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I. INTRODUCTION 

 In the packaging industry, corrugated cardboard plates (cartons) are used widely. It is essential to 

predict the mechanical behavior of such materials. The numerical modeling of this kind of orthotropic 

composite plates by shell elements is too tedious and time consuming. Many homogenization models were 

obtained by analytical, numerical and experimental methods [1-10]. By using some FE models and commercial 

FE software, the mechanical behaviors of corrugated cardboard were studied by other authors [11-12]. Many 

studies on the problems of tension, bending and shear, few studies on the problems of torsion, but work on the 

crushing problems are rare or nonexistent in the literature. 

 The corrugated cardboard is produced by a converting process in which three or more layers are 

laminated together. The flat layers are called liners and the corrugated cores are referred to as flutes (Fig. 1). 

Corrugated cardboard is one of the most used packaging materials to make boxes or interlayers for goods 

transport. The manufacturing process gives three characteristic directions: the machine direction (MD), the cross 

direction (CD), and the thickness direction (ZD). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Two stages of homogenization 

  
 This paper presents an efficient homogenization model for the mechanical behavior of a corrugated 

cardboard composed of three or five layers (single or double flute). Since the flute varies continuously through 

the thickness, it is difficult to transform this 3D shell structure into a 3D solid immediately. So we propose to 

carry out the homogenization in two stages (Fig. 1): 1) the global rigidities of the corrugated cardboard are 

analytically calculated and this 3D structure is replaced by an equivalent homogenized 2D plate; 2) to take into 
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account the elasto-plastic behavior through the thickness, we retransform the 2D plate into an orthotropic solid 

composed of several layers and identify the material parameters by using the previous global rigidities. The 

elasto-plastic simulations and experimental tests on the crushing and bending of a round corrugated cardboard 

plate by system of mortar-pestle will be studied in this article. This 3D solid homogenization model 

(implemented into Abaqus software) is quite fast but gives very close results compared to the 3D modeling 

using the Abaqus shell elements and experimental results. 

 

II. HOMOGENIZED MODEL FOR CORRUGATED CARDBOARD  

 A 3D geometrical modeling of the liners and the flutes of the corrugated cardboard is a very tedious 

and time-consuming task. In our homogenization model, a corrugated cardboard panel is replaced by a 2D plate. 

Instead of using a local constitutive law (relating the strains to the stresses) at each material point, the 

homogenization leads to global rigidities (relating the generalized strains to the resultant forces) for the 

equivalent homogeneous plate. 

According to the theory of laminated plates, and by integrating the stresses through the thickness (z) 

and then along the MD direction (x), we obtain the following generalized constitutive law [5]:  
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where {N}, {T} and {M} are the internal forces and moments; [A], [D], [B] and [F] are the stiffness matrices 

related to the membrane forces, the bending-torsion moments, the bending-torsion-membrane coupling effects 

and the transverse shear forces respectively; {εm} is the membrane strain vector, {κ} is the curvature vector and 

{γs} is the transverse shear strain vector. The terms of the stiffness matrices can be calculated as follow: 
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 The corrugated cardboard is more complex than a laminated plate because of the fluting cores and the 

cavities between the three liners. Consequently some global effective stiffnesses in the matrix (1) obtained by 

the theory of laminated plates should be modified [5, 8, 10]. 

 Considering a double corrugated cardboard and using a, b, c, d, and e to represent the lower liner, the 

lower flute, the intermediate liner, the upper flute and the upper liner respectively (Fig. 2). The geometry of each 

flute is defined by the following equations: 
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 To homogenize a corrugated double wall panel, we consider a representative volume element (RVE). 

This volume must be sufficiently small relative to the dimensions of the entire panel. According to the 
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periodicity of the groove, we take a sinusoidal period of the groove as the characteristic length of the RVE. We 

calculate the mean or homogenized mechanical properties of the RVE and use them to model the 3D structure 

by the homogenized 2D plate. The idea is to cut the RVE into small vertical slices (thickness dx) and to perform 

the integration according to the thickness (or the sum of the contributions of the 5 layers) on each slice. It can be 

seen that the piece of groove in the slice dx is inclined and that the mechanical properties of the groove obtained 

experimentally are valid only in its inclined plane, so it is better to work in the inclined local coordinates. Once 

the overall stiffnesses of each slice are obtained by integrating the thickness, homogenization along x is 

performed to calculate the average stiffness of all tranches over a period: 
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Fig. 2Geometry of a double corrugated cardboard 

2.1 Traction and bending stiffnesses 

Since the vertical position (z) of a groove portion (ds) is a function of x and a thickness over its vertical 

section is a function of the angle of inclination of the groove x (Fig. 2), the equation (2) becomes [10]: 
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2.2 In-plane shear stiffness 

We consider a corrugated flute having a length of semi period P/2 along x and a width b along y. A 

shear force Nxy (per unit width along y) applied on the MD section implies a transverse displacement v in y 

direction. If we unfold the flute to a flat plate, the shear stress τxy can be easily calculated [8]: 
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xyG  is the shear modulus of the flute, 
ft is its thickness and l is its curvilinear length defined by: 
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where 
fh is the fluting height (see Fig. 2). 

Thus we obtain the in-plane shear behavior of the flute: 
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We can demonstrate that the average of shear force on the CD section is equal to the shear force on the 

MD section. In fact, according to the reciprocity theorem, the shear stress flow along the flute on CD is equal to 

that on MD (
yx xy xy N / t const.    ); the component along x of this flow gives the shear force Nyx: 
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So the relationship Nxy = Nyx on MD and CD is proven and shear stiffness is unique even if the two sections are 

very different. 

Finally, for a cardboard with double flutes, the shear stiffness in the plane of the cardboard is given by the sum 

of the rigidities of five layers: 
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where the indices of a, b, c, d, e represent five layers respectively. 

2.3 Transverse shear stiffness on CD section 

It is difficult to directly determine the rigidity of transverse shear on the CD section because of the 

coupling of bending and transverse shear. According to the reciprocity theorem, Nordstrand et al. [7] proposed 

to replace the transverse shear under the shear force Ty (along z) by a shear on the thickness under a force along 

y.The shear stiffness on the total thickness for double corrugated cardboard is obtained as follows: 
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where h is the total height of the cardboard,  is a coefficient taking into account the effect of in-plane shear in 

the middle flat layer t
c
. 

2.4 Transverse shear stiffness on MD section 

It is still difficult to directly determine the rigidity of transverse shear on the CD section. So the 

transverse shear under the shear force Tx on the MD section (along z) is replaced by a shear on the thickness 

under a force along x. In fact, this shearing problem is not really a shearing problem of five layers; it is 

dominated by the local bending of three flat layers and especially by the local bending of the two flutes. Thus 

this shearing problem becomes a bending problem of the flutes and liners which was solved by using the curved 

beam theory [7]. Assuming a double corrugated cardboard is the superposition of two single corrugated 

cardboards, the transverse shear stiffness relative to Tx for a double corrugated cardboard is obtained as follows: 

1
b d

* 2

11 zx b* d*

zx zx

h h
F G h h

G G



 
   

 
         (13) 

where 
b*

zxG  and 
d*

zxG  are the apparent shear modulus for two single corrugated cardboards calculated by using 

the analytical formulas developed by Nordstrand et al. [7] and implemented into our homogenization model. 

2.5 Torsion stiffness on CD and MD sections 

 For the torsion stiffness, Abbès B. and Guo Y.Q. [6] have theoretically demonstrated that the torsion of 

an orthotropic plate could be decomposed into two beam torsion problems, thus the torsion stiffness of a 

corrugated cardboard has been obtained: 
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where GJMD and GJCD are the beam torsion stiffnesses on MD and CD sections respectively (GJMD<<GJCD for 

corrugated cardboards), L is the length along x and B is the width along y (see Fig. 1). 

It is relatively easy to calculate JCD for a cardboard with a single flute by considering it as a thin-wall closed 

section in which the contribution of the flute in torsion is negligible [6]. For the double corrugated cardboard, 

two flutes and the middle flat layer play an important role [8]. 

We have done the exact calculations by using the Bredt theory on three types of CD section, but in 

general, it is not easy to automatically find all adjacent cells and their common border lengths with the 

considered cell [8]. From these results, we find that the relative flux distribution is constant and independent 

along the widths and three liners constitute a closed shear flux loop and two flutes constitute another one. 

Therefore, we propose to divide the corrugated cardboard into two parts. The first part is composed of three flat 

liners and two additional vertical walls, leading to two closed cells. The second part is composed of two flutes, 

leading to a single closed cell. Finally, the torsion rigidity of a homogeneous plate can be obtained as follows:  
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where Sbc is the surface enveloped by the inferior flute and internal liner on a period P
b
; Scd is the surface 

enveloped by the internal liner and superior flute on a period P
d
; and l

b
, l

d
 are the curvilinear lengths of the two 

flutes on a period. 



A 3D Analytic Homogenization Model for the Orthotropic Plates with the Type of Double… 

| IJMER | ISSN: 2249–6645 |                        www.ijmer.com                  | Vol. 6 | Iss. 11 | November 2016 | 46 | 

III. HOMOGENEOUS SOLID WITH THREE LAYERS AND THREE MATERIALS 

The homogenization model developed in the previous sections provides twelve global stiffnesses (A11, 

A12, A22, A33, B11, B12, B22, B33, D11, D12, D22, D33) of the homogenized equivalent plate. However, this model 

does not simulate the crush of an interlayer between two bottles for example; this crush gives an impression that 

prevents sliding of bottles on the interlayer. Therefore, we propose to transform this plate into a solid composed 

of three layers (layers a, c, e) consisting of three different materials in order to take into account not only the 

behavior of shell but also the behavior of compression through the thickness of the corrugated cardboard (Fig. 

1). For this solid composed of three layers, the laminate theory is used and results in twelve equations with 

twelve unknowns: 
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where A11, ..., D33 are the global rigidities of the homogenized plate obtained by our homogenization model (H-

2D-model), t
a
, t

c
, t

e
 are the thicknesses of the three layers imposed by the user; 

a e
11 33Q ..., Q,   are the twelve 

unknowns needed to find. 

We can rewrite the twelve equations above in the following matrix form: 
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The resolution of these four systems of equations allows us to obtain the twelve unknowns. For each layer (a, c 

and e), we can calculate the parameters of three materials as follows: 
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To take into account the crushing of the flutes in the thickness of corrugated cardboard, the material is assumed 

elasto-plastic in the z direction in which only the constraint intervenes such that: 



A 3D Analytic Homogenization Model for the Orthotropic Plates with the Type of Double… 

| IJMER | ISSN: 2249–6645 |                        www.ijmer.com                  | Vol. 6 | Iss. 11 | November 2016 | 47 | 

Yield criterion: zf             (20) 

Hardening law:  0 0

n

pE             (21) 

where 
0 0, ,E n  are the parameters of the elasto-plastic behavior used. The model thus described has been 

implemented in software Abaqus/Explicit with a user program VUMAT. 

IV. RESULTS AND DISCUSSION 

To validate our homogenized model (H-3D-model), we carried out the experiment and numerical 

simulation of crushing and bending of corrugated cardboard plate placed between the mortar and pestle system 

assumed rigid with Abaqus (Fig. 3). The diameter of the plate, pestle, and mortar are 168 mm, 34 mm, and 60 

mm respectively. The coefficient of friction between plate and mortar-pestle system is assumed 0.1. 

 

Fig. 3 Crushing and bending test and boundary conditions of the cardboard plate 

We fix the mortar and apply a vertical force on the pestle. As corrugated cardboard plate is 

symmetrical, it is better to simulate a quarter of the plate to save computing time, the boundary conditions are 

X-symmetry and Y-symmetry on two sides of a quarter of the plate. The dimensions of the cardboard are given 

in Fig. 4 and the properties of all papers of the cardboard are given in Table 1.  

 

Fig. 4 Geometry of CD section for the double corrugated cardboard 

The elastic properties of the solid equivalent determined by using equations (17), (18), and (19) are 

given in Table 2. To obtain the law of elasto-plastic through the thickness of the cardboard using equations (20) 

and (21), we simulate the crushing of a cardboard with Abaqus 3D shell elements. The results are also given in 

Table 2. 
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Table 1 Properties of papers forming corrugated cardboard 

 
E1(MPa) E2(MPa) 12 G12(MPa) 

Paper 1 2483.3 1322.7 0.3485 488.3 

Paper 2,2’ 720.8 739.8 0.4387 274.8 

Paper 3 1887.4 693.1 0.4777 535.5 

Paper 4 2124.5 1027.0 0.2176 622.8 

 

Table 2 Properties of equivalent solid 

 Layer a Layer c Layer e 

Thickness (mm) 1.7 1.6 1.7 

E1 (MPa) 106.3078 1058.9133 287.4231 

E2 (MPa) 55.1555 685.303 162.1973 

E3 (MPa) 17.365 17.365 17.365 

12 0.0251 0.2542 0.3544 

G12 (MPa) 37.0374 336.2898 48.891 

G13 (MPa) 9.4 9.4 9.4 

G23 (MPa) 12.637 12.637 12.637 

E0 (MPa) 0.7791 0.7791 0.7791 

n 0.0037 0.0037 0.0037 

0 0.0292 0.0292 0.0292 

 

Fig. 5 Iso-values of displacement for the double corrugated cardboard 

 

3D Carton 3D Solid 
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Fig. 6 Crushing and bending of cardboard 

For the Abaqus 3D simulation, the corrugated cardboard is discretized into 50894 S4R shell elements, 

52286 nodes. For the 3D solid simulation using Abaqus through the user subroutine VUMAT, the solid is 

discretized into 10098 C3D8 hexahedral elements and 15831 nodes. 

The deformed shapes together with the iso-values of displacement of the panel after loading obtained 

by 3D shell Abaqus and our 3D solid model simulations are shown in Fig. 5. We observe that the Abaqus 3D 

simulation is very time consuming using 9926 s CPU time, but our 3D solid homogenization model simulation 

is very fast, using only 328 s (30 times faster). Fig. 6 shows the experimental and numerical curves of force–

displacement for the double corrugated cardboard. We note that the 3D shell Abaqus and 3D solid model 

simulations give very close crushing and bending behaviors and give the results very close with the 

experimental results. The comparison demonstrates that the proposed 3D solid analytic homogenization model 

for the double corrugated core sandwich plates is quite accurate and efficient, and it can be used to simulate 

large-scale complex packaging systems and structures. 

V. CONCLUSIONS 

In this article, a 3D complete analytical homogenization model for the orthotropic composite plates 

with the type of double corrugated cardboard has been developed allowing simulating the non-linear behavior 

through the thickness of corrugated cardboard without modeling the 3D flutes. This model has been 

implemented in Abaqus/Explicit through the user subroutine VUMAT. Our 3D solid model was validated by 

experimental tests and simulations on the crushing and bending of cardboard with double corrugated core and 

showed that it was more effective than the 3D shell model in Abaqus. The FE simulation results of two models 

agree well with the experimental results. 
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