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ABSTRACT: We provide a methodology for conducting robustgieand analysing the data obtained
from the experiment. The methods we expose ar&apechi approach, commonly known as double
orthogonal array design (DOAD), and the combinedagrdesign (CAD). The Taguchi approach
consists of a double orthogonal array design, amétfe design factors and another for the noisédiec

The combined array design puts both types of fagtoone design. This design permits the analyfsis o
interactions between the design and noise factord,reduces the number of runs required to conduct
an experiment. The analysis of data obtained frioi: design consists of fitting a regression model |
terms of design factors and noise factors. Frondttiiested model, two response surfaces are obtained
one for the mean of the quality characteristic ambther for its variance. Optimal conditions of the
experiment are determined by solving the optinoratiroblems which are based on mean square error
(MSE) criterion and desirability function (DF). Bat on quadratic loss function, we assess the impact
of a robust design in reducing the production cost.

Keywords. Robust design, double orthogonal array design, doetbarray design, mean square error,
desirability function, quadratic functic.

I. INTRODUCTION

Since engineers and scientists have become inoghasaware of the benefits of using designed
experiments, there have been many new areas atapph. One of the most important is the robustigie
Robust design methodology is a systematic effosictieve insensitivity to noise factors.

The assumption is that there are two types of factioat affect the quality characteristic commonly
known as response variable. These are the coattrs and uncontrollable or difficult-to-contralkctors. They
are respectively referred to as design factorsraigke factors (Taguchi [1]).

Noise factors can be further divided into two catésgs: external noise factors and internal noistofa.
External noise factors are those sources of véitiatiiat come from outside of the system. Exampliesxternal
noise factors are environmental factors that eesys$$ subject to, such as ambient temperature epiessure
and humidity. Internal noise factors are essemtifstdm the variations of control factors. Intermadise could
include deviations from the target values of canfiaotors caused by the manufacturing processnasgeand
deterioration.

Robust design is mainly composed of three stagdmist system design, robust parameter design and
robust tolerance design (Harrington [2]). Robustem design consists of using physics, mathematiggrience
and knowledge gained in a specific field to devedog select the most appropriate conditions ofldsign. Once
the configuration of a system is finalised, theisgs of the nominal levels and the correspondiherances need
to be determined. Robust parameter design ainnsdih§ the optimal settings of control factors kattthe system
is insensitive or less sensitive to noise factBi@ust tolerance design is a balancing processmi at finding
the optimal settings of tolerances of the contagtdrs so that the total cost of the system ismmhiHarrington

[2]).

The statistical methodology underlying robust desfgat has by now become the most widely accepted,
is the dual response surface methodology whicimestis two surfaces, one for the mean and anothéhdo
variance of the quality characteristic (Giovagrasid Romano[3]). As an illustration, we adopt thtadmalysis
based upon the double orthogonal array design antbined array design. Details on these experimental
strategies are in (Bizimana [4]).

In literature, much has been done on robust de3ilgis. paper presents a methodology for conducting
robust design and analysing the data obtained fhenexperiment using two experimental schemes. FEheme
we build the dual response strategy for both sckerfibe models for the mean and variance require an
optimization process. This process is based upemtdan square error and desirability function. piroposed
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methodology is described in TaldleFinally, an example from the literature is usedtudy the efficiency of the
dual response in both designs. The comparisoregbtthcedures for optimization reveals that the doetbarray
design produces better results. Optimal conditiare applied to the quadratic loss function, gemegaan
economic impact.

Table 1: Proposed methodology.

Design] Model | Dual Response Optimization 1 | Optimization 2 | Application

DOAD| Fixed |Mean: yye,, MSE Desirability Loss
effects | Variance: y,,, function function

cAD | Mixed | Mean: E(y) MSE Desirability Loss
effects | Variance:Var(y) function function

II. EXPERIMENTAL SCHEMES

2.1. Double orthogonal array design

The double orthogonal array design was initiated@leyichi Taguchi (Taguchi and Wu [5]). It consists
of a cross-product of two experimental designs. flilse design, known as the inner design, is a doatibn of
the levels of the design factors. The second desiferred to as the outer array design, is a coatioin of the
levels of the noise factors. Each combination efl#vels of the design factors forms an experimenta For
each experimental run, the same array of the faders is run.

Suppose that the quality characteristief a product or a process dependspatesign factorsx,,..., x,

andg noise factors z,..,7. The responseg, are the combinations of the levels of the desigators

(i=1,2,-- n)and the levels of the noise factdrs=1,2,-- r ). The total number of runs required to conduct an

experiment in this case isx r . The experimental structure of double orthogomedyadesign is represented by
Figurel.

2.2. Combined Array Design

The combined array design is a single experimetgsign in control and noise factors. Both contral a
noise factors are then modeled. The results oe#periment can be described by a model with ongynall
number of main effects and low-order interactioBgnificant design-by-noise interactions are intetgd as
evidence of dispersion effects and are used tosghsettings of design factors that minimize thegss variation.
Data obtained from combined array design are aedlpy fitting a model for the mean and the variance

Figure 1. Experimental structure of double orthogonal adagign.
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Suppose that the quality characteristiof a product or process dependsputesign factors,..., x, and qnoise
factors z,..., z,. The experimental structure of the combined adesign is presented by Figute
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Figure 2: Experimental structure of combined array design.
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1. DUAL RESPONSE OPTIMIZATION
3.1. Dual responsein double orthogonal array design
The data analysis consists of fitting a secondrarelgression model of the form

y=B,+x"B+x"Bx+e. 1) (
In this modelx is the vector of control factorg, the interceptf is a vector of coefficients of first-

order control factorsB is a matrix of coefficients of second-order terrhsantrol factors and their interactions,
€is a vector of residual errors of the regressiordehoThe residual errors are assumed tol{Eo?). The
responsg is the mean or the variance.

After the estimate of the regression mo&e# Z?O +x' ,?? +x"Bxis obtained, the mean response surface,

and variance response surface &p@an(x) and gl\,ar(x) , respectively. It is clear that both responseazg$ are
in terms of control factors.

3.2. Dual response in combined array design
Let the system be described by a variafgbe, z) that depends on a set of controllable factors\(#wtor

X ) and a set of random noise factors (the vezjor
To explore the dependence yobn X and z the following model is assumed for the response, to

accommodate control-by-noise interactions:
Y(X,2) =B, + X" B+ X' Bx+y z+x'Az+¢ 2)

In this model, zis the random noise vector, tHes are independent and identically distribute(,o?)
random errors. It is assumed trindz are independent. The const#t the vectorsg@, y, and the matrices

B and A consist of unknown parameters, arfds also usually unknown. It is also assumed tBét) = 0 and
that Cou(z) = Q is known.

After the model 2) is fitted to the data from the designed experitnéme corresponding adjusted

response model is given by the expression

Y(x,2)= By + X" B+ X Bx+y z+x Az ©)

The two response surfaces are obtained analytifralty (3). Both response surfaces are in terms of
control factors. The mean response surng(ay/(;g\z)) , and the variance response surfamrz(m)) , are

respectively expressed as follows:

E,(Y(02) =By + X" B+x Bx (4)
var,(y(x,2) =y +xT£)Q(I/+£T x). )

In fact, calculating the expected value and théavae ofm with respect to the random vectarleads to

Ez(m))= E[230+XT,E+ X" §x+;/Tz+ XTEZ}

EZ[Z30+XT,§+XT §X]+ Ig[;/Tz+ XTEZ}

E, Z3O+XTE+XT/B\X]

~

=B, + X' B+ X BX,
__________________________________________________________________________________________________________________________________|
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and
— ~ ~ ~ AT ~
Varz(y(x,z))=Varz[ﬁo+xTﬁ+ x"Bx+y z+ xTAz}

=Varz[ﬁ0+xTﬁ+ X' §XJ+VarZ[;/Tz+ xTﬁz]
AT ~

=Varz[y zZ+ xTAz]
~T ~

=Varz[(y +xTA)z}

AT A AT A T
=y +x AVar(z){y +x A

AT ~ ~ AT
=(y +xTA)Q(y+A x).
3.3. Optimal dual response
In the literature, various methods of optimizatitewe been developed in order to obtain the optimal
solution for the mean of the quality characteristigile minimizing the variance of the process. Masnd
Dominguez [6] have summarized and compared thogleoth® Myers and Carter [7], and Myers and Vini8p [
have introduced the method commonly used in thé is@ponse surface approach. They first fit secanair
models to both primary and secondary responsecagfén this case, they are respectively, the rardvariance.
Then, they optimize the primary response subjednappropriate constraint on the value of the rsgdacy
response, Or vice versa.
The optimal solution for the mean response is abthby solving the problem:

Optimize  Yyepn(X)
Subject to §Ivar(x) =0; (Case of DOAD) (6)
xUOR

and
Optimize E, ( )7(’)72))
Subject to Var, (m) =g2  (Case of CAD) @)
XxOR

Lin and Tu [9] argue that the methods of optimizatin Equations&) and ) may be misleading,
because the variance, which is to be minimizedhégrocess, is forced to a fixed value. They preppsiew
procedure based on the mean square error criterion.

The optimal solution for the variance model is $sbéution of the following problem:
Minimize g/\,ar(x)

Subject to g/Mean(X) =T (Case of DOAD) (8)
xUOR

and

Minimize Var, ( y(X, z))

Subject to E, ( y(x,2))=T  (Case of CAD) 9)
xOR

Ris the experimental region.
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3.4. Economic impact of designed experiments

In this section, we assess the economic impacésifjded experiment using the quadratic loss functio
The quadratic loss function (QLF) is a metric usegrovide a better estimate of the monetary losarred by
manufacturers and consumers when the product pesifure deviates from its target value (Metal, [10]).
Then, the QLF is used to evaluate the economic éinglaconducting an experiment on the process.

The QLF is given by the expression
L(y) = k(y-T)? (10)
wherey is the quality characteristic of a product or ps=;& is the target andkis the quality loss coefficient.

The expected quality loss (EQL) is

Q=E[LY]=kE y- "= k( E Y- T+ var)| 1)
By taking E(y) = ¢ andVar(y) = g2, the expected quality loss becomes

Q=k[(,u—T)2+az] (12)
Then the estimate of expected quality loss is:

@:k[(p-T)ﬂ?}, (13)

wherey =y and g® = s°.

The quality loss coefficienk is determined by first finding the functional limibr customer tolerance
for y. The function limits are determined Byt A,. These are the points at which the product wouldfgiroduce

unacceptable performance in approximately halhefdustomer applications. Lé§ be the value of the quality
loss function at + A, that is L(y) = Ajat y =T +A,. Substituting the functional limit¥ + A, and the value of
the quality loss into Equatior @), the quality loss coefficient is found to be

. (14)
(8o)°
3.4.1. Typesof quadratic loss function
While conducting an experiment, the designer isrggted in reaching the target value or minimizing
maximizing the value of the quality characterisiitiese three cases of quality characteristicsefegred to as
the nominal the best type (NTB), the smaller thiedo€STB) and the larger the better (LTB), respety.
Lety" =(Vy,, ¥,...., y,)Wherey is the quality characteristic of a product or psxceTable2 shows the
types of QLF and the average quadratic loss funstimrresponding to each kind of quality charastieriof
interest. More details on this section can be faarEowlkes and Creveling [11].

Table 2: Types of QLF.

Type | QuadraticL oss EQL Estimate of EQL
NTB | LY =KD | @=k((u-T)"+o?) | Q=k{(3-7)"+ 3
SE[L0=0 [@=kw+o] | a-K(y+3]
LTB / / 2
L= Q:k_2{1+30; } 0=K]143
Yy U 7 yz yz

In this table,k :iz and k' = A (B,)".
()
V. OPTIMIZATION PROCEDURE

4.1. Mean squareerror
The mean square error is an effective criteriocotmbine the mean and the standard deviation respons
in dual response optimization (Kéksoy [12]).
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The MSE function for the target is best case iggiby

_ B’Mean(x) - TT + Yyul(X) (Case of DOAD)
MSE= ) (15)
[Ez (m) - T] 4 Vag(m)) (Case of CAD)

whereT is the target value.

The MSE function for the smaller the better casdetermined as follows:
[T ]+ Ha) (Case of DOAD)
MSE= T - (16)
[EZ(Y(X' Z))J +Varz( y(x,z)) (Case of CAD)

The MSE function for the larger the better casgiven by the expression
— |:9Mean(x) - H:|2 + ,)\/Var(x) (Case of DOAD)
MSE= - ) - (17)
[EZ(Y(X,Z))— H} +Varz( )(X,Z)) (Case of CAD)

whereH is the highest plausible value &{Aean(x) or EZ()T(;(,\Z)).

The optimization problem to solve is then
{Minimize MSE

j18
Subject to xOR.

The advantage of the MSE approach is that it doesaguire any constraints on the secondary respons
and it can handle more realistic models and mucteroomplicated models than polynomial.

4.2. Desirability function
The desirability function to simultaneously optimimultiple equations was originally proposed by

Harrington [2]. The common approach is to transfeach respons&i into an individual functioml, that varies
over the rang40,1] .

4.2.1. Individual desirability function
Depending on whether a particular respo?gs’e to be maximized, minimized, or assigned to getr
value, the corresponding desirability functiah, is defined as follows (Derringer and Suich [13]):

» Individual desirability function for the nominaldtbest (NTB) case:

0 if ()<L or y(x)2y
[VT(X%L'WJ if L <y()<T
d=9 ; 19)
[—yiT(iX_ L_JiU‘ J if T<y(x)<U
1 if y(x)=T,

» Individual desirability function for the smalleretbetter (STB) case:

L
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) if y(x) <
q:[ﬁgﬁfq it L<y(<y )
0 if y(x)2,

» Individual desirability function for the larger tthetter (LTB) case:

0 if y(x)<L
d = [%J if L <y(x)<U (21)
1 if y(x)=U,

The values ofl; and U, are some acceptable lower bound and upper bounm, andT. is its target

value. The value of can be chosen so that the desirability criteriaasier or more difficult to satisfy, indicating
the weight ofm in the process.

The functions in 19), (20), and @1) can be expressed in terms ngAean(x) and §/Var(x) in the case of a

DOAD, and in terms oF, ( %(\z)) andVar, ( ﬁ;(\z)) while dealing with a CAD.

4.2.2. Overall desirability function
For an responses system, the overall performance ofyters is determined by the overall desirability
D , which can be expressed as the geometric mean:

.\
D=[DdJ . (22)

The optimization problem to solve is then

Maximize D (23)
Subject to xOR

V. ILLUSTRATIVE EXAMPLE AND RESULTS

5.1. Robust design conducted on a chemical process
5.1.1. Problem statement and design

The application is a chemical process adapted framson [14]. In this process, side reactions create
tars that result in lower product quality. When keel of tars produced is too high, yield decreesased further
blending must be done with the finished producidorease tar to a level that is acceptable to cest The tars
were thought to be created by reactions involvinguirities in the most expensive reagent, A, andrdthpurities
that accumulate in the recycle solvent stream. firoposed method to solving the problem was to éxjset
with the setting of process variables, or desigapeters, to see if operating conditions coulddumd that were
less sensitive to impurities in reagent A and thigent stream (Lawson [15]).
The objectives of conducting a designed experiraemto diminish the proportion of impurities anddéduce the
variance of the process.

The response variable is the proportion of impesit(in percentage). The factors involved in this
experiment are 3 design factors and 2 noise factbiesdesign factors ang reaction temperature,: the catalyst

concentration,x; the excess of reagent B. The noise factorg aparity of reagent A,z,: purity of the solvent
stream. It is assumed that and z,are uncorrelated andf1 = sz =1so that the variance-covariance matrix, say

cov(z)=Q,is an identity matrix of dimension 2. Tabf¢a) shows the coded levels of the factors and their

corresponding real values.
Experiments are performed at combinations of leotthe design factors defined by a Box- Behnkesigie

The combinations of levels of the noise factors amanged in a2® factorial design. This means that an
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experiment for the 15 combinations of the conteaitdrs is realised, and each of these is repeatedch of the
possible combinations of the noise factors. Thaltesbtained from the experiment are shown in &&lib).

5.1.2. Methodsof analysis

We recall that the aim of the experiment is to disti the proportion of impurities. To obtain thdiopal
settings, we apply the optimization method basetean Square Error Criterion where the target vaiset to
T =0. In addition, we apply the desirability functiondatie results obtained from both methods are coedpar

5.1.3. Results
Case of double orthogonal array design

From the results of the experiment given in anngfeble 7(b)), the estimated mean response and
estimated variance response are determined. Teithsnansignificant effects are not considered. Titted
models for the mean and variance are the following:

Vuew(X) =14.80- 8.1% - .08, + 05¢+ 8.30x+ 500

QVa,(X):(glso(X))z =(3.66- 4.44¢ + 164+ 25§+ 1.6f)

 MSE approach
The optimization problem to solve is:

Minimize (14.80— 8.1% - 9.09,+ 0.5 + 8.30%+ 5.@221)2 +( 366 44 L4 %55 Txﬁl
Subjectto -1l<x <1
-1lsx,<1
-1sx,<1.
We solve this optimization problem using thleptr package (Ypma [16]).

*  Desirability function approach
The lower and upper bound for the mean responseesgectively given bl,,.., = QMear(xmin)and

Utean = QMean(xmax), where x,,,, and x,,, are respectively solutions of the following optiwtion problems:

Minimize Yjo.(X) ang) Maximize Yirean(X)
Subject to xOR Subject to xOR

Mean

Similar logic leads tol,,, = Yy, (Xpn) andUy,, = Yy, (Xpa), Where x,, and x,, are respectively solutions of

the optimization problems:
{Minimize Your () 0 d{Maximize Your (X)
Subject to xOR Subject to xOR
Table3 displays the values obtained.

Var

Table 3: Lower bounds and upper bounds of individual déglitg functions.
Lyean: 7-12 L, : 1.72

u 459 U, : 112.8

Mean *

The individual desirability functions for the pragion of impurities and its variance are respedjive

1 lf 9Mean(x)S 712
~ | V(X)) =459 . R
d(yMean(X))— e agg L 7125 Y, ()< 45.9
0 if Yyean(X) 2 45.9

and

L
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1 if i, (X)<1.72
- L (0-1128 . ~
d(yVa,(X))— T 79-1128 if 1.72<y,, (x)<112.€
0 if Y, (x)2112.8

The overall desirability function is

D = o (Vo) % o Y.
The optimization problem to solve is the following:
Maximize D
Subjectto -1l<x <1
-1lsx,<1
-l<x,<1.
We adapt thelesirability package (Kuhn [17]) to solve the previous optiri@aproblem.

Case of combined array design
The fitted regression model is:

y(x,2)=14.79- 8.1% - 9.08,+ 8.3Qx+ 504+ 3.9+ 1.20 3.3
The mean and variance models are:
E,(X(x2)=1479- 81% - 9.08,+ 8.3gx+ 501

var,(y(x.2)) =16.73- 25.8% + 7.9+ 1089+ 10.80

e MSE approach
The optimization problem to be solved is:

Minimize (14.79- 8.1% - 9.08,+ 8.3Qx+ 5.08) +( 1673 258t 702 10389 1GB9
Subject to -1<x <1

-1<x,<1

-lsx,<1.

» Dedirability function approach
The lower and upper bound for the mean responsesapectively given by,,.., = EZ(M)) and

Mean —

U pean = EZ( m)) where x,,,, and X, are respectively solutions of the following optiation problems:

Minimize E, ( m)) and Maximize Ez(m)
Subject to xOR Subject to xOR
Similar logic leads tol,,, =Varz(m)) andu,, =Varz(m)), where x_,, and x ., are respectively
solutions of the optimization problems:
Minimize Varz(y/(;g\z)) g Maximize Varz(y’(i,\z))
Subject to xOR Subject to xOR.

Table4 displays the values obtained.

Table 4: Lower bounds and upper bounds of individual desirabilibcfions.
Lyean: 6.59 L, : 0.37

u 454 U,,: 56.4

Mean *

L
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The individual desirability functions for the pragion of impurities and its variance are:

1 if Ez(m))s 6.59

E, ( 37(’x,\z)) ~454

d(i;('ﬁ,\z))) = if 659<E,(ykz)<45.4
0 if Ez(i’/(},\z)) > 45.4
and
1 if Varz(y’&,\z)) <037

Varz(%(,\z)) ~56.4
0.37- 56.4
0 if Varz({/('x,\z)) >56.4.

(Var (wx.z z))) if 0.37<Var,(y{ z) < 56.4

The overall desirability function is

\/d ¥x.2)) x d( vag( ¥, z)))

The optimization problem to solve is the following:
Maximize D

Subject to

-1l<x <=1
-1<x,=<1
-lsx,<1.

The results of these optimization problems areahl@&5.
Table5: Results.

Design Statistic M SE DF
Xop (1, 0.1966171- 0.509316 (1, 0.39689872- 0.5093561
Yiean(Xop) 7.19 7.63

DOAD | Yy, (Xon) 6.09 3.54
MSE 57.8 61.7
Desirability - 0.9852808:
Xop (0.99999917, 0.01634704, 0.427967.| (1, - 0.18672138, 0.8774533
Ez(m)) 6.61 6.94

CAD | Var,(y(Xop2) 1.94 0.711
MSE 45.6 48.9
Desirability - 0.9924199

Looking at the optimal values obtained for the mmion of impurities and its variance, it seemg the
combined array design performs better than the ldcathogonal array design in this chemical process

In addition, regarding the method of analysishé main objective of the experiment is to reduee th
proportion of impurities, the mean square errorrapph gives the best results. On the contraréfinterest is
the reduction of variability in the process, thaidability function seems to be the best methodralysis.

When both the reduction of proportion of impuritéasl reduction of variability are of utmost importa,
the selection of the design to be conducted andnibinod of analysis to be adopted will take intocamt the
estimated value of the corresponding quality lessfion.
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The quality loss function accounts for the losserms monetary funds incurred by the deviation fitbm
target and high variability in the process. Theagpt of quality loss function is illustrated thréuthe example
presented in the following section.

5.2. Economic impact of a robust design

The chemical process is working in real conditiofig, = 200, x, = 28and x, =17 for the reaction
temperature, catalyst concentration and excessagfent B, respectively. A sample of 24 data isrtakeverify
the conditions of impurities. These refer to theamand variance of the process. The sample vatees a
23.08, 23.01, 18.11, 20.14, 47.14, 23.20, 17.193181.42, 22.72, 20.36, 24.99, 32.77, 25.26,d,953.14,
23.09, 30.49, 35.72, 21.95, 26.43, 24.48, 34.20)2BVares and Dominguez [6]).

The corresponding sample mean and sample variaace a
_ 1 & 1 & —\2 .
=—Y y =25.1ands* = —  —y] =45.64 respectively.
Y=Y 23;:( %) pectively

Therefore, the estimate of the expected quality (&QL) for the quadratic loss is:
Qprocens™ k(_y2 ¥ §) = (25.9 + 45.64 675.6!

process —

where k =1. This constant in practice plays a very importaé because it indicates the overall cost of poor
quality.
We now calculate the estimate of the expected tyuaks of the optimal process conditions as gheiableb.

The estimate of the expected quality loss of theghed experiment is defined as
~ 2 ~
~ I:yMean(XOpt):| + yvar(xopt) (Case Of DOAD)

doe —

I:Ez ( m)ﬂz + Varz( m)) (Case of CAD)

The overall difference between the estimate ofdkpected quality loss of the real process and the
estimate of the expected quality loss of the ogtipracess conditions of the designed experimerns, ith

A= (Agpmess— Q 4o INdicates the expected gain incurred by condgdtie process in its optimal conditions. Table
6 presents the results.

Table 6: Economic impact of designed experiment.

Approach Economicimpact | DOAD| CAD
Mean Square Error @doe 57.78 | 45.62
A 617.8€ | 630.02

Desirability Function (Agdoe 61.7¢ | 48.87
A 613.8€ | 626.77

We can see that the estimate of the expected yuatis of the designed experimel@me, ranges

between 45.63and 61.75monetary units, while the overall difference thaticates the gain incurred by
conducting the process under the optimal conditidnsranges betweef13.8Sand 630.0Z2monetary units.

VI. GENERAL CONCLUSIONS

This paper presents a methodological approachdoducting robust designs and analyzing the data
obtained. An overview of two approaches used tadaonrobust design and analyse the data is providéd
have presented the Taguchi approach commonly kasvdouble orthogonal array design and the comlzimeg
design. The mean square error criterion and dekiyatunction have been used as optimization prhees to
finding the optimal conditions of the process.

To highlight the practical implementation of theutite orthogonal array design and combined array
design, we have given an illustrative example arh@mical process where the objectives are to damittie
proportion of impurities and to reduce the varianotthe process. Looking at the optimal values iole for the
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proportion of impurities and its variance, it seah the combined array design performs better tha double
orthogonal array design.

Focusing on the proportion of impurities, the msgunare error approach gives the best results, ard w
the main interest is the reduction of variabilitythe process, the desirability function seemsetthk best method
of analysis.

When both the reduction of proportion of impuriteasd reduction of variability are of utmost imparta, the
selection of the design and the method of anatgsise used must take into account the estimatadewaf the
quality loss function. Based upon the quality lhgsction, we have given an illustrative examplet thighlights
the practical importance of conducting a designgekement in order to reduce the overall cost efghoduction.

In this example, the estimate of the expected tyulalss of the designed experime@me, ranges betweetb.63

and6l1.7&monetary units, while the overall difference thaticates the gain incurred by conducting the preces
under the optimal conditiond, ranges betwee613.8%and 630.0Zmonetary units.
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VII. ANNEXES
Table 7: Data for the chemical process problem.
(@) Coded and real levels of the factors.

Levels
Design factors -1 0 1
X 180 210 240
X, 25 30 35
X, 12 15 18
Noise factors -1 1
zZ 10 20
z, 30 40

L
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(b) Experimental results of the chemical process.

Z 1 -1 -1 1 Standard

Experimental run X X, | % -1 -1 1 1|Mean | deviation
1 -1 -1 0 57.81 37.28 42.87 47.07| 46.26] 8.68
2 1 -1 0 2488 435 8.23 14.69| 13.04 8.98
3 -1 1 0 13.21 9.51 10.1C0 11.19]11.00 1.63
4 1 1 0 13.29 9.15 10.30 11.23] 10.99 1.80
5 -1 0 -1 27.71 20.24 22.28 24.23] 23.62] 3.18
6 1 0 -1 1140 448 5.44 8.23| 7.39 3.11
7 -1 0 1 30.65 18.40 20.24 24.45]| 23.44| 5.44
8 1 0 1 1494 229 430 8.49| 751 5.59
9 0 -1 -1 42.68 22.42 21.64 30.30| 29.26 9.76
10 0 1 -1 13,56 10.08 9.85 11.38] 11.22 1.70
11 0 -1 1 50.60 13.19 18.84 30.97] 28.40] 16.55
12 0 1 1 1521 7.44 9.78 11.82| 11.06 3.29
13 0 0 0 19.62 12.29 13.14 14.54| 14.90 3.28
14 0 0 0 20.60 11.49 12.06 13.49] 14.41 4.21
15 0 0 0 20.15 12.20 14.06 13.89| 15.08 3.49
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