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ABSTRACT:- Necessary and Sufficient conditions for the sums and products of q-k-EP matrices of rank
r to be g-k-EP in minkowski space m are discussed. Also equivalent conditions for the product of g-k-
EPblock matrices to be q-k-EP are established.As an application it is shown that the sum and parallel sum
of parallel summable g-k-EP matrices are g-k-EP and we have shown that a block matrix in Minkowski
space can be expressed as a product of q-k-EP matrices in m.
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l. INTRODUCTION

Throughout we shall deal with H,,, , the space of nxn complex matrices. Let H, be the space of
complex n - tuples. For A € H,,, , let AT and A* denote the transpose, conjugate transpose of A. Let A~ be a
generalized inverse (AA"A = A) and A be the Moore-Penrose inverse of A [5]. A matrix A is called EP. if
p(A)=r and N(A)=N(A*) or R (A)=R(A*) where p(A) denotes the rank of A; N(A) and R(A) denote the null
space and range space of A respectively. Through let ‘k' be a fixed product of disjoint transpositions in
Sy={1,2,...,n} and K be the associated permutation matrix. A matrix A =(a;;) € Cyy, is said to be k-hermitian if
aj=aAk(j)kq) forij=1,2,...,n. Atheory for k-hermitian matrices is developed in [1].

For x = (X4,Xy,,..,X,)T € H,. Let us define the function, K(x) = (k1) Xk(2), = Xkm)) T € Hy. A
matrix A € H,,,, said to be g-k-EP if it satisfies the condition Ax =0 <A*Kk(x)=0 or equivalently N(A)=N(A *K).
In addition to that, A is g-k-EP KA is EP or AK is EP and A is g-k-EP A * is g-k-EP. Moreover, A is said to be
g-k—EP,, if A is g-k-EP and of rank r. For further properties of q-k-EP matrix one may refer[4]. Let G be the
Minkowski metric tensor defined by Gx=(x;, =X, —X3, ..., —X,)" for (X;,Xp,,...,X,) € H,. Clearly the
Minkowski metric matrix.

Minkowski inner product on C, is defined by (u,v)=[u,Gv], where [.,.] denotes the conventional Hilbert
space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as m.
With respect to the Minkowski inner product, since (Ax,y)=(x, A~y),A =GA*G is called the Minkowski adjoint
of the matrix A € H,,, and A* is the usual Hermitian adjoint. In this paper we give necessary and sufficient
conditions for sums ofg-k-EP matrix to be g-k-EP. As an application it is shown that sum and parallel summable
g-k-EP matrices are g-k-EP.

1. SUMS OF K-EP MATRICES
Lemma: 2.1
Let Ai, Aq,,....,Aq, € Hyy, and let A=Y, A; . Consider the following conditions:
@ N(A) € N(A)fori=1,2,...,m;
(b) N(A) = NiZ; N(A);

©  pA)= p(‘?);
Am

(d) i=1 eril Ay Aj =0;

(& p(A) =3I, p(A).

Then the following statements hold:

M Conditions (a) , (b) and (c) are equivalent.

(i) Condition (d) implies (a), but (a) does not implies (d).

(iii) Condition (e) implies (a), but (a) does not implies (e).
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Proof:[11]

() (@)=b)=(o):

N(A) € N(A)) foreachl =N(A) € nN(A)).

Since N(A) € N(ZA;))2N(A;)NN(A,) ...AN(A,,), it follows that N(A)oN(A,).
Always NiZ; N(A;) € N(A). Hence N(A) = NiL, N(A));

Thus (b) holds.

Now, N(A) = N™, N(A)) = N <A1>
A

m
A1

Therefore, p(A) = p( ) and (c) holds.

A
Conversely, p(A) = p (Al) and N (Al) = N™, N(A)SN(A)=N(A) = N, N(A)

Anp Ap

And (b) holds.
Hence N(A) € N(A;) for each i and (a) holds.
(ii) (d)= (a):
SinceYi. Ai"Aj =0
A'A = (ZA)"(2ZA)

=(ZA;)(ZA)

= XA A
N(A)=N(A"A) = N(ZA;"A)

()
+{(2)

=N(A;)PN(A,) ...AN(AL)
=NiZ; N(AD.
Hence N(A) € N(4;) foreachi and (a) holds.
(a)»(d):
Let us consider the following example,
1 1

_ (0 -1
LetA; = (11 1)Oand AZ—(_1 0 )
Al + A2 = (0 1)
(iii)(e) =(a):
If rank is additive, that is p(A) = Xp(A;), then by [3],
R(A)DMR(A;) = {0}, i = N(A) < N(4) for each i and (a) holds.
(a)# (e): Consider the example,
_(0 0 (0 0
LetA; = (1 0) and AZ—(2 0)

A1+A2=((3) g).

Here, N(A; + A,)cN(A;) and N(A; + A,)cN(A,).
But p(A; + A) # p(A1) + p(Az).
Theorem 2.2
Let Ay, A,, ..., A, eH,,, be g-k-EP matrices. If any one of the conditions (a) to (e) of Lemma 2.1
holds, then A =}, A, is q-k-EP.
Proof:
Since each A; is g-g-k-EP, N(4;) = N(A;"K) for each i.
Now, N(A)cN(A;) foreachii
=N(A)= N, N(A;"K)N(A'K)
And p(A) = p(A"K). Hence N(A)=(N(A*K). Thus A is g-k-EP. Hence the theorem.
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Remark 2.3
In particular, if A is non-singular the conditions automatically hold and A is q-k-EP. Theorem 2.2 fails

if we relax the conditions on the A’s.

Example 2.4
: _(0 0 (1 0 : . (01
ConS|dler g\l = (1 0) and Az—(o 0), then the associated permutation matrix K—(1 0).
Thus, KA, = (0 0) is EP.
Therefore, A, is q-k-EP.
KA, = (2 g) is not EP. Therefore A, is not g-k-EP.
/10 S B
A+ A, = (1 0) and K(A; + Ay) = (1 0) which is not EP.

Therefore, (A; + A;) is not q-k-EP. However,
N(A; + Az)cN(A; K)SN(A;) and N(A; + A;)SN(A; " K)SN(Ay).
Moreover, p ((:;)): p(A1 + Ay).

Remark 2.5
Theorem 2.2 fails if we relax the condition that A;’s are q-g-k-EP.

1 0 0 0 1 o0 01 0
For,letA; ={0 0 O0],A,=[0 —1 0]and letthe associated permutation matrixbe K=({0 0 1 |.
0 -1 0 1 0 O

0 0 0
KA, =[0 -1 0]is notEP.

1 0 0
Therefore, A, is not g-k-EP.

0 0 0
KA, =0 —1 0]is notEP.

1 0 0
Therefore, A, is not g-k-EP.
1 1 0 0 -1 0
Al + A2 = (0 —1 0) and K(Al + Az) = (1 —1 O>Whlch iS nOt EP
1 -1 0 1 1 0
Therefore, (A; + A;) isnot g-k-EP. But A;"A, + A,"A; = 0.
Remark 2.6

The conditions given in Theorem 2.2 are only sufficient for the sum of g-k-EP matrices to be g-k-EP,
but not necessary is illustrated in the following example.
Example 2.7
1 0 0 -1

3 _ . . o0 1
Let A; = (0 1) and Az—(_1 0 ) and the associated permutation matrix K—(1 0). A; and A,

are k-EP,. The conditions in Theorem 2.2 does not hold. However (A; + A,) is g-g-k-EP.
Remark 2.8
If A; and A, are g-k-EP matrices, then by Theorem 2.4(p.221,[4]),
A;" = H;KA;Kand A," = H,KA,K where H; and H, are non-singular nxn matrices. If H; = H, , then
A+ A, =H K(A; + A)K = (A + Ay)* = HiK(A; + A))K=A; + A, is g-k-EP.
If (H; — H,) is non-singular, then above conditions are also necessary for the sum of g-k-EP matrices to be
g-k-EP is given in the following theorem.
Theorem 2.9 [11]
Let K be the permutation matrix associated with the fixedntransposition ‘k’. Let A;* = H;KA,;K and
A," = H;KA,K such that (H; — H,) is non-singular. Then A; + A, is g-k-EP if and only if
N(A; + A,)cN(A;) for some (and hence both) ie{1,2}.
Proof: Since A;" = H;KA;K and A," = H,KA,K, by Remark 2.8, A; and A, are g-k-EP matrices. Since,
N(A; + A;)cN(A,) by theorem 2.2, (A, + A,) is g-k-EP. Conversely, let us assume that A; + A, is g-k-EP. By
Remark 2.8, there exists a non-singular matrix G such that
(A +Ay)* = GK(A; +A)K
:>A1* + Az* = GK(A1 + Az)K
—H;KA;K + H,KA,K = GK(A; + A,)K
:>(H1KA1 + HzKAz)Kz GK(A1 + Az)K
=(H;K — GK)A; = (GK — H;K) A,
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:>(H1 — G)KA1 = (G — Hz)K AZ
=LKA;=MKA,, where L=(H; — G), M=(G — H,)
NOW (L+M)(KA1) = LKAl + MKAl
= MKA, + MKA,
= MK(Al + Az)
And (L+M)(KA2) = LK(Al + Az)
By hypothesis, L+M = H; — G +G-H,= H; — H, is non-singular.
Therefore, N(A; + A,)cN(A;) and N(A; + A,)<N(A,). Hence the theorem.
Remark 2.10
The condition H; — H, to be non-singular is essential in Theorem 2.9 is illustrated in the following
example.

Example 2.11

Let A, = ((1) (1)) and AZ:(_O1 _01) are both k-EP matrices for the associated permutation matrix,

K:(g é) Further A;" = A; = KA;Kand A," = A; = KAjK=H; =H; =L

(A +Ay) = (_11 ‘11) is also g-k-EP.
But N(A; + A,)ZN(A,) or N(A; + Ay)ZN(A,). Thus Theorem 2.9 fails.

I1. PARALLEL SUMMABLE Q-K-EP MATRICES

In this section we shall show that sum and parallel sum of parallel summable (p.s) g-k-EP matrices are
g-k-EP. First we shall give the definition and some properties of parallel summable matrices as in (p.188, [5]).
Definition: 3.1

A;and A, are said to be parallel summable (p.s) if N(A; + A;)cN(A,) or N(A; + Ay)*eN(A,") or
equivalently N(A; + A,)cN(A,) and N(A; + A))*eN(A,") .
Definition: 3.2

IfA;and A, are parallel summable(p.s) then parallel sum A;and A, denoted by A; %A, is defined as
AiEA, = A (A + Ay)"A;. The product A;(A; + A;)™A; is invariant for all choices of generalized inverse
(A1 + Ay)” of (A1 + A,) under the conditions that A;and A, are parallel summable(p.188,[5]).
Properties: 3.3

Let A;and A, be a pair of parallel summable(p.s) matrices. Then the following hold:
P.1 A A=A, FA,
P.2 A and A," are p.sand (A FA)*=A " A,
P.3 If U is non-singular then UA; and UA, are p.s and

(UA;£UA,)=U(A, £4),)
P.4 R(A;FA,)=R(A;) NR(A,)

N(A; EAZ_)z R(A;) +R(A7)
P.5 (A1EA;)+A3=A1 (A, 1A3)
Lemma: 3.4[11]

Let A;and A, be g-k-EP matrices. Then A;and A, are p.s if and only if
N (A; + A;)cN(A,) for some (and hence both) i€ {1,2}.
Proof:

Let Ajand A, be a pair of parallel summable(p.s) matrices
=N (A; + A,) = N(A,) follows from the Definition 3.1, conversely if N (A; + A,)cN(A,), then
N (KA; + KA,)c N(KA,). Also N (KA; + KA,)cN(KA,).
Since A and A,are g-k-EP matrices, KA;and KA,are EP matrices,
N (KA; + KA,)cN(KA;), and N (KA; + KA,)cN(KA,). Therefore
KA; + KA, is EP.
Hence N (KA; + KA,)" = N (KA; + KA))

= N (KA;) N N(KAy)
= N (KA;)" N N(KAp)"

Therefore, N (KA; + KA,)*cN(KA;)* N (KA; + KA,)*cN(KA,)*
Also N (KA; + KA,)c N(KA,)
= N (K(A; + Az)= N(KA)
= N (A; + A;)c N(Ap)
Similarly, N (A; + A,)'c N(A)".
Therefore, Ajand A, be a pair of parallel summable(p.s) matrices. Hence the theorem.
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Remark: 3.5

Lemma 3.4 fails if we relax the condition that Ajand A,are g-k-EP matrices. Let A; = (

(1 0 . . (0 1
Az—(o 0). Let the associated permuatation matrix K —( )

1 0

A, is g-k-EP. A, is not q-k-EP.
N ((A; + Az)eN(Ap) and N ((A; + Ax)SN(A),
But N (A; + A,)*@N(A))* N (A; +A,)*zN(Ay)".
Hence A;and A,are not parallel summable(p.s) matrices.
Theorem: 3.6

LetA;and A, be a pair of parallel summable(p.s) g-k-EP matrices. Then
AixA, and (A, + A,) are g-k-EP.
Proof:

0 0

1 0) and

Since A;and A, be a pair of parallel summable(p.s) g-k-EP matrices, by Lemma 3.4,
N (A; + A;)cN(A;) and N (A; + A,)N(A,). Hence,
N (K(A; + Az)eN(KA;) and N (K(A; + A)=N(KAz)
N (KA; + KA;)c N(KA;) and N (KA; + KA;)c N(KA;)
Therefore, KA; + KA,=K(A; + A;) is EP. Then A; + A, is g-k-EP. Since Aj;and A, be a pair of parallel
summable(p.s) g-k-EP matrices, KA; and KA, are p.s EP matrices.

Therefore,

R(KA;)" = R(KA;) and R(KA;)" = R(KA;)

R(KA; £KA;)" = R((KA1) £ (KA,)") [ByP.2]
=R(KA1)" NR(KA,)* [By P.4]
=R(KA;) n R(KA;)[since KA;and KA,are EP].
=R(KA;£KA;)

Thus, KA; £KA,is EP =K(A,;XA,) is EP=(A;£A,)is q-k-EP. Thus K(A; £A,) is g-k-EP whenever A and A,
are g-k-EP. Hence the theorem.
Corollary:

Let Ajand A, are g-k-EP matrices such that N(A; + A;)cN(A,). If Az is g-k-EP commuting with both
AqandA,, then A3 (A; + Ay) and A3 (A1 1A,)=(A3A,1A3A,) are g-k-EP.
Proof:

Ajand A, are g-k-EP with N(A; + A;)c N(A,).
By Theorem 2.2, (A; + A,)is g-k-EP. NowKA;, KA, and K(A; + A,) are EP. Since A; commutes with
Aq,Ayand (A + Ay),KA; commutes with KA;,KA,and K(A; + A,) and by Theorem (1.3) of [2],
K(A3A1),K(A3A,) and KA3(A; + A,) are EP. Therefore, (A3A4), (A3A;) and Az(A; + A;) are g-k-EP. Noe by
Theorem 3.6, (A;A; £A3A,) are g-k-EP By P.3(Properties 3.3).
KA3(A; iAz)_zK(A3A1 TA3A;). _ B _
Since (AzA1+AzA,) is g-k-EP. K(A3A;+AzA,) iSsEP =KA3(A11A,) iSEP. A;(A;1A)) is g-k-EP.
Hence the corollary.

V. PRODUCT OF Q-K-EP MATRICES IN MINKOWSKI SPACE
Lemma: 4.1

Let A and B be matrices in m. Then N(A")cN(B*)< N(A™)<N(B").
Theorem 4.2[8]
For A, B, C € H,,, , then the following are equivalent:

(1) CA™B is invariant for every A~ € H, ., -
(2)  N@)SN(C) and N(A)SN(B")
(3) C=CA Aand B = AA™B for every A~ € {1}
Definition: 4.3 [8]
Let M = (é\
defined as D — CA™B, where A~ is a generalized inverse of A.
Definition: 4.4[10]
A matrix A € H,,,, is said to be g-k-EP in m if and only if N(A) = N(A™K).

g) be an nxn matrix. A generalized schur complement of A in M denoted by M|A is
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Lemma: 4.5[12]
For A € H,,, , the following are equivalent
(1) Ais g-k-EP
2 KA is EP
(3) AKIisEP
(4) KATA = AATK
Lemma: 4.6[7]
For A € H,,, , the following are equivalent
(1) Ais g-k-EP inm.
(2) GAis g-k-EP
3) AGis g-k-EP
Theorem: 4.7[8]
Let Mbe of the form (2.1), with p(M)=p( A)=r then M is g-k-EP matrix in m with k = k;k,<A is g-k; -
EP inmand CATK; = —G,(ATBK,)"~
Theorem: 4.8[12]
Let A and B be g-k-EP matrices in m of rank r and AB of rank r. Then AB is g-k-EP matrix in m of rank
rif and only if N(A) = N(B).
Proof:
AB is g-k-EP matrix in m of rank r
= N(AB) = N(AB)"K (by Definition 4.4)
= N(B) = N(B~A™)K, since p(B)=p( AB)=r (by P.1)
—=N(B)c N(A™)K

=N(B)c N(A) ( by Definition 4.4)
= N(B) = N(4), (since p(A)=p(B)=r)
Conversely, let N(A) = N(B). To prove that AB is g-k-EP in m. Clearly N(AB)< N(B). Since p(B)=p( AB)=r,
we get N(AB) = N(B). (4.2)
N((AB)"K) = N(B"A")K € N(A™K) = N(A) (by Definition 4.4)

Now, N(A) = N(A"K) = p(A"K) =p(A) =r

N(B) =N(B"K) = p(B"K) =p(B) =1

N((AB)"K) < N(A)

p((AB)"K) = p((AB)™) = p(AB) =r

Hence N((AB)~K) = N(A), since p(A) =r 4.2)
From (4.1) and (4.2) we get,

N(AB) = N((AB)"K), since N(A) = N(B)

Thus AB is g-k-EP in m.

Theorem: 4.9

Let A and B and AB be g-k-EP matrices in m of rank r and BA of rank r. Then BA is g-k-EP, matrix in m.
Proof:

Let A and B and AB be g-k-EP matrices in m of rank r and BA of rank r.

We claim BA is g-k-EP, in m.

N(BA)c N(A).

p(BA) =p(A) =r

Therefore N(B"A™)K € N(A~K) = N(A) (4.3)
N(AB)c N(B).

p(AB) =p(B) =r

Therefore N(AB) = N(B), (4.4
By Theorem (4.8), N(A) = N(B)

Hence N(AB) = N(BA). (4.5)

Also, N((BA)"K) = N(A"B™)K € N(B~K) = N(B)
N((BA)"K) € N(B) = N(AB)
N((BA)~K) € N(AB)
p((BA)"K) = p((BA)™) = p(BA) = p(A) =1
N((BA)“K) = N(AB) (4.6)
From (3.5) and (3.6) it follows that N(BA) = N((BA)"K)
Therefore, BA is g-k-EP. matrix in m.
Lemma: 4.10[12]
For complex matrices A and B, N(A*K) € N(B*K) if and only if N(A"K) € N(B~K)
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Proof:

Let us assume thatN(A*K) € N(B*K) we need to prove N(A“K) € N(B"K)

Let us choose x € N(AK) = A"Kx =0

= GA'GKx =0

= A'GKx =0

= A*KKGKx = 0 (by P.2)
= A*Ky = 0,where y = KGKxand hence Ky = GKx
= y € N(A*K) € N(B*K) = B*Ky = 0

= B*'GKx =0

= GB*GKx =0

Hence, B"Kx = 0, x € N(B"K)

Thus N(A~K) € N(B~K)

Conversely, let us assume that N(A“K) € N(B~K)
We need to prove that N(A*K) € N(B*K)

Let us choose x € N(A'K) = A*Kx =0

= GA*GGKx =0

=>AGKx =0

= A"Ky =0, > y = KGKx

=y € N(A"K) € N(B"K)

= B"Ky=10

= GB*GKy =0

= GB*GGKx = 0

= B'Kx=0

= x € N(B'K)

Thus N(A"K) € N(B*K). Hence the result.
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