Let V be any open set in Y containing f(x). Then there exists a semi*regular open set U in X containing x such that $f(U) \subseteq V$. That is, U is a semi*regular open set in X containing x such that $U \subseteq f^{-1}(V)$. Hence $x \in s * rInt(f^{-1}(V))$. Therefore by Definition 2.14, $x \notin s * rFr(f^{-1}(V))$.

Theorem 3.8: Let $f: X \to \Pi X_{\alpha}$ be semi*r-continuous where ΠX_{α} is given the product topology and $f(x) = (f_{\alpha}(x))$. Then each co-ordinate function $f_{\alpha}: X \longrightarrow X_{\alpha}$ is semi*r-continuous.

Proof: Let *V* be an open set in $X\alpha$. Then $f_{\alpha}^{-1}(V) = (\pi_{\alpha} \circ f)^{-1}(V) = f^{-1}(\pi_{\alpha}^{-1}(V))$, where $\pi_{\alpha}:\Pi X_{\alpha} \longrightarrow X_{\alpha}$ is the projection map. Since each π_{α} is continuous, $\pi_{\alpha}^{-1}(V)$ is open in ΠX_{α} .

By the semi*r-continuity of $f, f_{\alpha}^{-1}(V) = f^{-1}(\pi_{\alpha}^{-1}(V))$ is semi*regular open in X. Therefore f_{α} is semi*r- continuous.

Theorem 3.9: Let $f: X \to \Pi X_{\alpha}$ be defined by $f(x) = (f_{\alpha}(x))$ and ΠX_{α} be given the product topology. Suppose S*RO(X) is closed under finite intersection. Then f is semi*r-continuous if each coordinate function $f_a: X \to X_a$ is semi*r-continuous.

Proof: Let V be a basic open set in $\prod X\alpha$. Then $V = \bigcap \pi_{\alpha}^{-1}(V\alpha)$ where each V_{α} is open in X_{α} , the intersection being taken over finitely many α 's. Now $f^{-1}(V) = f^{-1}(\bigcap \pi_{\alpha}^{-1}(V_{\alpha})) = \bigcap (f^{-1}(\pi_{\alpha}^{-1}(V\alpha))) = \bigcap (\pi_{\alpha} \circ f^{-1}(V)) = \bigcap f^{-1}(V)$ is semi*regular open, by hypothesis. Hence by Theorem 3.6, f is semi*r-continuous.

Theorem 3.10: Let $f: X \rightarrow Y$ be continuous and g: $X \rightarrow Z$ be semi*r-continuous. Let $h: X \rightarrow Y \times Z$ be defined by h(x) = (f(x), g(x)) and $Y \times Z$ be given the product topology. Then h is semi*r-continuous.

Proof: By virtue of Theorem 3.6, it is sufficient to show that inverse image under h of every basic open set in $Y \times Z$ is semi*regular open in X. Let $U \times V$ be a basic open set in $Y \times Z$. Then

 $h^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V)$. By continuity of f, $f^{-1}(U)$ is open in X and by semi*r-continuity of g, $g^{-1}(V)$ is semi*regular open in X. By Theorem 2.10(ii), we get $h^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V)$ is semi*regular open. **Remark 3.11:** The above theorem is true even if f is semi*r-continuous and g is continuous.

Theorem 3.12: Let $f: X \rightarrow Y$ be semi*r-continuous and $g: Y \rightarrow Z$ be continuous.

Then $g \circ f : X \longrightarrow Z$ is semi*r-continuous.

Proof: Let V be an open set in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. By semi*r-continuity of f, $(g \circ f)^{-1}$ $f^{-1}(V) = f^{-1}(g^{-1}(V))$ is semi*regular open in X. Hence gof is semi*r-continuous.

Remark 3.13: Composition of two semi*r-continuous functions need not be semi*r-continuous.

Definition 3.14: A function $f: X \to Y$ is called contra-semi*r-continuous if $f^{-1}(V)$ is semi*regular closed in X for every open set V in Y.

Theorem 3.15: For a function $f: X \rightarrow Y$, the following are equivalent:

(i) *f* is contra-semi*r-continuous.

(ii) For each $x \in X$ and each closed set F in Y containing f(x), there exists a semi*regular open set U in X containing *x* such that $f(U) \subseteq F$.

(iii)The inverse image of each closed set in Y is semi*regular open in X.

(iv) $Cl^*(rInt(f^{-1}(F))) = Cl^*(f^{-1}(F))$ for every closed set F in Y. (v) $Int^*(rCl(f^{-1}(V))) = Int^*(f^{-1}(V))$ for every open set V in Y.

Proof: (i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be contra-semi*r-continuous. Let $x \in X$ and F be a closed set in Y containing f(x). Then $V=Y\setminus F$ is an open set in Y not containing f(x). Since f is contra-semi*r-continuous, $f^{-1}(V)$ is a semi*regular closed set in X not containing x. That is, $f^{-1}(V) = X \setminus f^{-1}(F)$ is a semi*regular closed set in X not containing x. Therefore $U=f^{-1}(F)$ is a semi*regular open set in *X* containing *x* such that $f(U)\subseteq F$.

(ii) \Rightarrow (iii): Let *F* be a closed set in *Y*. Let $x \in f^{-1}(F)$, then $f(x) \in F$. By (ii), there is a semi*regular open set Ux in *X* containing x such that $f(x) \in f(Ux) \subseteq F$. That is, $x \in Ux \subseteq f^{-1}(F)$. Therefore $f^{-1}(F) = \bigcup \{Ux \subseteq f^{-1}(F)\}$. By Theorem 2.10(i), $f^{-1}(F)$ is semi*regular open in *X*.

(iii) \Rightarrow (iv): Let F be a closed set in Y. By (iii), $f^{-1}(F)$ is a semi*regular open set in X. By Theorem 2.11, $Cl^*(rInt(f$ $(-1(F))) = Cl^*(f^{-1}(F)).$

 $(iv) \Rightarrow (v)$: If V is any open set in Y, then Y/V is closed in Y. By (iv), we have $Cl^*(rInt(f^{-1}(Y|V))) = Cl^*(f^{-1}(Y|V))$. Taking the complements, we get $Int^*(rCl(f^{-1}(V)))=Int^*(f^{-1}(V))$.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$: Let V be any open set in Y. Then by assumption, $Int^*(rCl(f^{-1}(V))) = Int^*(f^{-1}(V))$. By Theorem 2.12, $f^{-1}(V)$ $^{1}(V)$ is semi*regular closed.

Theorem 3.16: Every contra-semi*r-continuous function is contra-semi r-continuous.

Proof: Let $f: X \rightarrow Y$ be contra-semi*r-continuous. Let V be an open set in Y. Since f is contra-semi*r-continuous, $f^{-1}(V)$ is semi*regular closed in X. By Remark 2.9, $f^{-1}(V)$ is semi*regular closed in X. Hence f is contra-semi-rcontinuous.

Remark 3.17: It can be easily seen that the converse of the above theorem is not true.

III. SEMI*r-IRRESOLUTE FUNCTIONS

In this section we define the semi*r-irresolute and contra-semi*r-irresolute functions and investigate their fundamental properties.

Definition 4.1: A function $f: X \rightarrow Y$ is said to be semi*r-irresolute at $x \in X$ if for each semi*regular open set V of Y containing f(x), there is a semi*regular open set U of X such that $x \in U$ and $f(U) \subseteq V$.

Definition 4.2: A function $f: X \to Y$ is said to be semi*r-irresolute if $f^{-1}(V)$ is semi*regular open in X for every semi*regular open set V in Y.

Definition 4.3: A function $f: X \rightarrow Y$ is said to be contra-semi*r-irresolute if $f^{-1}(V)$ is semi*regular closed in X for every semi*regular open set V in Y.

Definition 4.4: A function $f: X \rightarrow Y$ is said to be strongly semi*r-irresolute if $f^{-1}(V)$ is open in X for every semi*regular open set V in Y.

Definition 4.5: A function $f: X \rightarrow Y$ is said to be contra-strongly semi*r-irresolute if $f^{-1}(V)$ is closed in X for every semi*regular open set V in Y.

Theorem 4.6: Every semi*r-irresolute function is semi*r-continuous.

Proof: Let $f: X \to Y$ be semi*r-irresolute. Let V be open in Y. Then by Theorem 2.8(ii), V is semi*regular open. Since f is semi*r-irresolute, $f^{-1}(V)$ is semi*regular open in X. Thus f is semi*r-continuous.

Theorem 4.7: Every constant function is semi*r-irresolute.

Proof: Let $f: X \to Y$ be a constant function defined by $f(x)=y_0$ for all x in X, where y_0 is a fixed point in Y. Let V be a semi*regular open set in Y. Then $f^{-1}(V)=X$ or ϕ according as $y_0 \in V$ or $y_0 \notin V$. Thus $f^{-1}(V)$ is semi*regular open in X. Hence f is semi*r-irresolute.

Theorem 4.8: Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

(i) f is semi*r-irresolute.

(ii) f is semi*r-irresolute at each point of X.

(iii) $f^{-1}(F)$ is semi*regular closed in X for every semi*regular closed set F in Y.

(iv) $f(s*rCl(A)) \subseteq s*rCl(f(A))$ for every subset A of X.

(v) $s * rCl(f^{-1}(B)) \subseteq f^{-1}(s * rCl(B))$ for every subset *B* of *Y*.

(vi) $f^{-1}(s*rInt(B)) \subseteq s*rInt(f^{-1}(B))$ for every subset *B* of *Y*.

(vii) $Int^*(rCl(f^{-1}(F)))=Int^*(f^{-1}(F))$ for every semi*regular closed set F in Y.

(viii) $Cl^*(rInt(f^{-1}(V))) = Cl^*(f^{-1}(V))$ for every semi*regular open set V in Y.

Proof: (i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be semi*r-irresolute. Let $x \in X$ and V be a semi*regular open set in Y containing f(x). Then $x \in f^{-1}(V)$. Since f is semi*r-irresolute, $U = f^{-1}(V)$ is a semi*regular open set in X containing x such that $f(U) \subseteq V$.

(ii) \Rightarrow (i): Let $f: X \rightarrow Y$ be semi*r-irresolute at each point of X. Let V be a semi*regular open set in Y. Let $x \in f^{-1}(V)$. Then V is a semi*regular open set in Y containing f(x). By (ii), there is a semi*regular open set Ux in X containing x such that $f(x) \in f(U_x) \subseteq V$. Therefore $U_x \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$. By Theorem 2.10(i), $f^{-1}(V)$ is semi*regular open in X.

(i) \Rightarrow (iii): Let *F* be a semi*regular closed set in *Y*. Then *V*=*Y**F* is semi*regular open in *Y*. Then $f^{-1}(V)$ is semi*regular open in X. Therefore $f^{-1}(F)=f^{-1}(Y\setminus V)=X/f^{-1}(V)$ is semi*regular closed.

(iii) \Rightarrow (i): Let V be a semi*regular open set in Y. Then F=Y\V is semi*regular closed. By (iii), $f^{-1}(F)$ is semi*regular closed. Hence $f^{-1}(V)=f^{-1}(F)=X\setminus f^{-1}(F)$ is semi*regular open in X.

(iii) \Rightarrow (iv): Let $A \subseteq X$. Let *F* be a semi*regular closed set containing f(A). Then by (iii), $f^{-1}(F)$ is a semi*regular closed set containing *A*. This implies that $s * rCl(A) \subseteq f^{-1}(F)$ and hence $f(s * rCl(A)) \subseteq F$. Therefore $f(s * rCl(A)) \subseteq s * rCl(f(A))$.

(iv)⇒(v): Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $f(s * rCl(A)) \subseteq s * rCl(f(A)) \subseteq s * rCl(B)$. This implies that $s * rCl(A) \subseteq f^{-1}(s * rCl(B))$. Hence $s * rCl(f^{-1}(B)) \subseteq f^{-1}(s * rCl(B))$.

(v)⇒(iii): Let F be semi*regular closed set in Y. Then s*r*Cl*(*F*)= *F*. Therefore (v) implies $s*rCl(f^{-1}(F)) \subseteq f^{-1}(F)$. Hence $s*rCl(f^{-1}(F))=f^{-1}(F)$. By Theorem 2.13(i), $f^{-1}(F)$ is semi*regular closed.

 $(v) \Leftrightarrow (vi)$: The equivalence of (v) and (vi) can be proved by taking the complements.

(vii) \Leftrightarrow (iii): Follows from Theorem 2.12.

 $(viii) \Leftrightarrow (i)$:Follows from Theorem 2.11.

Theorem 4.9: Let $f: X \rightarrow Y$ be a function. Then f is not semi*r-irresolute at a point x in X if and only if x belongs to the semi*r-frontier of the inverse image of some semi*regular open set in Y containing f(x).

Proof: Suppose *f* is not semi*r-irresolute at *x*. Then by Definition 4.1, there is a semi*regular open set *V* in *Y* containing *f*(*x*) such that *f*(*U*) is not a subset of *V* for every semi*regular open set *U* in *X* containing *x*. Hence $U \cap (Xf^{-1}(V)) \neq \phi$ for every semi*regular open set *U* containing *x*. Thus $x \in s*rCl(Xf^{-1}(V))$.Since $x \in f^{-1}(V) \subseteq s*rCl(f^{-1}(V))$, we have $x \in s*rCl(f^{-1}(V)) \cap s*rCl(Xf^{-1}(V))$. Hence by Theorem 2.15, $x \in s*rFr(f^{-1}(V))$. On the other hand, let *f* be semi*r-irresolute at *x*. Let *V* be a semi*regular open set in *Y* containing *f*(*x*). Then there is a semi*regular open set *U* in *X* containing *x* such that $f(x) \in f(U) \subseteq V$. Therefore $U \subseteq f^{-1}(V)$. Hence $x \in s*rInt(f^{-1}(V))$. Therefore by Definition 2.14, $x \notin s*rFr(f^{-1}(V))$ for every semi*regular open set *V* containing *f*(*x*).

Theorem 4.10: Every contra-semi*r-irresolute function is contra-semi*r-continuous.

Proof: Let $f: X \to Y$ be a contra-semi*r-irresolute function. Let V be an open set in Y. Then V is semi*regular open in Y. Since f is contra-semi*r-irresolute, $f^{-1}(V)$ is semi*regular closed in X. Hence f is contra-semi*rcontinuous.

Theorem 4.11: For a function $f: X \rightarrow Y$, the following are equivalent:

(i) *f* is contra-semi*r-irresolute.

(ii) The inverse image of each semi*regular closed set in Y is semi*regular open in X.

(iii) For each $x \in X$ and each semi*regular closed set F in Y with $f(x) \in F$, there exists a semi*regular open set U in *X* such that $x \in U$ and $f(U) \subseteq F$.

(iv) $Cl^*(rInt(f^{-1}(F))) = Cl^*(f^{-1}(F))$ for every semi*regular closed set F in Y. (v) $Int^*(rCl(f^{-1}(V))) = Int^*(f^{-1}(V))$ for every semi*regular open set V in Y.

Proof:(i) \Rightarrow (ii): Let *F* be a semi*regular closed set in *Y*. Then *Y**F* is semi*regular open in *Y*. Since *f* is contrasemi*r-irresolute, $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is semi*regular closed in X.

(ii) \Rightarrow (iii): Let F be a semi*regular closed set in Y containing f(x). Then $U = f^{-1}(F)$ is a semi*regular open set containing *x* such that $f(U) \subseteq F$.

(iii) \Rightarrow (iv): Let *F* be a semi*regular closed set in *Y* and $x \in f^{-1}(F)$, then $f(x) \in F$. By assumption, there is a semi*regular open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$ which implies that $x \in U_x \subseteq f^{-1}(F)$. This follows that $f^{-1}(F) = \bigcup \{ U_x : x \in f^{-1}(F) \}$. By Theorem 2.10(i), $f^{-1}(F)$ is semi*regular open in X. By Theorem 2.11, $Cl^{*}(rInt(f^{-1}(F)))=Cl^{*}(f^{-1}(F)).$

 $(iv) \Rightarrow (v)$: Let V be a semi*regular open set in Y. Then Y/V is semi*regular closed in Y. By assumption, $Cl^*(rInt(f$ $^{-1}(Y \setminus V)) = Cl^*(f^{-1}(Y \setminus V))$. Taking the complements we get,

 $Int^{*}(rCl(f^{-1}(V))) = Int^{*}(f^{-1}(V)).$

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$:Let *V* be any semi*regular open set in *Y*. Then by assumption,

 $Int^*(rCl(f^{-1}(V)))=Int^*(f^{-1}(V))$. By Theorem 2.12, $f^{-1}(V)$ is semi*regular closed in X.

Theorem 4.12: (i) Every strongly semi*r-irresolute function is semi*r-irresolute and hence semi*r-continuous. **Proof:** Let $f: X \rightarrow Y$ be strongly semi*r-irresolute. Let V be semi*regular open in Y. Since f is strongly semi*rirresolute, $f^{-1}(V)$ is open in X. Then $f^{-1}(V)$ is semi*regular open. Therefore f is semi*r-irresolute. Hence by Theorem 4.6, *f* is semi*r-continuous.

Theorem 4.13: Every constant function is strongly semi*r-irresolute.

Proof: Let $f: X \to Y$ be a constant function defined by $f(x) = y_0$ for all x in X, where y_0 is a fixed point in Y. Let V be a semi*regular open set in Y. Then $f^{-1}(V) = X$ or ϕ according as $y_0 \in V$ or $y_0 \notin V$. Thus $f^{-1}(V)$ is open in X. Hence *f* is strongly semi*r-irresolute.

Theorem 4.14: Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

(i) *f* is strongly semi*r-irresolute.

(ii) $f^{-1}(F)$ is closed in X for every semi*regular closed set F in Y.

(iii) $f(Cl(A)) \subseteq s * rCl(f(A))$ for every subset A of X.

 $(iv)Cl(f^{-1}(B)) \subseteq f^{-1}(s*rCl(B))$ for every subset *B* of *Y*.

(v) $f^{-1}(s*rInt(B)) \subseteq Int(f^{-1}(B))$ for every subset *B* of *Y*.

Proof: (i) \Rightarrow (ii): Let F be a semi*regular closed set in Y. Then $V=Y\setminus F$ is semi*regular open in Y. Then $f^{-1}(V)$ is open in X. Therefore $f^{-1}(F) = f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is closed.

(ii) \Rightarrow (i): Let V be a semi*regular open set in Y. Then F=Y\V is semi*regular closed.

By (ii), $f^{-1}(F)$ is closed in X. Hence $f^{-1}(V) = f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is open in X. Therefore f is strongly semi*rirresolute.

(ii) \Rightarrow (iii): Let $A \subseteq X$. Let F be a semi*regular closed set containing f(A). Then by (ii),

 $f^{-1}(F)$ is a closed set containing A. This implies that $Cl(A) \subseteq f^{-1}(F)$ and hence $f(Cl(A)) \subseteq F$. Therefore $f(Cl(A)) \subseteq s * rCl(f(A)).$

(iii) \Rightarrow (iv): Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $f(Cl(A)) \subseteq s * rCl(f(A)) \subseteq s * rCl(B)$. This implies that $Cl(A) \subseteq f$ $^{-1}(s*rCl(B)).$

 $(iv) \Rightarrow (ii)$: Let F be semi*regular closed set in Y. Then by Theorem2.13(i), s*rCl(F) = F. Therefore (iv) implies $Cl(f^{-1}(F)) \subseteq f^{-1}(F)$. Hence $Cl(f^{-1}(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is closed.

 $(iv) \Leftrightarrow (v)$: The equivalence of (iv) and (v) follows from taking the complements.

Theorem 4.15: For a function $f: X \rightarrow Y$, the following are equivalent:

(i) *f* is contra-strongly semi*r-irresolute.

(ii)The inverse image of each semi*regular closed set in Y is open in X.

(iii)For each $x \in X$ and each semi*regular closed set F in Y with $f(x) \in F$, there exists a open set U in X such that $x \in U$ and $f(U) \subseteq F$.

Proof:(i) \Rightarrow (ii): Let *F* be a semi*regular closed set in *Y*. Then *Y**F* is semi*regular open in *Y*. Since *f* is contrastrongly semi*r-irresolute, $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is closed in *X*. Hence $f^{-1}(F)$ is open in *X*. This proves (ii).

(ii) \Rightarrow (i): Let U be a semi*regular open set in Y. Then Y/U is semi*regular closed in Y. By assumption, $f^{-1}(V_{L}) = Y_{L} f^{-1}(U_{L})$ is open in Y. Hence $f^{-1}(U_{L})$ is closed in Y.

 $^{1}(Y \setminus U) = X \setminus f^{-1}(U)$ is open in *X*. Hence $f^{-1}(U)$ is closed in *X*.

(ii) \Rightarrow (iii): Let *F* be a semi*regular closed set in *Y* containing *f*(*x*). Then $U = f^{-1}(F)$ is an open set containing *x* such that $f(U) \subseteq F$.

(iii) \Rightarrow (ii): Let *F* be a semi*regular closed set in *Y* and $x \in f^{-1}(F)$, then $f(x) \in F$. By assumption, there is an open set U_x in *X* containing *x* such that $f(x) \in f(U_x) \subseteq F$ which implies $x \in U_x \subseteq f^{-1}(F)$ Hence $f^{-1}(F)$ is open in *X*.

Theorem 4.16: (i) Composition of semi*r-irresolute functions is semi*r-irresolute.

(ii) Inverse of a bijective semi*r-irresolute function is also semi*r-irresolute.

Proof: Follows from definition and set theoretic results.

IV. MORE FUNCTIONS ASSOCIATED WITH SEMI*REGULAR OPEN SETS

Definition 5.1: A function $f: X \rightarrow Y$ is said to be semi*regular open if f(U) is semi*regular open in Y for every open set U in X.

Definition 5.2: A function $f: X \to Y$ is said to be contra semi*regular open if f(U) is semi*regular closed in Y for every open set U in X.

Definition 5.3: A function $f: X \rightarrow Y$ is said to be pre-semi*regular open if f(U) is semi*regular open in Y for every semi*regular open set U in X.

Definition 5.4: A function $f: X \rightarrow Y$ is said to be contra-pre semi*regular open if f(U) is semi*regular closed in Y for every semi*regular open set U in X.

Definition 5.5: A function $f: X \rightarrow Y$ is said to be semi*regular closed if f(F) is semi*regular closed in Y for every closed set F in X.

Definition 5.6: A function $f: X \rightarrow Y$ is said to be contra semi*regular closed if f(F) is semi*regular open in Y for every closed set F in X.

Definition 5.7: A function $f: X \rightarrow Y$ is said to be pre-semi*regular closed if f(F) is semi*regular closed in Y for every semi*regular closed set F in X.

Definition 5.8: A function $f: X \rightarrow Y$ is said to be contra-pre semi*regular closed if f(F) is semi*regular open in Y for every semi*regular closed set F in X.

Definition 5.9: A bijection $f: X \rightarrow Y$ is called a semi*regular homeomorphism if f is both semi*regular irresolute and pre semi*regular open.

Definition 5.10: A function $f: X \rightarrow Y$ is said to be semi*r-totally continuous if $f^{-1}(V)$ is clopen in X for every semi*regular open set V in Y.

Definition 5.11: A function $f: X \to Y$ is said to be totally semi*r-continuous if $f^{-1}(V)$ is semi* regular open set in *X* for every open set *V* in *Y*.

Theorem 5.12: Let $f: X \to Y$ and be $g: Y \to Z$ be functions. Then (i) $g \circ f$ is pre-semi*regular open if both f and g are pre-semi*regular-open. (ii) $g \circ f$ is semi*regular open if f is semi*regular open and g is pre-semi*regular open. (iii) $g \circ f$ is pre-semi*regular closed if both f and g are pre-semi*regular closed. (iv) $g \circ f$ is semi*regular closed if both f is semi*regular closed and g is pre-semi*regular closed. (iv) $g \circ f$ is semi*regular closed if both f is semi*regular closed. (iv) $g \circ f$ is semi*regular closed if both f is semi*regular closed. (iv) $g \circ f$ is semi*regular closed if both f is semi*regular closed.

Proof: Follows from definitions.

Theorem 5.14: Let $f: X \rightarrow Y$ be a function where *X* is an Alexandroff space and *Y* is any topological space. Then the following are equivalent:

(i) *f is* semi*r-totally continuous.

(ii) For each $x \in X$ and each semi*regular open set V in Y with $f(x) \in V$, there exists a clopen

set U in X such that $x \in U$ and $f(U) \subseteq V$.

Proof: (i) \Rightarrow (ii): Suppose $f: X \rightarrow Y$ is semi*r-totally continuous. Let $x \in X$ and let V be a semi*regular open set containing f(x). Then $U = f^{-1}(V)$ is a clopen set in X containing x and hence $f(U) \subseteq V$.

(ii) \Rightarrow (i): Let *V* be a semi*regular open set in *Y*. Let $x \in f^{-1}(V)$. Then *V* is a semi*regular open set containing f(x). By hypothesis there exist a clopen set *Ux* containing *x* such that $f(Ux) \subseteq V$ which implies that $Ux \subseteq f^{-1}(V)$. Therefore we have $f^{-1}(V) = \bigcup \{Ux : x \in f^{-1}(V)\}$.

Since each Ux is open, $f^{-1}(V)$ is open. Since each Ux is a closed set in the Alexandroff space X, $f^{-1}(V)$ is closed in X. Hence $f^{-1}(V)$ is clopen in X.

Theorem 5.15: A function $f: X \rightarrow Y$ is semi*r-totally continuous if and only if $f^{-1}(F)$ is clopen in X for every semi*regular closed set F in Y. **Proof:** Follows from definition.

Theorem 5.16: A function $f: X \rightarrow Y$ is totally semi*r-continuous if and only if f is both semi*r-continuous and contra-semi*r-continuous.

Proof: Follows from definitions.

Theorem 5.17: A function $f: X \rightarrow Y$ is semi*r-totally continuous if and only if *f* is both strongly semi*r-irresolute and contra-strongly semi*r-irresolute.

Proof: Follows from definitions.

Theorem 5.18: Let $f: X \rightarrow Y$ be semi*r-totally continuous and A is a subset of Y. Then the restriction $f/A: A \rightarrow Y$ is semi*r-totally continuous.

Proof: Let V be a semi*regular open set in Y. Then $f^{-1}(V)$ is clopen in X and hence $(f/A)^{-1}(V) = A \cap f^{-1}(V)$ is clopen in A. Hence the theorem follows.

Theorem 5.19: Let $f: X \rightarrow Y$ be a bijection. Then the following are equivalent: (i) f is semi*r-irresolute.

(ii) f⁻¹ is pre-semi*regular open.
(iii) f⁻¹ is pre-semi*regular closed.

Proof: Follows from definitions.

Theorem 5.20: A bijection $f: X \rightarrow Y$ is a semi*r-homeomorphism if and only if f and f^{-1} are semi*r-irresolute. **Proof:** Follows from definitions.

Theorem 5.21: (i) The composition of two semi*r-homeomorphisms is a semi*r homeomorphism (ii) The inverse of a semi*r-homeomorphism is also a semi*r-homeomorphism. **Proof:** (i) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be semi*r-homeomorphisms. By Theorem 4.16 and theorem 5.13(i), gof is a semi*r-homeomorphism.

(ii)Let $f: X \rightarrow Y$ be a semi*r-homeomorphism. Then by Theorem 4.16(ii) and by Theorem 5.20, $f^{-1}: Y \rightarrow X$ is also semi*r-homeomorphism.

ACKNOWLEDGEMENTS

The first author ,Dr.S.Pious Missier is thankful to University Grants Commission, New Delhi, for sponsoring this work under grants of Major Research Project-MRP-MATH-MAJOR-2013-30929. F.No. 43-433/2014(SR) Dt. 11.09.2015.

REFERENCES

- N. Levine, Semi-open sets and Semi-continuity in topo-logical spaces, Amer. Math.Monthly, 70(1), 1963, 36-41. [1].
- J.Dontchev, Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. & Math. Sci. 19(2), [2]. 1996, 303-310.
- S.G. Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math.74, 1972, 233-254. [3].
- J. Dontchev and T. Noiri, Contra-Semi continuous func-tions, Mathematica Pannonica, 10(2), 1999, 159-168. [4].
- M. Caldas, Weak and Strong forms of irresolute maps, Internat. J. Math. & Math. Sci. 23(4), 2000, 253-259. [5].
- A. Robert and S. Pious Missier, Semi-Star-Alpha-Open Sets and Associated Functions, International Journal of [6]. Computer Applications, 104(16), 2014, 0975 - 8887.
- [7]. S. Pious Missier and R. Krishnaveni, A Stronger form of Semi Star Open Sets , IJMA-7(7), 2016.
- N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19(2), 1970, 89-96. [8].
- W. Dunham, A new closure operator for Non-T1 topologies, Kyungpook Math. J. 22 (1), 1982, 55-60. [9].
- O. Njastad, Some Classes of Nearly Open sets, Pacific J. Math., 15 (3), 1965, 961-970. [10].
- [11]. G.B. Navalagi, Definition Bank in General Topology, Topology Atlas, 2000.
- [12]. D. Andrijevic, Semi-Preopen Sets, Mat. Vesnik, 38, 1986, 24-32.
- [13]. H. A. Othman, New types of α -continuous mapping, Master Degree Thesis, Al-Mustansiriya University, IRAQ, 2004.
- [14]. T.M. Nour, Totally semi-continuous functions, Indian J. Pure Appl. Math., 26(7), 1995, 675-678.
- [15]. S.S. Benchalli and Umadevi I Neeli., Semi-Totally Continous Functions in Topological spaces, International Mathematical Forum, 6 (10), 2011, 479-492.