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I. INTRODUCTION 
 Throughout we shall deal with Hnxn  , the space of nxn complex matrices. Let Hn  be the space of 

complex n - tuples. For A ∈ Hnxn  , let AT  and  A∗ denote the transpose, conjugate transpose of A. Let A− be a 

generalized inverse (AA−A = A) and A be the Moore-Penrose inverse of A [5]. A matrix A is called EPr  if 

ρ(A)= r and N(A)=N(A*) or R (A)=R(A*) where ρ(A) denotes the rank of A; N(A) and R(A) denote the null 

space and range space of A respectively. Through let ‘k' be a fixed product of disjoint transpositions in 

Sn={1,2,...,n} and K be the associated permutation matrix. A matrix A =(aij ) ∈ Cnxn   is said to be k-hermitian if 

aij =a k(j),k(i)  for i,j=1,2,...,n. A theory for k-hermitian matrices is developed in [1].  

 For x = (x1, x2, , … , xn)T ∈ Hn .  Let us define the function, K(x) = (xk 1 ,xk 2 ,… , xk n )T ∈ Hn . A 

matrix A ∈ Hnxn said to be q-k-EP  if it satisfies the condition Ax =0A*k(x)=0 or equivalently N(A)=N(A *K). 

In addition to that, A is q-k-EP  KA is EP or AK is EP and A is q-k-EP A * is q-k-EP. Moreover, A is said to be  

q-k−EPr , if A is q-k-EP and of rank r. For further properties of q-k-EP matrix one may refer[4].  Let G be the 

Minkowski metric tensor defined by Gx=(x1, −x2, −x3, … , −xn)
T
 for (x1 , x2, , … , xn) ∈ Hn . Clearly the 

Minkowski metric matrix.      

 Minkowski inner product on Cn  is defined by (u,v)=[u,Gv], where [.,.] denotes the conventional Hilbert 

space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as m. 

With respect to the Minkowski inner product, since (Ax,y)=(x, A~y),A =GA*G is called the Minkowski adjoint 

of the matrix A ∈ Hnxn and A* is the usual Hermitian adjoint.  In this paper we give necessary and sufficient 

conditions for sums ofq-k-EP matrix to be q-k-EP. As an application it is shown that sum and parallel summable 

q-k-EP matrices are q-k-EP. 

 

II. SUMS OF K-EP MATRICES 
Lemma: 2.1 

 Let A1, A1,,....,A1, ∈ Hnxn  and let A= Ai
m
i=1  . Consider the following conditions:  

(a) N A ⊆ N Ai for i = 1,2, … , m; 
(b) N A =  N Ai ;

m
i=1  

(c) ρ A = ρ  
A1...
Am

 ; 

(d)   Ai
∗m

j=1
m
i=1 Aj = 0; 

(e) ρ A =  ρ Ai 
m
i=1 . 

Then the following statements hold: 

(i) Conditions (a) , (b) and (c) are equivalent. 

(ii) Condition (d) implies (a), but (a) does not implies (d).  

(iii) Condition (e) implies (a), but (a) does not implies (e). 
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Proof:[11] 

(i) (a) 𝐛  𝐜 : 
N A ⊆ N Ai  for each I   N A ⊆ N Ai . 
Since N A ⊆ N Ai  N A1 N A2 …N Am , it follows that N A N A1 . 
Always  N Ai 

m
i=1 ⊆ N A . Hence N A =  N Ai ;

m
i=1  

Thus (b) holds. 

Now, N A =  N Ai = N 
A1...
Am

 m
i=1  

Therefore, ρ A = ρ  
A1...
Am

  and (c)  holds. 

Conversely, ρ A = ρ  
A1...
Am

  and N 
A1...
Am

 =  N Ai N A N A =m
i=1  N Ai 

m
i=1  

And (b) holds. 

Hence N A ⊆ N Ai  for each i and (a) holds. 

(ii) (d) (a): 

Since Ai
∗Aj = 0i≠j  

A∗A = (Ai)
∗(Ai)  

       =(Ai
∗
)(Ai) 

       = Ai
∗
Ai 

N(A)=N(A∗A) = N(Ai
∗
Ai) 

          = N  
A1...
Am

 

∗

 
A1...
Am

   

          = N  
A1...
Am

   

         = N A1 N A2 …N(Am ) 

         =  N Ai .
m
i=1  

Hence N A ⊆ N Ai   for each i  and (a) holds. 

(a)⇏(d): 

Let us consider the following example, 

Let A1 =  
1 1
1 1

  and A2= 
0 −1
−1 0

  

A1 + A2 =  
1 0
0 1

   

Clearly, N(A1 + A2)N A1 . Also N(A1 + A2)N A2 . But A1
∗A2 + A2

∗A1 ≠ 0.  

(iii)(e) (a): 

If rank is additive, that is ρ A = ρ Ai , then by [3],  

R(Ai)R Aj =  0 , ij  N A ⊆ N Ai  for each i and (a) holds. 

(a)⇏ (e): Consider the example,  

Let A1 =  
0 0
1 0

  and A2= 
0 0
2 0

  

A1 + A2 =  
0 0
3 0

  . 

Here, N(A1 + A2)N A1  and N(A1 + A2)N A2 . 
But ρ(A1 + A2) ≠ ρ A1 + ρ A2 . 

Theorem 2.2 

 Let A1, A2, … , AmHnxn  be q-k-EP matrices. If any one of the conditions (a) to (e) of Lemma 2.1 

holds, then A = Ai
m
i=1  is q-k-EP. 

Proof: 

 Since each Ai is q-q-k-EP, N(Ai) = N Ai
∗K  for each i. 

Now, N(A)N Ai  for each i 

N(A) N(Ai
∗Km

i=1 )N(A∗K) 

And ρ A = ρ(A∗K). Hence N(A)=(N(A∗K). Thus A is q-k-EP. Hence the theorem. 
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Remark 2.3 

 In particular, if  A is non-singular the conditions automatically hold and A is q-k-EP. Theorem 2.2 fails 

if we relax the conditions on the Ai
′ s. 

Example 2.4 

 Consider  A1 =  
0 0
1 0

  and A2= 
1 0
0 0

 , then the associated permutation matrix   K= 
0 1
1 0

 .   

Thus, KA1 =  
1 0
0 0

  is EP. 

Therefore, A1 is q-k-EP. 

KA2 =  
0 0
1 0

  is  not EP. Therefore A2 is not  q-k-EP. 

A1 + A2 =  
1 0
1 0

   and K(A1 + A2) =  
1 0
1 0

  which is not EP. 

Therefore,  (A1 + A2) is not q-k-EP. However,  

N(A1 + A2)N(A1
∗K)N A1  and N(A1 + A2)N(A2

∗K)N A2 . 

Moreover, ρ   A1
A2
  = ρ(A1 + A2). 

Remark 2.5 

 Theorem 2.2 fails if we relax the condition that Ai’s are q-q-k-EP.  

For , let A1 =  
1 0 0
0 0 0
0 −1 0

  , A2 =  
0 1 0
0 −1 0
1 0 0

  and let the associated permutation matrix be K= 
0 1 0
0 0 1
1 0 0

 . 

KA1 =  
0 0 0
0 −1 0
1 0 0

  is  not EP. 

Therefore, A1 is  not q-k-EP. 

KA2 =  
0 0 0
0 −1 0
1 0 0

  is  not EP. 

Therefore, A2 is  not q-k-EP. 

A1 + A2 =  
1 1 0
0 −1 0
1 −1 0

   and K(A1 + A2) =  
0 −1 0
1 −1 0
1 1 0

 which is not EP. 

Therefore,  (A1 + A2) is not q-k-EP. But A1
∗A2 + A2

∗A1 = 0. 

Remark 2.6 

 The conditions given in Theorem 2.2 are only sufficient for the sum of q-k-EP matrices to be q-k-EP, 

but not necessary is illustrated in the following example. 

Example 2.7   

 Let  A1 =  
1 0
0 1

  and A2= 
0 −1
−1 0

   and  the associated permutation matrix K= 
0 1
1 0

 . A1 and A2 

are k-EP2. The conditions in Theorem 2.2 does not hold. However (A1 + A2) is q-q-k-EP. 

Remark 2.8  

 If A1 and A2 are q-k-EP matrices, then by Theorem 2.4(p.221,[4]),  

A1
∗ = H1KA1K and A2

∗ = H2KA2K where H1 and H2 are non-singular nxn matrices. If H1 = H2 , then  

A1
∗ + A2

∗=H1K A1 + A2 K  (A1 + A2)∗ = H1K(A1 + A2)KA1 + A2 is q-k-EP. 

If (H1 − H2) is non-singular, then above conditions are also necessary for the sum of q-k-EP matrices to be  

q-k-EP is given in the following theorem. 

Theorem 2.9 [11] 

 Let K be the permutation matrix associated with the fixedntransposition ‘k’. Let  A1
∗ = H1KA1K and 

 A2
∗ = H2KA2K such that (H1 − H2) is non-singular. Then A1 + A2 is q-k-EP if and only if  

 N(A1 + A2)N Ai  for some (and hence both) i{1,2}. 

Proof: Since A1
∗ = H1KA1K and A2

∗ = H2KA2K, by Remark 2.8, A1 and A2 are q-k-EP matrices. Since, 

N(A1 + A2)N A2  by theorem 2.2, (A1 + A2) is q-k-EP. Conversely, let us assume that A1 + A2 is q-k-EP. By 

Remark 2.8, there exists a non-singular matrix G such that  

(A1 + A2)∗    = GK A1 + A2 K 

A1
∗ + A2

∗ =  GK A1 + A2 K 

H1KA1K + H2KA2K =  GK A1 + A2 K 

(H1KA1 + H2KA2)K= GK A1 + A2 K 

(H1K −  GK)A1 = (GK − H2K) A2 
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(H1 −  G)KA1 = (G − H2)K A2 

LKA1=M K A2, where L=(H1 −  G), M=(G − H2) 

Now (L+M)(KA1) = LKA1 + MKA1 

    = MKA2 + MKA1 

    = MK(A1 + A2) 

And (L+M)(KA2)  = LK(A1 + A2) 

By hypothesis, L+M = H1 −  G +G-H2= H1 − H2 is non-singular.  

Therefore, N(A1 + A2)N A1  and N(A1 + A2)N A2 . Hence the theorem. 

Remark 2.10 

 The condition H1 − H2 to be non-singular is essential in Theorem 2.9 is illustrated in the following 

example. 

Example 2.11  

 Let  A1 =  
1 0
0 1

  and A2= 
0 −1
−1 0

   are both k-EP matrices for  the associated permutation matrix, 

K= 
0 1
1 0

 . Further A1
∗ = A1 = KA1K and A2

∗ = A2 = KA2KH1 = H2 = I. 

(A1 + A2) =  
1 −1
−1 1

   is also q-k-EP.  

But N(A1 + A2)N A1  or N(A1 + A2)N A2 . Thus Theorem 2.9 fails. 

 

III. PARALLEL SUMMABLE Q-K-EP MATRICES 

 In this section we shall show that sum and parallel sum of parallel summable (p.s) q-k-EP matrices are 

q-k-EP. First we shall give the definition and some properties of parallel summable matrices as in (p.188, [5]). 

Definition: 3.1 

 A1and A2 are said to be parallel summable (p.s) if  N(A1 + A2)N A2  or N A1 + A2 
∗N A2

∗  or 

equivalently N(A1 + A2)N A1  and N(A1 + A2)∗N A1
∗  . 

Definition: 3.2 

 IfA1and A2 are parallel summable(p.s) then parallel sum A1and A2 denoted by A1± A2 is defined as 

A1± A2 = A1(A1 + A2)−A1. The product A1(A1 + A2)−A1 is invariant for all choices of generalized inverse 

(A1 + A2)− of (A1 + A2) under the conditions that A1and A2 are parallel summable(p.188,[5]). 

Properties: 3.3 

 Let A1and A2 be a pair of parallel summable(p.s) matrices. Then the following hold: 

P.1 A1± A2=A2± A1 

P.2  A1
∗ and A2

∗ are p.s and (A1± A2)∗=A1
∗±  A2

∗ 

P.3         If U is non-singular then UA1 and UA2 are p.s and  

 ( UA1± UA2)= U(A1± A2) 

P.4 R(A1± A2)= R(A1 ) ∩ R(A2) 

 N(A1± A2)= R A1 + R(A2) 

P.5         (A1± A2)± A3=A1± (A2± A3) 

Lemma: 3.4[11] 

 Let A1and A2 be q-k-EP matrices. Then A1and A2 are p.s if and only if  

N (A1 + A2)N A1  for some ( and hence both) i∈  1,2 . 
Proof: 

 Let A1and A2 be a pair of parallel summable(p.s) matrices 

 N (A1 + A2)  N A1  follows from the Definition 3.1, conversely if N (A1 + A2)N A1 , then 

 N (KA1 + KA2) N KA1 . Also N (KA1 + KA2)N KA2 . 
Since A1and A2are q-k-EP matrices, KA1and KA2are EP matrices,  

N (KA1 + KA2)N KA1 , and  N (KA1 + KA2)N KA2 . Therefore 

KA1 + KA2 is EP. 

Hence N (KA1 + KA2)∗ = N (KA1 + KA2) 

                                            = N (KA1) ∩ N KA2  
                                            =  N (KA1)∗ ∩ N KA2 

∗ 

Therefore, N (KA1 + KA2)∗N KA1 
∗, N (KA1 + KA2)∗N KA2 

∗ 

Also N (KA1 + KA2) N KA1  
 N (K(A1 + A2) N KA1  
 N (A1 + A2) N A1  
Similarly, N (A1 + A2)∗ N A1 

∗. 

Therefore, A1and A2 be a pair of parallel summable(p.s) matrices. Hence the theorem. 
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Remark:  3.5 

 Lemma 3.4 fails if we relax the condition that A1and A2are q-k-EP matrices. Let  A1 =  
0 0
1 0

  and 

A2= 
1 0
0 0

 . Let the associated permuatation matrix K = 
0 1
1 0

 . 

A1 is q-k-EP. A2 is not q-k-EP.  

N ((A1 + A2)N A1  and N ((A1 + A2)N A2 ,  
But N (A1 + A2)∗N A1 

∗, N (A1 + A2)∗N A2 
∗.  

Hence A1and A2are not parallel summable(p.s) matrices. 

Theorem: 3.6 

 LetA1and A2 be a pair of parallel summable(p.s)  q-k-EP matrices. Then  

A1± A2 and (A1 + A2) are q-k-EP. 

Proof: 

 Since A1and A2 be a pair of parallel summable(p.s)  q-k-EP matrices, by Lemma 3.4, 

N (A1 + A2)N A1  and N (A1 + A2)N A2 . Hence, 

N (K A1 + A2 N KA1  and N (K A1 + A2 N KA2  
N (KA1 + KA2) N KA1  and N (KA1 + KA2) N KA2  
Therefore, KA1 + KA2=K(A1 + A2) is EP. Then A1 + A2 is q-k-EP. Since A1and A2 be a pair of parallel 

summable(p.s)  q-k-EP matrices,  KA1 and KA2 are p.s EP matrices.  

Therefore,  

R(KA1)∗ = R(KA1) and R(KA2)∗ = R(KA2) 

R(KA1± KA2)∗ = R((KA1)∗± (KA2)∗)                                        [By P.2] 

                          = R(KA1)∗ ∩ R(KA2)∗                                       [By P.4] 

                          = R(KA1) ∩ R(KA2)[since KA1and KA2are EP]. 

                          = R(KA1± KA2)        . 

Thus, KA1± KA2is EP K(A1± A2) is EP(A1± A2)is q-k-EP. Thus K(A1± A2) is q-k-EP whenever A1and A2 

are q-k-EP. Hence the theorem. 

Corollary: 

 Let A1and A2 are q-k-EP matrices such that N(A1 + A2)N A2 . If  A3 is q-k-EP commuting with both 

A1andA2, then A3(A1 + A2) and A3(A1± A2)=(A3A1± A3A2) are q-k-EP. 

Proof:            

 A1and A2 are q-k-EP with N(A1 + A2) N A2 .  
By Theorem 2.2, (A1 + A2)is q-k-EP. NowKA1, KA2 and K(A1 + A2) are EP. Since A3 commutes with 

A1, A2and (A1 + A2), KA3 commutes with KA1, KA2and K(A1 + A2) and by Theorem (1.3) of [2], 

K(A3A1), K(A3A2) and KA3(A1 + A2) are EP. Therefore, (A3A1), (A3A2) and A3(A1 + A2) are q-k-EP. Noe by 

Theorem 3.6, (A3A1± A3A2) are q-k-EP By P.3(Properties 3.3). 

KA3(A1± A2)=K(A3A1± A3A2). 

Since (A3A1± A3A2) is q-k-EP. K(A3A1± A3A2) is EP KA3(A1± A2) is EP. A3(A1± A2) is q-k-EP. 

Hence the corollary. 

 

IV. PRODUCT OF Q-K-EP MATRICES IN MINKOWSKI SPACE 
Lemma: 4.1 

  Let A and B be matrices in m. Then N(A∗)N(B∗) N(A−)N(B−). 

Theorem 4.2[8] 

 For A, B, C ∈ Hmxn , then the following are equivalent: 

(1) CA−B is invariant for every A− ∈ Hnxm . 

(2) N A N C  and N(A∗)N(B∗) 

(3) C = CA−A and B = AA−B for every A− ∈  1  
Definition: 4.3 [8] 

 Let M =  
A B
C D

  be an nxn matrix. A generalized schur complement of A in M denoted by M|A is 

defined as D − CA−B,  where A− is a generalized inverse of A. 
Definition: 4.4[10] 

 A matrix A ∈ Hnxn , is said to be q-k-EP in m if and only if N(A) = N(A−K). 
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Lemma: 4.5[12] 

 For A ∈ Hnxn , the following are equivalent 

(1) A is q-k-EP 

(2) KA is EP 

(3) AK is EP 

(4) KA†A = AA†K 

Lemma: 4.6[7] 

 For A ∈ Hnxn , the following are equivalent 

(1) A is q-k-EP in m. 

(2) GA is q-k-EP 

(3) AG is q-k-EP 

Theorem: 4.7[8] 

 Let Mbe of the form (2.1), with (M)=( A)=r then M is q-k-EP matrix in m with k = k1k2A is q-k1-

EP in m and CA†K1 = −G1(A†BK2)~ 

Theorem: 4.8[12] 

 Let A and B be q-k-EP matrices in m of rank r and AB of rank r. Then AB is q-k-EP matrix in m of rank 

r if and only if N A = N B . 
Proof: 

 AB is q-k-EP matrix in m of rank r 

 N AB = N AB ~K             (by Definition 4.4) 

 N B = N B~A~ K, since (B)=( AB)=r          (by P.1) 

N B  N A~ K 

N B  N A               ( by Definition 4.4) 

 N B =  N A ,           (since (A)=( B)=r )      

Conversely, let    N A =  N B . To prove that AB is q-k-EP in m. Clearly N AB  N B . Since (B)=( AB)=r, 

we get   N AB =  N B .          (4.1) 

N  AB ~K =  N B~A~ K ⊆ N A~K = N A             (by Definition 4.4) 

Now, N A = N A~K ⇒   A~K = (A) = r 

N B = N B~K ⇒   B~K = (B) = r  

N  AB ~K ⊆ N A   
 (AB)~K =  (AB)~ = (AB) = r  

Hence N  AB ~K = N A , since (A) = r        (4.2) 

From (4.1) and (4.2) we get,  

N AB = N  AB ~K , since N A = N B   
Thus AB is q-k-EP in m. 

Theorem: 4.9 

Let A and B and AB be q-k-EP matrices in m of rank r and BA of rank r. Then BA is q-k-EPr  matrix in m. 

Proof:  

Let A and B and AB be q-k-EP matrices in m of rank r and BA of rank r. 

We claim BA is q-k-EPr  in m. 

N BA  N A . 
 BA = (A) = r   
Therefore N B~A~ K ⊆ N A~K = N A         (4.3) 

N AB  N B . 
 AB = (B) = r   
Therefore N AB = N B ,                       (4.4) 

By Theorem (4.8), N A = N B  
Hence N AB = N BA .          (4.5) 

Also, N  BA ~K =  N A~B~ K ⊆ N B~K = N B  
N  BA ~K ⊆ N B = N(AB)  

N  BA ~K ⊆ N(AB)  

  BA ~K =   BA ~ =  BA =  A = r  

N  BA ~K = N(AB)          (4.6) 

From (3.5) and (3.6) it follows that N BA = N  BA ~K  
Therefore, BA is q-k-EPr  matrix in m. 

Lemma: 4.10[12] 

 For complex matrices A and B, N A∗K ⊆ N B∗K  if and only if N A~K ⊆ N B~K  
 



On sums and products of q-k-EP matrices 

| IJMER | ISSN: 2249–6645 |                      www.ijmer.com                           | Vol. 6 | Iss. 3 | March 2016 | 60 | 

Proof:  Let us assume thatN A∗K ⊆ N B∗K  we need to prove N A~K ⊆ N B~K  
Let us choose x ∈ N A~K ⇒  A~Kx = 0 

⇒ GA∗GKx = 0  

⇒ A∗GKx = 0  

⇒ A∗KKGKx = 0                                                                                    (by P.2) 

⇒ A∗Ky = 0,where 𝑦 = KGKxand hence K𝑦 = GKx 

⇒ 𝑦 ∈ N A∗K ⊆ N B∗K ⇒ B∗Ky = 0  

⇒ B∗GKx = 0  

⇒ GB∗GKx = 0  

Hence, B~Kx = 0 , x ∈ N B~K  
Thus N A~K ⊆ N B~K  
Conversely, let us assume that N A~K ⊆ N B~K  
We need to prove that N A∗K ⊆ N B∗K  
Let us choose x ∈ N A∗K ⇒ A∗Kx = 0 

⇒ GA∗GGKx = 0  

⇒ A~GKx = 0  

⇒ A~Ky = 0 , ⇒ y = KGKx 

⇒ y ∈ N A~K ⊆ N B~K   
⇒ B~Ky = 0  

⇒ GB∗GKy = 0  

⇒ GB∗GGKx = 0  

⇒ B∗Kx = 0  

⇒ x ∈ N(B∗K)  

Thus N A∗K ⊆ N B∗K . Hence the result. 
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