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I. INTRODUCTION 
Since engineers and scientists have become increasingly aware of the benefits of using designed 

experiments, there have been many new areas of application. One of the most important is the robust design. 
Robust design methodology is a systematic effort to achieve insensitivity to noise factors. 

The assumption is that there are two types of factors that affect the quality characteristic commonly 
known as response variable. These are the control factors and uncontrollable or difficult-to-control factors. They 
are respectively referred to as design factors and noise factors (Taguchi [1]). 

Noise factors can be further divided into two categories: external noise factors and internal noise factors. 
External noise factors are those sources of variability that come from outside of the system. Examples of external 
noise factors are environmental factors that a system is subject to, such as ambient temperature, ambient pressure 
and humidity. Internal noise factors are essentially from the variations of control factors. Internal noise could 
include deviations from the target values of control factors caused by the manufacturing process, assembly and 
deterioration. 

Robust design is mainly composed of three stages: robust system design, robust parameter design and 
robust tolerance design (Harrington [2]). Robust system design consists of using physics, mathematics, experience 
and knowledge gained in a specific field to develop and select the most appropriate conditions of the design. Once 
the configuration of a system is finalised, the settings of the nominal levels and the corresponding tolerances need 
to be determined. Robust parameter design aims at finding the optimal settings of control factors so that the system 
is insensitive or less sensitive to noise factors. Robust tolerance design is a balancing process. It aims at finding 
the optimal settings of tolerances of the control factors so that the total cost of the system is minimal (Harrington 
[2]). 

The statistical methodology underlying robust design that has by now become the most widely accepted, 
is the dual response surface methodology which estimates two surfaces, one for the mean and another for the 
variance of the quality characteristic (Giovagnoli and Romano[3]). As an illustration, we adopt the data analysis 
based upon the double orthogonal array design and combined array design. Details on these experimental 
strategies are in (Bizimana [4]). 

In literature, much has been done on robust design. This paper presents a methodology for conducting 
robust design and analysing the data obtained from the experiment using two experimental schemes. From there 
we build the dual response strategy for both schemes. The models for the mean and variance require an 
optimization process. This process is based upon the mean square error and desirability function. The proposed 
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methodology is described in Table 1. Finally, an example from the literature is used to study the efficiency of the 
dual response in both designs. The comparison of the procedures for optimization reveals that the combined array 
design produces better results. Optimal conditions are applied to the quadratic loss function, generating an 
economic impact. 

 
Table 1: Proposed methodology. 

 Design Model  Dual Response Optimization 1 Optimization 2 Application 

 DOAD Fixed Mean: ɵMeany  MSE Desirability Loss 

  effects Variance: ɵVary   function function 

 CAD Mixed  Mean: ɵ( )E y  MSE Desirability Loss 

  effects  Variance: ɵ( )Var y   function function 
 

II. EXPERIMENTAL SCHEMES 
2.1. Double orthogonal array design 

The double orthogonal array design was initiated by Genichi Taguchi (Taguchi and Wu [5]). It consists 
of a cross-product of two experimental designs. The first design, known as the inner design, is a combination of 
the levels of the design factors. The second design, referred to as the outer array design, is a combination of the 
levels of the noise factors. Each combination of the levels of the design factors forms an experimental run. For 
each experimental run, the same array of the noise factors is run. 

Suppose that the quality characteristicy of a product or a process depends onpdesign factors 1, , px x…

andq noise factors 1, , qz z… . The responsesi jy  are the combinations of the levels of the design factors 

( 1,2, , )i n= ⋯ and the levels of the noise factors ( 1,2, , )j r= ⋯ . The total number of runs required to conduct an 

experiment in this case is n r× . The experimental structure of double orthogonal array design is represented by 
Figure 1. 
 
2.2. Combined Array Design 

The combined array design is a single experimental design in control and noise factors. Both control and 
noise factors are then modeled. The results of the experiment can be described by a model with only a small 
number of main effects and low-order interactions. Significant design-by-noise interactions are interpreted as 
evidence of dispersion effects and are used to choose settings of design factors that minimize the process variation. 
Data obtained from combined array design are analysed by fitting a model for the mean and the variance. 
 

Figure 1: Experimental structure of double orthogonal array design. 
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Suppose that the quality characteristicy of a product or process depends onpdesign factors 1, , px x… and qnoise 
factors 1, , qz z… . The experimental structure of the combined array design is presented by Figure 2. 
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Figure 2: Experimental structure of combined array design. 
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III. DUAL RESPONSE OPTIMIZATION 
3.1. Dual response in double orthogonal array design 
The data analysis consists of fitting a second order regression model of the form 

0 .y β ε= + + +T Tx x B xββββ                                                                                                       (1) 

In this model,x  is the vector of control factors,0β the intercept,ββββ  is a vector of coefficients of first-

order control factors, B is a matrix of coefficients of second-order terms of control factors and their interactions,
ε is a vector of residual errors of the regression model. The residual errors are assumed to be 2(0, )N σ . The 

responsey is the mean or the variance. 

After the estimate of the regression model ɵ � � �
0y β= + +T Tx x B xββββ is obtained, the mean response surface, 

and variance response surface are ɵ ( )Meany x and ɵ ( )Vary x , respectively. It is clear that both response surfaces are 

in terms of control factors. 
 
3.2. Dual response in combined array design 

Let the system be described by a variable( , )y x z that depends on a set of controllable factors (the vector

x ) and a set of random noise factors (the vectorz ). 
To explore the dependence ofy on x  and ,z the following model is assumed for the response, to 

accommodate control-by-noise interactions: 

0( , )y β ε= + + + + +T T T Tx z x x B x z x zββββ γγγγ ∆∆∆∆                                                                      (2) 

 
In this model, z is the random noise vector, théε s are independent and identically distributed 2(0, )N σ

random errors. It is assumed that ε andz  are independent. The constant0β , the vectors ,ββββ,γγγγ  and the matrices 

B  and ∆∆∆∆ consist of unknown parameters, and2σ is also usually unknown. It is also assumed that ( )E = 0z and 

that ( )Cov =z ΩΩΩΩ is known. 

 
After the model (2) is fitted to the data from the designed experiment, the corresponding adjusted 

response model is given by the expression 
� � � � ɵ �

0( , )y β= + + + +
TT T Tx z x x B x z x zββββ γγγγ ∆∆∆∆                                                                           (3) 

 
The two response surfaces are obtained analytically from (3). Both response surfaces are in terms of 

control factors. The mean response surface,�( )( , )zE y x z , and the variance response surface, �( )( , )zVar y x z , are 

respectively expressed as follows: 
�( ) � � �

0( , )zE y β= + +T Tx z x x B xββββ                                                                                          (4) 

�( ) ɵ �( ) ɵ �( )( , ) .
T

zVar y = + +
T

Tx z x xγ γγ γγ γγ γ∆ Ω ∆∆ Ω ∆∆ Ω ∆∆ Ω ∆                                                                              (5) 

 

In fact, calculating the expected value and the variance of �( , )y x z  with respect to the random vector z  leads to 
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and 
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3.3. Optimal dual response 
In the literature, various methods of optimization have been developed in order to obtain the optimal 

solution for the mean of the quality characteristic while minimizing the variance of the process. Mares and 
Domínguez [6] have summarized and compared those methods. Myers and Carter [7], and Myers and Vining [8] 
have introduced the method commonly used in the dual response surface approach. They first fit second order 
models to both primary and secondary response surfaces. In this case, they are respectively, the mean and variance. 
Then, they optimize the primary response subject to an appropriate constraint on the value of the secondary 
response, or vice versa. 
The optimal solution for the mean response is obtained by solving the problem: 
 

                

ɵ
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                                                             (6) 

and 
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Lin and Tu [9] argue that the methods of optimization in Equations (6) and (7) may be misleading, 

because the variance, which is to be minimized in the process, is forced to a fixed value. They propose a new 
procedure based on the mean square error criterion. 
 
The optimal solution for the variance model is the solution of the following problem: 
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R is the experimental region. 
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3.4. Economic impact of designed experiments 
In this section, we assess the economic impact of designed experiment using the quadratic loss function. 

The quadratic loss function (QLF) is a metric used to provide a better estimate of the monetary loss incurred by 
manufacturers and consumers when the product performance deviates from its target value (Meng et al., [10]). 
Then, the QLF is used to evaluate the economic impact of conducting an experiment on the process. 
 
The QLF is given by the expression 

2( ) ( )L y k y T= −                                                                                                                 (10) 

wherey is the quality characteristic of a product or process, T is the target and k is the quality loss coefficient. 

 
The expected quality loss (EQL) is 

[ ] ( )22( ) ( ) ( ) ( ) .Q E L y k E y T k E y T Var y = = − = − +
 

                                                  (11) 

By taking ( )E y µ= and 2( ) ,Var y σ=  the expected quality loss becomes 

( )2 2 .Q k Tµ σ = − +
 

                                                                                                       (12) 

Then the estimate of expected quality loss is: 

� �( ) �
2

2 ,Q k Tµ σ = − +  
                                                                                                       (13) 

where� yµ = and �2 2.sσ =  

 
The quality loss coefficient k is determined by first finding the functional limits or customer tolerance 

for .y The function limits are determined by 0.T ± ∆ These are the points at which the product would fail or produce 

unacceptable performance in approximately half of the customer applications. Let 0A  be the value of the quality 

loss function at 0 ,T ± ∆ that is 0( )L y A= at 0.y T= ± ∆ Substituting the functional limits 0T ± ∆ and the value of 

the quality loss into Equation (10), the quality loss coefficient is found to be 

( )
0

2

0

.
A

k =
∆

                                                                                                                            (14) 

3.4.1. Types of quadratic loss function 
While conducting an experiment, the designer is interested in reaching the target value or minimizing or 

maximizing the value of the quality characteristic. These three cases of quality characteristics are referred to as 
the nominal the best type (NTB), the smaller the better (STB) and the larger the better (LTB), respectively. 

Let 1 2( , , , )T
ny y y y= … wherey is the quality characteristic of a product or process. Table 2 shows the 

types of QLF and the average quadratic loss functions corresponding to each kind of quality characteristic of 
interest. More details on this section can be found in Fowlkes and Creveling [11]. 
 

Table 2: Types of QLF. 
Type QuadraticLoss EQL Estimate of EQL 
NTB   2( ) ( )L y k y T= −  ( )( )2 2Q k Tµ σ= − +   � ( )( )2

2Q k y T s= − +   

 STB   2( )L y k y=  ( )2 2Q k µ σ= +   � ( )2 2Q k y s= +  

LTB  /

2
( )

k
L y

y
=   

/ 2

2 2

3
1

k
Q

σ
µ µ

 
= + 

 
   �

/ 2

2 2

3
1

k s
Q

y y

 
= + 

  
 

In this table, 
( )

0
2

0

A
k =

∆
and ( )2/

0 0 .k A= ∆  

IV. OPTIMIZATION PROCEDURE 
4.1. Mean square error 

The mean square error is an effective criterion to combine the mean and the standard deviation responses 
in dual response optimization (Köksoy [12]). 
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The MSE function for the target is best case is given by 

�

ɵ ɵ
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2
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whereT is the target value. 
 
The MSE function for the smaller the better case is determined as follows: 

�
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The MSE function for the larger the better case is given by the expression 
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whereH is the highest plausible value of ɵ ( )Meany x  or �( )( , ) .zE y x z  

The optimization problem to solve is then 
�

.

MSE

R




∈

Minimize
       

Subject to x
                                                                                                   (18) 

 
The advantage of the MSE approach is that it does not require any constraints on the secondary response, 

and it can handle more realistic models and much more complicated models than polynomial. 
 
4.2. Desirability function 

The desirability function to simultaneously optimize multiple equations was originally proposed by 

Harrington [2]. The common approach is to transform each response �iy into an individual function id that varies 

over the range [ ]0,1 .
 

 
4.2.1. Individual desirability function 

Depending on whether a particular response�iy is to be maximized, minimized, or assigned to a target 

value, the corresponding desirability function, id , is defined as follows (Derringer and Suich [13]): 

 
• Individual desirability function for the nominal the best (NTB) case: 

� �
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• Individual desirability function for the smaller the better (STB) case: 
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• Individual desirability function for the larger the better (LTB) case: 
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The values of iL and iU are some acceptable lower bound and upper bound for �( ),iy x and iT  is its target 

value. The value of r can be chosen so that the desirability criterion is easier or more difficult to satisfy, indicating 

the weight of �( )iy x in the process. 

The functions in (19), (20), and (21) can be expressed in terms of ɵ ( )Meany x and ɵ ( )Vary x in the case of a 

DOAD, and in terms of �( )( , )zE y x z  and �( )( , )zVar y x z while dealing with a CAD. 

 
4.2.2. Overall desirability function 

For an  responses system, the overall performance of the system is determined by the overall desirability
D , which can be expressed as the geometric mean: 

1

1

.      
n n

i
i

D d
=

 =  
 
∏                                                                                                            (22) 

 
The optimization problem to solve is then 

.

Maximize
       

Subject to

D

R


 ∈ x

                                                                                                  (23) 

 
V. ILLUSTRATIVE EXAMPLE AND RESULTS 

5.1. Robust design conducted on a chemical process 
5.1.1. Problem statement and design 

The application is a chemical process adapted from Lawson [14]. In this process, side reactions create 
tars that result in lower product quality. When the level of tars produced is too high, yield decreases and further 
blending must be done with the finished product to decrease tar to a level that is acceptable to customers. The tars 
were thought to be created by reactions involving impurities in the most expensive reagent, A, and other impurities 
that accumulate in the recycle solvent stream. The proposed method to solving the problem was to experiment 
with the setting of process variables, or design parameters, to see if operating conditions could be found that were 
less sensitive to impurities in reagent A and the solvent stream (Lawson [15]). 
The objectives of conducting a designed experiment are to diminish the proportion of impurities and to reduce the 
variance of the process. 

The response variable is the proportion of impurities (in percentage). The factors involved in this 
experiment are 3 design factors and 2 noise factors. The design factors are 1:x  reaction temperature, 2:x the catalyst 

concentration, 3:x  the excess of reagent B. The noise factors are1:z purity of reagent A, 2:z  purity of the solvent 

stream. It is assumed that 1z  and 2z are uncorrelated and 
1 2

2 2 1z zσ σ= = so that the variance-covariance matrix, say 

cov( ) ,z = Ω is an identity matrix of dimension 2. Table 7(a) shows the coded levels of the factors and their 

corresponding real values. 
Experiments are performed at combinations of levels of the design factors defined by a Box- Behnken design. 

The combinations of levels of the noise factors are arranged in a 22  factorial design. This means that an 
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experiment for the 15 combinations of the control factors is realised, and each of these is repeated in each of the 
possible combinations of the noise factors. The results obtained from the experiment are shown in Table 7(b). 
 
5.1.2. Methods of analysis 

We recall that the aim of the experiment is to diminish the proportion of impurities. To obtain the optimal 
settings, we apply the optimization method based on Mean Square Error Criterion where the target value is set to 

0.T =  In addition, we apply the desirability function and the results obtained from both methods are compared. 
 
5.1.3. Results 
Case of double orthogonal array design 

From the results of the experiment given in annexes (Table 7(b)), the estimated mean response and 
estimated variance response are determined. Terms with nonsignificant effects are not considered. The fitted 
models for the mean and variance are the following: 

ɵ

ɵ ɵ( ) ( )

2 2
1 2 1 1 2 2

2 22 2
2 3 2 3

( ) 14.80 8.17 9.09 0.52 8.30 5.01

( ) ( ) 3.66 4.44 1.64 2.55 1.61 .

Mean

Var SD

y x x x x x x

y y x x x x

= − − + + +

= = − + + +

x

x x
 

• MSE approach 
The optimization problem to solve is: 

( ) ( )2 22 2 2 2
1 2 1 1 2 2 2 3 2 3

1

2

3

14.80 8.17 9.09 0.52 8.30 5.01 3.66 4.44 1.64 2.55 1.61

1 1

1 1

1 1.

Minimize   

Subject to         
                      

                      

x x x x x x x x x x

x

x

x

 − − + + + + − + + +

 − ≤ ≤


− ≤ ≤
 − ≤ ≤

  

We solve this optimization problem using the nloptr package (Ypma [16]). 
 
• Desirability function approach 

The lower and upper bound for the mean response are respectively given by ɵ
min( )Mean MeanL y= x and

ɵ
max( ),Mean MeanU y= x  where minx and maxx are respectively solutions of the following optimization problems: 

ɵ ( )Minimize
 

Subject to

Meany

R




∈

x

x
and

ɵ ( )

.

Maximize
 

Subject to

Meany

R




∈

x

x
 

Similar logic leads to ɵ
min( )Var VarL y= x  and ɵ

max( ),Var VarU y= x  where minx and maxx are respectively solutions of 

the optimization problems: 
ɵ ( )Minimize

 
Subject to

Vary

R




∈

x

x
and

ɵ ( )

.

Maximize
 

Subject to

Vary

R




∈

x

x
 

Table 3 displays the values obtained. 
 

Table 3: Lower bounds and upper bounds of individual desirability functions. 

: 7.12MeanL   : 1.72VarL   

 : 45.9MeanU  : 112.8VarU   

 
The individual desirability functions for the proportion of impurities and its variance are respectively 

ɵ( )
ɵ

ɵ
ɵ

ɵ

1 ( ) 7.12

( ) 45.9
( ) 7.12 ( ) 45.9

7.12 45.9

( ) 45.9

                             if              

       if   

 0                           if      

Mean

Mean
Mean Mean

Mean

y

y
d y y

y

 ≤

 −

= < < −
 ≥


x

x
x x

x

 

and 
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ɵ( )
ɵ

ɵ
ɵ

ɵ

1 ( ) 1.72

( ) 112.8
( ) 72 ( ) 112.8

1.72 112.8

( ) 112.8

                             if              

        if   1.

 0                            if      

Var

Var
Var Var

Var

y

y
d y y

y

 ≤

 −

= < < −
 ≥


x

x
x x

x

 

The overall desirability function is 

ɵ( ) ɵ( )( ) ( ) .Mean VarD d y d y= ×x x  

The optimization problem to solve is the following: 

1

2

3

1 1

1 1

1 1.

Maximize   

Subject to     
    

                      

                      

D

x

x

x


 − ≤ ≤
 − ≤ ≤
 − ≤ ≤

 

We adapt the desirability package (Kuhn [17]) to solve the previous optimization problem. 
 
Case of combined array design 
The fitted regression model is: 

� 2
1 2 1 2 2 1 2 2 1( , ) 14.79 8.17 9.09 8.30 5.01 3.91 1.20 3.30 .y x x x x x z z x z= − − + + + − −x z  

The mean and variance models are: 
�( )
�( )

2
1 2 1 2 2

2 2
1 2 1 2

( , ) 14.79 8.17 9.09 8.30 5.01

( , ) 16.73 25.81 7.92 10.89 10.89 .

z

z

E y x x x x x

Var y x x x x

= − − + +

= − + + +

x z

x z
 

• MSE approach 
The optimization problem to be solved is: 

( ) ( )22 2 2
1 2 1 2 2 1 2 1 2

1

2

3

14.79 8.17 9.09 8.30 5.01 16.73 25.81 7.92 10.89 10.89

1 1

1 1

1 1.

Minimize   

Subject to         
                      

                      

x x x x x x x x x

x

x

x

 − − + + + − + + +

 − ≤ ≤


− ≤ ≤
 − ≤ ≤

 

 
• Desirability function approach 

The lower and upper bound for the mean response are respectively given by �( )min( , )Mean zL E y= x z  and

�( )max( , ) ,Mean zU E y= x z  where minx and maxx are respectively solutions of the following optimization problems: 

�( )( , )Minimize
 

Subject to

zE y

R



 ∈

x z

x
and

�( )( , )

.

Maximize
 

Subject to

zE y

R



 ∈

x z

x
 

Similar logic leads to �( )min( , )Var zL Var y= x z  and �( )max( , ) ,Var zU Var y= x z  where minx and maxx are respectively 

solutions of the optimization problems: 
�( )( , )Minimize

 
Subject to

zVar y

R



 ∈

x z

x
and

�( )( , )

.

Maximize
 

Subject to

zVar y

R



 ∈

x z

x
 

Table 4 displays the values obtained. 
 

Table 4: Lower bounds and upper bounds of individual desirability functions. 

: 6.59MeanL   : 0.37VarL   

 : 45.4MeanU  : 56.4VarU   
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The individual desirability functions for the proportion of impurities and its variance are: 

�( )( )

�( )
�( )

�( )
�( )

1 ( , ) 6.59

( , ) 45.4
( , ) 6.59 ( , ) 45.4

6.59 45.4

( , ) 45.4

                                   if              

        if   

 0                                 if      

z

z

z z

z

E y

E y
d E y E y

E y

 ≤

 −

= < < −
 ≥



x z

x z
x z x z

x z

 

and 

�( )( )

�( )
�( )

�( )
�( )

1 ( , ) 0.37

( , ) 56.4
( , ) 0.37 ( , ) 56.4

0.37 56.4

( , ) 56.4.

                                      if              

         if   

 0                                    if    

z

z

z z

z

Var y

Var y
d Var y Var y

Var y

≤

−
= < <

−
≥

x z

x z
x z x z

x z   











 

The overall desirability function is 

�( )( ) �( )( )( , ) ( , ) .z zD d E y d Var y= ×x z x z  

 
The optimization problem to solve is the following: 

1

2

3

1 1

1 1

1 1.

Maximize   

Subject to     
    

                      

                      

D

x

x

x


 − ≤ ≤
 − ≤ ≤
 − ≤ ≤

 

 
The results of these optimization problems are in Table 5. 

Table 5: Results. 

 Design Statistic MSE  DF  

   Optx   (1, 0.1966171, 0.5093168)−  (1, 0.39689872, 0.50935614)−   

   ɵ ( )OptMeany x  7.19 7.63  

DOAD   ɵ ( )OptVary x  6.09 3.54  

   �MSE 57.8  61.7 

   Desirability  −   0.98528083 

   Optx  (0.99999917, 0.01634704, 0.42796747)−   (1, 0.18672138, 0.87745330)−  

   �( )( , )z OptE y x z  6.61 6.94  

 CAD  �( )( , )z OptVar y x z  1.94 0.711  

   �MSE 45.6  48.9 

    Desirability  −   0.99241997 

 
Looking at the optimal values obtained for the proportion of impurities and its variance, it seems that the 

combined array design performs better than the double orthogonal array design in this chemical process. 
In addition, regarding the method of analysis, if the main objective of the experiment is to reduce the 

proportion of impurities, the mean square error approach gives the best results. On the contrary, if the interest is 
the reduction of variability in the process, the desirability function seems to be the best method of analysis. 

When both the reduction of proportion of impurities and reduction of variability are of utmost importance, 
the selection of the design to be conducted and the method of analysis to be adopted will take into account the 
estimated value of the corresponding quality loss function. 



Robust Design Of Experiments: A Methodological Approach 

| IJMER | ISSN: 2249–6645 |                   www.ijmer.com                      | Vol. 6 | Iss. 11 | November 2016 | 11 | 

The quality loss function accounts for the loss in terms monetary funds incurred by the deviation from the 
target and high variability in the process. The concept of quality loss function is illustrated through the example 
presented in the following section. 
 
5.2. Economic impact of a robust design 

The chemical process is working in real conditions of 1 200,x = 2 28x = and 3 17x =  for the reaction 

temperature, catalyst concentration and excess of reagent B, respectively. A sample of 24 data is taken to verify 
the conditions of impurities. These refer to the mean and variance of the process. The sample values are: 
23.08, 23.01, 18.11, 20.14, 47.14, 23.20, 17.12, 18.93, 21.42, 22.72, 20.36, 24.99, 32.77, 25.26, 19.50, 23.14, 
23.09, 30.49, 35.72, 21.95, 26.43, 24.48, 34.21, 25.03 (Mares and Domínguez [6]). 
 
The corresponding sample mean and sample variance are 

24

1

1
25.1

24 i
i

y y
=

= =∑ and ( )
24 2

2

1

1
45.64,

23 i
i

s y y
=

= − =∑ respectively. 

 
Therefore, the estimate of the expected quality loss (EQL) for the quadratic loss is: 

� ( ) ( )2 22 25.1 45.64 675.65,processQ k y s= + = + =  

where 1.k =  This constant in practice plays a very important role because it indicates the overall cost of poor 
quality. 
We now calculate the estimate of the expected quality loss of the optimal process conditions as given by Table 5. 
 
The estimate of the expected quality loss of the designed experiment is defined as 

�

ɵ ɵ

�( ) �( )

2

2

( ) ( )

( , ) ( , )

                    (Case of DOAD)

       

      (Case of CAD)

Opt OptMean Var

doe

z Opt z Opt

y y
Q

E y Var y

  + 
= 

  +
 

x x

x z x z
 

 
The overall difference between the estimate of the expected quality loss of the real process and the 

estimate of the expected quality loss of the optimal process conditions of the designed experiment, this is 
� �

process doeQ Q∆ = − , indicates the expected gain incurred by conducting the process in its optimal conditions. Table 

6 presents the results. 
 

Table 6: Economic impact of designed experiment. 

Approach  Economic impact   DOAD  CAD 

Mean Square Error   � doeQ  57.78   45.63 

   ∆  617.86   630.02 

Desirability Function   � doeQ  61.75  48.87  

  ∆   613.89  626.77  

 

We can see that the estimate of the expected quality loss of the designed experiment, � ,doeQ  ranges 

between 45.63and 61.75monetary units, while the overall difference that indicates the gain incurred by 
conducting the process under the optimal conditions, ,∆  ranges between 613.89and 630.02monetary units. 
 

VI. GENERAL CONCLUSIONS 
This paper presents a methodological approach for conducting robust designs and analyzing the data 

obtained. An overview of two approaches used to conduct robust design and analyse the data is provided. We 
have presented the Taguchi approach commonly known as double orthogonal array design and the combined array 
design. The mean square error criterion and desirability function have been used as optimization procedures to 
finding the optimal conditions of the process. 

To highlight the practical implementation of the double orthogonal array design and combined array 
design, we have given an illustrative example on a chemical process where the objectives are to diminish the 
proportion of impurities and to reduce the variance of the process. Looking at the optimal values obtained for the 
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proportion of impurities and its variance, it seems that the combined array design performs better than the double 
orthogonal array design. 

Focusing on the proportion of impurities, the mean square error approach gives the best results, and when 
the main interest is the reduction of variability in the process, the desirability function seems to be the best method 
of analysis. 
 
When both the reduction of proportion of impurities and reduction of variability are of utmost importance, the 
selection of the design and the method of analysis to be used must take into account the estimated value of the 
quality loss function. Based upon the quality loss function, we have given an illustrative example that highlights 
the practical importance of conducting a designed experiment in order to reduce the overall cost of the production. 

In this example, the estimate of the expected quality loss of the designed experiment, � ,doeQ ranges between45.63

and61.75monetary units, while the overall difference that indicates the gain incurred by conducting the process 
under the optimal conditions,,∆ ranges between 613.89and 630.02monetary units. 
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VII.  ANNEXES 
Table 7: Data for the chemical process problem. 

(a) Coded and real levels of the factors. 
  

   Levels   
Design factors   -1-1-1-1  0  1 

 1x  180   210 240  

 2x  25  30 35  

3x   12   15 18  

Noise factors  -1-1-1-1  1    

 1z  10  20    

 2z  30  40    
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(b) Experimental results of the chemical process. 

 

      1z  1 1−  1−  1    Standard 

 Experimental run 1x  2x  3x   2z  1−  1−  1 1 Mean   deviation 

1  1−  1−  0    57.81 37.29 42.87 47.07 46.26 8.68  

2   1 1−  0    24.89 4.35 8.23 14.69 13.04 8.98  

3   1−  1 0    13.21 9.51 10.10 11.19 11.00 1.63  

4   1 1 0    13.29 9.15 10.30 11.23 10.99 1.80  

5   1−  0  1−    27.71 20.24 22.28 24.23 23.62 3.18  

6   1 0  1−    11.40 4.48 5.44 8.23 7.39 3.11  

7   1−  0  1   30.65 18.40 20.24 24.45 23.44 5.44  

8   1 0  1   14.94 2.29 4.30 8.49 7.51 5.59  

9   0  1−  1−    42.68 22.42 21.64 30.30 29.26 9.76  

10   0  1 1−    13.56 10.08 9.85 11.38 11.22 1.70  

11  0  1−  1   50.60 13.19 18.84 30.97 28.40 16.55  

12   0  1 1   15.21 7.44 9.78 11.82 11.06 3.29  

13  0  0  0    19.62 12.29 13.14 14.54 14.90 3.28  

14   0  0  0    20.60 11.49 12.06 13.49 14.41 4.21  

15   0  0  0   20.15 12.20 14.06 13.89 15.08 3.49  

 
 

 
 

 
 
 
 
 


