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l. INTRDUCTION

In 1963, Levine[3] introduced the concept of semi-continuity in topological spaces. In 1968
N.V.Velicko introduced the concept of 5-open sets in topological spaces. T.Noiri[8] introduced the concept of
§-continuous functions in 1980.1n 2014 Raja Mohammad Latif[15] investigate the properties of d-continuous
functions and &-irresolute functions. S.Pasunkili Pandian[10] defined semi*pre- continuous and semi*pre-
irresolute functions and investigated their properties. S.Pious Missier and A.Robert[12,16] introduced the
concept of semi*-continuous and semi*a-continuous functions in 2014.Quite recently ,the authors[13]
introduced some new concepts, namely semi*d-open sets, semi*3- closed sets. The aim of this paper is to
introduce new class of functions called semi*3-continuous, semi*3-irresolute functions and investigated their
properties.

1. PRELIMINARIES
Throughout this paper (X, 1), (Y, 6 ) and (Z, n ) represent non-empty topological spaces on which no
separation axioms are assumed unless otherwise mentioned.

Definition 2.1: A subset A of a space X is
(i) generalized closed (briefly g-closed) [4] if CI(A)SU whenever AU and U is open in X.
(ii)generalized open (briefly g-open) [4] if X\A is g-closed in X.

Definition 2.2: If A is a subset of X,

(i) the generalized closure of A is defined as the intersection of all g-closed sets in X containing A and is
denoted by CI*(A).

(ii) the generalized interior of A is defined as the union of all g-open subsets of A and is denoted by Int*(A).

Definition 2.3: Let (X, 1)be a topological space. A subset A of the space X is said to be
1. Semi-open [3] if ASCI(Int(A)) and semi*-open[12] if ASCI*(Int(A)).

2. Preopen [5] if AcInt(CI(A)) and pre*open[14] if ACInt*(CI(A)).

3. Semi-preopen [7] if ASCI(Int(CI(A))) and semi*-preopen[10] if ASCI*(pInt(A)) ).
4. a-open [6] if ACInt(CI(Int(A))) and a*-open [11] if ASInt*(CI(Int*(A))).

5. Regular-open[13] if A=Int(CI(A)) and 5-open[8] if A= dInt(A)

6. semi a-open[9] if ACCI(alnt(A)) and semi* a-open[16] if ASCI*(alnt(A))).

7. 5-semi-open [2] if ASCI(3Int(A)) and semi*3-open[13] ASCI*(3Int(A)).

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.4: A function /- (X, ©)— (Y, o) is said to be

1. g-continuous [1] if £~1(V) is g-open in (X, 1) for every open set V in (Y, o).

2. Semi-continuous [3] if £~1(V) is semi-open in (X, 1) for every open set V in (Y, o).
________________________________________________________________________________________________________________________________|
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3. Semi*-continuous [12] if £~1(V) is semi*-open in (X, 1) for every open set V in (Y, o).

4. Pre-continuous [5] if £~1(V) is pre-open in (X, 1) for every open set V in (Y, 6).

5. Pre*-continuous [14] if £ ~1(V) is pre*-open in (X, 1) for every open set V in (Y, c).

6. a- continuous [6] if £ ~1(V) is a-open in (X, 1) for every open set V in (Y, ).

7. a*- continuous [11] if £~1(V) is a*-open in (X, T) for every open set V in (Y, o).

8. Semi-pre-continuous[7] if £ ~1(V) is semi-preopen in (X, 1) for every open set V in (Y,0).
9.Semi*pre-continuous[14] if £ ~1(V) is semi*-preopen in(X,t) for every open set V in (Y,0).
10. Semi a-continuous [9] if £ ~1(V) is semi-a-open in (X, 1) for every open set V in (Y, o).
11.Semi*a-continuous [16] if £ ~1(V) is semi*-a-open in (X, 1) for every open set V in (Y,o).
12. 3-continuous [8] if £~1(V) is 8-open in (X, 1) for every open set V in (Y, o).

13. 8-semi-continuous [2] if £ ~1(V) is 8-semi-open in (X, 1) for every open set V in (Y, o).

Definition 2.5: A topological space (X, 1) is said to be T if every g-closed set in X is closed.
2

Theorem 2.6: [13] Every d-open set is semi*3-0pen.
Theorem 2.7: [13] In any topological space,

(i) Every semi*3-open set is 8-Semi-open.

(ii) Every semi*3-open set is semi - open.

(iii) Every semi*&-0pen set is semi* - open.

(iv) Every semi*3-open set is semi*-preopen.

(V) Every semi*&-open set is semi-preopen.

(vi) Every semi*3-open set is semi*a-open

(vii) Every semi*3-open set is semia-0pen.

Remark 2.8: [17] Similar results for semi*-closed sets are also true.

Theorem 2.9: [13] For a subset A of a topological space (X, t) the following statements are equivalent:
(i) A is semi*3-open.

(if) ASCI*(3Int(A)).

(iii) CI*(8Int(A))=CI*(A).

Theorem 2.10: [17] For a subset A of a topological space (X, 1), the following statements are equivalent:
(i) A is semi*3-closed.

(i) Int*(3CI(A))<A.

(iii) Int*(3CI(A))=Int*(A).

1. SEMI*5 -CONTINUOUS FUNCTIONS
Definition 3.1: A function f: (X, 1) — (Y, o) is said to be semi* [ -continuous if £~1(V) is semi*&-open in (X,
1) for every open set V in (Y, o).
Theorem 3.2: Every d-continuous is semi*3-continuous.
Proof: Let f: (X, 1) — (Y, ) be 8- continuous. Let V be open in (Y, ). Then f~1(V) is 3-open in (X, 1). Hence
by Theorem 2.6, £ ~1(V) is semi*&-open in (X, t). Therefore f is semi*3-continuous.
The converse of the above theorem need not be true as it is seen from the following example.
Example 3.3: Let X = {a, b, c, d}, Y={a, b, ¢, d}, = {9, {a},{b}, {a, b}, {a, b, ¢}, X} and o= {¢, {a}, {a, b},
Y}. Define f: (X, 1) — (Y, o) by f(a) = c; f(b) = a; f(c) = d; f(d) = b. Then f is semi*3-continuous but not &-
continuous. Since for the open set V = {a, b} in (Y, 6), f~1(V) = {b, d} is semi*5-open but not 3-open in (X, 1).
Theorem 3.4: Every semi*$-continuous is 3-semi-continuous.
Proof: By Theorem 2.7(i), every semi*8-open set is §-semi-open, the proof follows. The converse of the above
theorem need not be true as it is seen from the following example.
Example 3.5: Let X= {a, b, ¢, d}, Y= {a, b, c, d}, T = {¢, {a}, {b}, {a, b}, {a, b, ¢}, X} and o= {¢,{a},Y}.
Define f: (X, 1) — (Y, o) by f(a) = b; f(b) = f(c) = a; f{d) = c. Then f is 6-semi-continuous but not semi*3-
continuous. Since for the open set V = {a} in(Y, o), f~1(V) = {b, c} is 5-semi-open but not semi*3-open in (X,

T).

Theorem 3.6: Every semi*3-continuous is semi-continuous.

Proof: By Theorem 2.7(ii), every semi*&-open set is semi-open, the proof follows. The converse of the above
theorem need not be true as it is seen from the following example.

Example 3.7: Let X={a, b, ¢, d}, Y={a, b, ¢, d}, T = {9, {a}, {a, b, ¢}, X} and o= {¢, {a, b, c},Y}. Define f:
(X, 1) — (Y, o) by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi-continuous but not semi*3-continuous.
Since for the open set V = {a, b, ¢} in(Y, o), f~1(V) ={a, b, d} is semi-open but not semi*3-open in (X, 1).
________________________________________________________________________________________________________________________________|
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Theorem 3.8: Every semi*3-continuous is semi*-continuous.

Proof: By Theorem 2.7(iii), every semi*3-0open set is semi*-open, the proof follows. The converse of the above
theorem need not be true as it is seen from the following example.

Example 3.9: Let X= {a, b, ¢, d}, Y= {a, b, ¢, d}, T = {9, {a}, {a, b}, {a, b, ¢}, X} and o= {¢, {a, b, c}, Y}.
Define f: (X, 1) — (Y, o) by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi*-continuous but not semi*s-
continuous. Since for the open set V = {a, b, ¢} in(Y, c), f (V) = {a, b, d} is semi*-open but not semi*3-open
in (X, 1).

Theorem 3.10: Every semi*3-continuous is semi*pre-continuous.

Proof: By Theorem 2.7(iv), every semi*3-open set is semi*pre-open, the proof follows. The converse of the
above theorem need not be true as it is seen from the following example.

Example 3.11: Let X= {a, b, ¢, d}, Y= {a, b, ¢, d}, 1= {¢, {a}, {b, ¢, d}, X} and o= {¢, {a, b}, {a, b, ¢}, Y}.
Define f: (X, 1) — (Y, o) by f(a) = b; f(b) = d; f(c) = a; f(d) = c. Then f is semi*pre-continuous but not semi*3-
continuous. Since for the open set V = {a, b} in(Y, o), f~1(V) ={a, c} is semi*pre-open but not semi*&-open
in (X, 7).

Theorem 3.12: Every semi*3-continuous is semi-pre-continuous.

Proof: By Theorem 2.7(v), every semi*3-open set is semi-pre-open, the proof follows. The converse of the
above theorem need not be true as it is seen from the following example.

Example 3.13: Let X={a, b, ¢, d}, Y={a, b, ¢}, T = {9, {a, b}, {a, b, ¢}, X} and o= {¢, {a}, {b}, {a, b}, Y}.
Define f: (X, 1) — (Y, o) by f(a) = b; f(b) = f(c) = a; f(d) = c. Then f is semi-pre-continuous but not semi*3d-
continuous. Since for the open set V = {a} in(Y, o), f~1(V) = {b, c} is semi-pre-open but not semi*3-open in
X, 1).

Theorem 3.14: Every semi*&-continuous is semi*a-continuous.

Proof: By Theorem 2.7(vi), every semi*3-open set is semi*a-open, the proof follows. The converse of the
above theorem need not be true as it is seen from the following example.

Example 3.15: Let X= {a, b, ¢, d}, Y= {a, b, ¢}, 1= {9, {a}, {a, b}, {a, b, ¢}, X} and o= {¢, {b}, {a, b}, Y}.
Define f: (X, 1) — (Y, o) by f(a) = f(c) = b; f(b) = a; f(d) = c. Then f is semi*a-continuous but not semi*3-
continuous. Since for the open set V = {b} in(Y, o), f~1(V) = {a, ¢} is semi*a-open but not semi*3-open in (X,

T).

Theorem 3.16: Every semi*3-continuous is semia-continuous.

Proof: By Theorem 2.7(vii), every semi*&-open set is semia-open, the proof follows. The converse of the above
theorem need not be true as it is seen from the following example.

Example 3.17: Let X= {a, b, ¢}, Y= {a, b, ¢}, 1= {9, {a, b}, X} and 6= {¢, {c}, Y}. Define f: (X, 1) — (Y, 0)
by f(a) = f(b) = c; f(c) = a. Then f is semia-continuous but not semi*&-continuous. Since for the open set V =
{c}in(Y, 6), f1(V) = {a, b} is semia-open but not semi*3-open in (X, 1).

Remark 3.18: The concept of semi*§-continuity and continuity are independent as shown in the following
example.

Example 3.19:

1.Let X ={a, b, c}, Y ={a, b, c}, == {$,{a},{b},{a, b}, X} and o= {d,{a},Y}. Define f: (X, 1)— (Y, o) by f(a) =
b; f(b) = f(c) = a. Then f is semi*3-continuous but not continuous. Observe that for the open set V = {a} in (Y,
o), f~1(V) = {b, ¢} is semi*5-open but not open in (X, 1).

2. Let X ={a, b, c}, Y={a, b, c}, 1= {0, {a, b}, X} and o= {¢, {a, b},Y}. Define f: (X, 1) — (Y, o) by f(a) = b;
f(b) = a; f(c) = ¢ . Then f is continuous but not semi*&-continuous. It is clear that for the open set V = {a, b} in
(Y, 6), f~1(V) = {a, b} is open but not semi*3-open in (X, 1).

Remark 3.20: The concept of semi*3-continuity and g-continuity are independent as shown in the following
example.

Example 3.21:

1. Let X = {a, b, c, d}, Y ={a, b, ¢, d}, == {¢,{a},{b}.{c}.{a, b}, {a c}, {b, c}, {a b, c},X} and o= {
o.{a},{b}.{a, b}, {a, b, c},Y}. Define f: (X, 1)— (Y, o) by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then fis semi*J-
continuous but not g-continuous. Observe that for the open set V = {a, b, ¢} in (Y, o), f~1(V) = {a, b, d} is
semi*§-open but not g-open in (X, 1).

2. Let X ={a, b, c,d}, Y={a, b, c,d}, t= {0, {a}.{a, b, ¢}, X} and o= { ¢, {a}.{a, b, ¢}, Y}. Define f: (X, 1) —
(Y, o) by f(a) = f(d) = b; f(b) = c; f(c) = a. Then f is g-continuous but not semi*3-continuous. It is clear that for
the open set V = {a} in (Y, o), f~1(V) = {c} is g-open but not semi*3-open in (X, ).

Remark 3.22: The concept of semi*3-continuity and a-continuity are independent as shown in the following
example.

Example 3.23:
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1.Let X={a, b, c,d}, Y ={a, b, c,d}, == { $,{a}.,{b}.{c}{a b}, {a c}, {b, c}, {a, b, c},X} and o= { ¢, {a}, {a,
b}, {a, b, ¢},Y}. Define f: (X, 1)— (Y, o) by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi*&-continuous
but not a-continuous. Observe that for the open set V = {a, b, ¢} in (Y, o), f~1(V) = {a, b, d} is semi*&-open
but not a-open in (X, 7).

2.Let X ={a,b,c,d}, Y={a, b,c, d}, == {0, {a,b, c}, X} and o= { ¢, {a, b}, {a, b, c},Y}. Define f: (X, 1)—
(Y, o) by f(a) = f(c) = b; f(b) = a; f(d)=c. Then fis a-continuous but not semi*3-continuous. It is clear that for
the open set V = {a, b} in (Y, o), f 1 (V) = {a, b, c} is a-open but not semi*3-open in (X, ).

Remark 3.24: The concept of semi*3-continuity and pre-continuity are independent as shown in the following
example.

Example 3.25:

1.Let X={a, b, c}, Y ={a, b, c}, == { ¢,{a}.{b}.{a, b}, X} and o= { ¢, {a}, {a, b}, Y}. Define f: (X, 1)— (Y,
o) by f(a) = ¢; f(b) = a; f(c) = b. Then fis semi*&-continuous but not pre-continuous. Observe that for the open
set V= {a, b} in (Y, ), f (V) = {b, ¢} is semi*5-open but not pre-open in (X, 1).

2.LetX={a,b,c,d}, Y={a,b,c, d}, = {0, {a}, X} and 6= { ¢, {a, b, ¢},Y}. Define f: (X, 1)— (Y, o) by f(a)
=c¢; f(b) =d; f(c) = b; f(d) = a. Then f is pre-continuous but not semi*&-continuous. It is clear that for the open
setV={a, b, c}in(Y, o), f 1(V) ={a, c, d} is pre-open but not semi*3-open in (X, 1).

Remark 3.26: The concept of semi*3-continuity and a*-continuity are independent as shown in the following
example.

Example 3.27:

l.Let X={a, b,c,d}, Y={a, b,c,d}, = { d,{a},{b},{c},{a, b}, {a, c}, {b, ¢}, {a, b, ¢},X} and 6= { ¢, {a}, {a,
b}, {a, b, c},Y}. Define f: (X, 1)— (Y, o) by f(a) = c; f(b) = a; f(c) = d; f(d) =b. Then fis semi*3-continuous
but not a*-continuous. Observe that for the open set V = {a, b} in (Y, 6), f~1(V) = { b, d} is semi*5-open but
not a*-open in (X, T).

2. Let X={a, b,c,d}, Y ={a, b, c,d}, = {¢.{a, b}{a, b, ¢}, X} and o= { ¢, {a}, {b, c, d},Y}. Define f: (X, 1)—
(Y, o) by f(a) = c; f(b) = d; f(c) = a; f(d) =b. Then fis a*-continuous but not semi*3-continuous. It is clear that
for the open set V = {b, ¢, d} in (Y, o), f ~1(V) = {a, b, d} is a*-open but not semi*3-open in (X, 1).

Remark 3.28: The concept of semi*3-continuity and pre*-continuity are independent as shown in the following
example.

Example 3.29:

1.Let X = {a, b, c}, Y ={a, b, c}, == { ¢,{a},{b},{a, b}, X} and o= { ¢, {a, b}, Y}. Define f: (X, 1)— (Y, o) by
f(a) = b; f(b) = c; f(c) = a. Then fis semi*3-continuous but not pre*-continuous. Observe that for the open set V
= {a, b} in (Y, o), f (V) = {a, ¢} is semi*3-open but not pre*-open in (X, 1).

2. Let X ={a, b, c,d}, Y ={a, b, c,d}, == {9, {a}, {a b, c}, X} and 6= { ¢, {a}, {b}.{a, b}.{a, b, c},Y}. Define
f: (X, 1)— (Y, o) by f(a) = b; f(b) =d; f(c) = a; f(d) = c. Then f is pre*-continuous but not semi*3-continuous.
It is clear that for the open set V = {a b ,¢} in (Y, o), f~1(V) = {a, ¢, d} is pre*-open but not  semi*5-open in
(X, 1).

From the above the discussions we have the following diagram:

=*- combmuty

> - > € = ;
seos®- conpmupty  semi COOOEMEY  Semio- comfmmy  semi®s- COMMMuAY

Theorem 3.30: A function f: (X, 1)— (Y, o) is semi*3-continuous if and only if £~(U) is semi*5-closed in
(X, 1) for every closed set U in (Y, o).
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Proof. Let f: (X, 1)— (Y, o) be semi*3-continuous and U be a closed set in (Y, c). Then V=Y\U is open in Y.
Then f~1(V) is semi*3-open in X. Therefore

FHU) =L (Y\W)=X\f "1(V) is semi*5-closed.

Converse: Let V be an open set in Y. Then U=Y\V is closed in Y. By assumption, f~*(U) is semi*3-closed in
X. Hence f~1(V)= £~ 1(Y\U)=X\f ~1(U) is semi*5-open in X.Therefore f is semi*3-continuous.

Remark 3.31: The composition of two semi*3-continuous functions need not be semi*3-continuous and this
can be shown by the following example.

Example 3.32: Let X=Y=Z= {a, b, c, d}, T = {¢, {a}, {b}, {a, b},{a, b, c}, X}, 6 ={0, {a}, {b}, {a, b}.{b, c},
{a, b, ¢}, Y} and 1 ={0¢, {a}, {a, b, c}, Z}. Define f: (X, 1)—(Y, o) by f(a)=b; f(b)=a; f(c)=d; f(d)=c and define
g: (Y, 6)—(Z, n) by g(a)= g(d)=a ; g(b)=c and g(c)=b.Then f and g are semi*&-continuous but g o f is not
semi*3-continuous. Since {a} is open in (Z, n) but (g H*{a}) = f! (97! {a}) = ! ({a, d}) ={b, c}
which is not semi*&-open in (X, 1).

Theorem 3.33: Let (X, t) and (Z, n) be topological spaces and (Y, o) be a space in which every semi*3-open set
is open, then the composition g o f: (X, 1) —(Z, 1) of semi*3-continuous functions f : (X, 1) —(Y, c) and g :
(Y, 6 ) —(Z, ) is semi*3-continuous.

Proof: Let G be any open set of (Z, ). Since g is semi*3-continuous g~* (G) is semi*3-open in (Y, o). Then by
assumption, g~(G) is open in (Y, c).Hence f~1(g71(G)) = (g o H)~1(G) is semi*s-open in (X, ). Thus g o f is
semi*3-continuous.

Theorem 3.34: Let (X, t) and (Z, n) be topological spaces and (Y, o) be Tl/z-space then the composition g o f:
(X, 1) —(Z, n) of semi*3-continuous f : (X, t) —(Y, o) and g-continuous function g : (Y, 6 ) —(Z, n) is semi*3-
continuous.

Proof: Let G be any closed set of (Z, n). Since g is g-continuous g~! (G) is g-closed in (Y, o). Also since (Y, 6
)is T1 -space , g 1 (G) is closed in (Y, o).

Hence f~1(g71(G)) = (g © f)"1(G) is semi*3-closed in (X, ). Thus g o f is semi*3-continuous.

Theorem 3.35: If f: (X, 1) — (Y, o) is semi*3-continuous and g : (Y, o) —(Z, n) is continuous. Then their
composition g o f: (X, 1) —(Z, n) is semi*§-continuous.

Proof: Let G be open in (Z, n). Thus g~*(G) is open in (Y, o). Since f is semi*&-continuous f~1(g~(G)) =
(g ° ©)~Y(G) is semi*s-open in (X, 1). Thus g o f is semi*3-continuous.

Theorem 3.36: Let f: (X, t) — (Y, o) be a function. Then the following statements are equivalent:

(i) The function f is semi*3-continuous.

(i) f (F) is semi*&-closed in X for every closed set F in Y.

(i) f(s*aCI(A))<=CI(f(A)) for every subset A of X.

(iv)s*5CI(f (B))< f *(CI(B)) for every subset B of Y.

(V)f 1(Int(B)) Ss*3Int(f (B)) for every subset B of Y.

(vi)Int*(aCI(f "(F)))=Int*(f *(F)) for every closed set Fin Y.

(vii)CI*(alnt(f *(V)))=CI*(f (V)) for every openset Vin Y.

Proof: (i) &(ii): This follows from theorem 3.30.

(i)=(iii): Let ACX. Let F be a closed set containing f(A). Then by (ii), f *(F) is a semi*3-closed set containing
A. This implies that s*3CI(A)<f(F) and hence f(s*3CI(A))<F.

Therefore f(s*3CI(A))< CI(f(A)).

(iii)=(iv): Let BSY and let A= f (B). By assumption, f(s*3CI(A))<SCI(f(A))<CI(B). This implies that
s*3CI(A)<f (CI(B)). Therefore s*3CI(f (B))< f *(CI(B)).

(iv)e(v): The equivalence of (iv) and (v) can be proved by taking the complements.

(vi)e(ii): Follows from Theorem 2.10.

(vii)e(i): Follows from Theorem 2.9.

IV. SEMI* FIRRESOLUTE FUNCTIONS
Definition 4.1: A function f :X—Y is said to be semi* -irresolute if f (V) is semi*&-open in X for every
semi*§-opensetVin'Y.
Theorem 4.2: If f: (X, 1) — (Y, o6) is semi*3-irresolute and g: (Y, 6)— (Z, n) is semi*3-continuous then g o f:
(X, 1) =(Z, n) is semi*3-continuous.
Proof: Let G be any open set of (Z, 1)). Since g is semi*s-continuous g *(G) is semi*38- open in (Y,c).Since f is
semi*3-irresolute f (g *(G)) = (ge f) (G) is semi*5-open in (X, ) .Thus (ge f) is semi*&-continuous.
Theorem 4.3: If f: (X, 1) — (Y, o) is semi*3-irresolute and g: (Y, 6)— (Z, 1) is semi*3-irresolute then g o f :
(X, 1) —(Z, n) is semi*3-irresolute.
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Proof: Let G be semi*8-open in (Z, ). Since g is semi*3-irresolute, g *(G) is semi*3-open in (Y, o). Since f is
semi*3-irresolute f (g (G)) = (gof ) (G) is semi*5-open in (X, 7). Thus (ge f) is semi*3-irresolute.

Theorem 4.4: Let X be a topological space and Y be a space in which every semi*3-open set is open. If f: (X,
1) — (Y, o) is a semi*3-continuous map, then fis semi*&-irresolute.

Proof: Let G be semi*3-open set in (Y, o). Then by assumption, G is open in (Y, o). Since f is semi*5-
continuous, f (G) is semi*8-open in (X, 1). Thus f is semi*8-irresolute.

Theorem 4.5: Let f :X—Y be a function. Then the following are equivalent:

(i) fis semi*3-irresolute.

(i) f (F) is semi*8-closed in X for every semi*8-closed set Fin Y.

(ii)f(s*dCI(A))cs*3CI(f(A)) for every subset A of X.

(iv)s*sCI(F1(B))=f(s*3CI(B)) for every subset B of Y.

(v)f Y(s*8Int(B)) Ss*8Int(f *(B)) for every subset B of Y.

(vi) Int*(3CI(f "*(F)))=Int*(f (F)) for every semi*5-closed set F in Y.

(vii)CI*(Int(f (V)))=CI*(f *(V)) for every semi*5-open set V in Y.

Proof:

(i)=(ii): Let F be a semi*3-closed set in Y. Then V=Y\F is semi*&-open in Y. Then f (V) is semi*§-open in X.
There-fore f (F)=f (Y\V)=X\f (V) is semi*5-closed.

(ii)=(i): Let V be a semi*3-open set in Y. Then F=Y\V is semi*8-closed. By (iii), f *(F) is semi*5-closed.
Hence

f 1(V)= f (Y\F)=X\f (F) is semi*s-open in X.

(i)=(iii): Let ASX. Let F be a semi*3-closed set containing f(A). Then by (ii), f (F) is a semi*3-closed set
containing A. This implies that s*3CI(A)<f*(F) and hence f(s*3CI(A))SF. Therefore f(s*3CI(A))Ss*3CI(f(A)).
(iii)=(iv): Let BSY and let A= f (B). By assumption, f(s*5CI(A))Ss*sCI(f(A))Ss*3CI(B). This implies that
s*8CI(A)f *(s*3CI(B)). Hence

s*8CI(f 1(B))< f (s*5CI(B)).

(iv) & (v): The equivalence of (iv) and (v) can be proved by taking the complements.

(vi) & (ii): Follows from Theorem 2.10.

(vii) & (i):Follows from Theorem 2.9.
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