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I. INTRODUCTION 

Global optimization techniques have been applied to real life problems such as determining the best 

solution from a set of possible solutions. Algorithms for such purpose are deterministic if there is a clear relation 

between the characteristics of the possible solution and the fitness for a given problem. On the other hand, 

probabilistic algorithms solve problems where the relation between a solution and fitness is complicated and the 

dimensionality of the search space is very high.  Such algorithms employ heuristic approaches: Monte Carlo 

class of search algorithms. Several approaches that can determine the maximum or minimum of optimization 

problems exist. An extremely basic approach is the random search approach that randomly explores the search 

space by randomly selecting any solution and testing with other solutions [1,2,3]. Although this allows a good 

number of solutions to be tested, it does not guarantee global optima. However, it is successfully applied when 

employed in other algorithms [1]. 

The gradient based methods can be used to solve optimization problems in which the objective 

functions are smooth [1]. These employ local search by finding a gradient vector or Hessian matrix for 

generating better minima of solutions to a problem. Although these methods are tractable and search in shorter 

times, they are only applied to functions which are smooth.   

Furthermore, there are greedy algorithms for problems where objective functions are not continuous [4]. 

These methods explore only neighbouring solutions to the current solution for optimal solution. This property 

makes them unreliable since they could be trapped on local optima. However, repeating the greedy algorithms 

with different starting solutions have been found to produce better results [1].  

In the Simulated Annealing search method, a solution is accepted to be better than the current solution 

if it improves the objective function [5,6,7]. If a solution does not improve the objective function, then it is 

accepted with a probability. Even though the Simulated Annealing method produces very good results, Genetic 

Algorithms (GAs) have been found to be better because they test populations of solutions instead of a single 

solution or point in the Simulated Annealing method [8,9].  

Recently, GAs have become dynamic and easy to use due to further research. For instance, Naoki et al., 

(2001) utilized the thermo-dynamical genetic algorithms (TDGA), a genetic algorithm which maintains the 

diversity of the population by evaluating its entropy, for the problem of adaptation to changing environments 

[10]. A modification of genetic algorithm is used in the problem of wavelength selection in the case of a 

multivariate calibration performed by Partial Least Squares (PLS). The Genetic Algorithm sets weights to 

balance the components out to solve the problem by an automated approach [11]. 

Wiendahl and Garlichs presented a graphical-oriented decision support system for the decentralized 

production scheduling of assembly systems using a Genetic Algorithm as the scheduling algorithm [12]. In the 
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past, GAs have been applied to solve resource constrained project scheduling problem (RCPSP) to minimize 

make-span subject to precedence constraints and resources availability [13]. In these approaches, resources are 

considered renewable as well as single mode of conducting every activity.  A new permutation of encoding 

scheme was designed in the GA to inherit all the advantages of both the new permutation-based encoding 

scheme and the priority-based encoding schemes which were introduced [13].  

In Biological Sciences, GAs have been applied to medical optimal control problem in immunology [14]. 

The author of such application provided the main strands of GA theory. Dynamic programming methods have 

been applied to solve Multiple Sequence Alignment in Molecular Biology leading to exponential time 

complexity. This has necessitated the use of GAs to solve the Multiple Sequence Alignment problem resulting in 

improved results over the dynamic programming methods [15]. The determination of the risk factors of the 

Alzheimer's disease provides insights into the disease. Although statistical approaches have been used for this 

purpose, GAs have been more useful and efficient for identifying these factors since they are able to search 

combinations of variables when search space is large [16].  

Recent developments in design of experiments in Statistics have found GAs to be effective tools for 

optimum designs. In particular, desirable experimental designs that exploit the intrinsic capabilities of GAs have 

been produced. See Lin et al. (2015) for instances [17]. GAs have also been applied to optimizing pipe networks 

[18], Resource Economics problem [19], hydrological model (GASAKe) [20], surface electromyography signal 

[21], IIR digital filters [22] and Bayesian Networks [23]. 

The justifications for applying GAs are not well understood even with the numerous applications. 

Therefore, in this paper, we show the suitability of GAs for solving complex problems involving more than one 

variable with multiple modes and their ability to escape from being trapped in local optimal solutions. These are 

shown in the examination of the performance of GAs on special optimization test functions. The test functions 

are Rosenbrock function, Schwefel function, Rastrigin function and Shubert function.  

 

II. METHOD 
2.1 Simple Genetic Algorithm (GA) 

The GA handles a population of possible solutions represented by a set of chromosomes. It proceeds by 

coding all the possible solutions into chromosomes before determining reproduction operators. They are applied 

directly on the chromosomes, and are used to perform mutations and recombination. Each chromosome has an 

associated value that corresponds to the fitness of the solution [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of Genetic Algorithm 

 

2.1.1 Encoding and Selection 

Encoding is representing individual genes using bits, numbers, trees, arrays, lists or any other objects. 

The binary string uses bit string made up of zero (0) and one (1). Fig. 2 is an example of a binary string 

encoding. Every bit string is a solution but not necessarily the best solution.  
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Figure 2. A Population of four chromosomes 

 

Selection involves choosing individuals in the population for the next generation. It also determines 

number of offspring that will be created by each. The purpose of the selection is to derive fitter individuals in 

order to improve solution. The level of the fitness function determines the chances of an individual to be 

selected. 

In order to select fitter chromosomes for the mating pool, the proportional fitness (roulette wheel) 

selection method which selects parent by probabilities were applied. This means that the probability of selecting 

an individual is directly proportional to its fitness. This is a linear search through a roulette wheel with the slots 

in the wheel weighted in proportion to the individual's fitness values. The population is explored until a target 

value is reached. The roulette wheel constructs the relative fitness and cumulative fitness of chromosomes in its 

first stage. The relative fitness of each chromosome for a maximization problem is  
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where 
f k  is the fitness of the k-th chromosome, and n is population size while the expression for a 

minimization problem is: 
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and 

 

  1+ff=F imaxi      (3) 

where maxf  is the maximum fitness of all chromosomes and kF is the reverse magnitude fitness. 

 

The cumulative fitness (cj) of the j-th chromosome is given by Equation (4): 


j

=i

ij w=c
1

     (4) 

 

In the second stage, a random number, rj, is chosen and if rj > cj then the j-th chromosome is selected.  

 

2.1.2. Crossover 
Crossover is taking two parent solutions and producing children solution from them. Better offspring 

are created by applying crossover to the mating pool to enable the GA to converge. This involves randomly 

choosing some crossover points, copying every element before this point from the first parent and copying every 

element after the crossover point from the other parent. In particular, we choose two crossover points and the 

contents between these points are exchanged between two mated parents. The two points crossover enhance the 

performance of the GA by maintaining the building blocks while exploring the search space. The power of 

crossover operation to thoroughly explore the search space diminishes as the GA approaches convergence.  

A crossover probability of 1 implies all offspring must be made by crossover. If it is 0, then a whole 

new generation is to be generated from exact copies of chromosomes from old population. The new 
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chromosomes are intended to bear the good parts of old chromosomes so that the new chromosomes are 

better/fitter individuals. This informed the choice of 80% crossover probability in this research. 

 

2.1.3. Mutation 
Mutation maintains genetic diversity in the population generated from crossover. This enables the 

algorithm to escape from being trapped on local optimal solutions. The binary representation of the solutions 

suffices that a simple mutation of each gene with a small probability would be needed. A Bit flipping mutation 

was adopted in implementing the algorithm. This involves changing 0 to 1 and 1 to 0 based on a mutation 

chromosome generated. As illustrated in Fig. 3, a parent is considered and a mutation chromosome is randomly 

generated. For a 1 in mutation chromosome, the corresponding bit in parent chromosome is flipped (0 to 1 and 1 

to 0) and child chromosome is produced.  

 

 

 

 

 

 

 

 

Figure 3. Mutation flipping 

 

The mutations to existing parents or chromosomes are performed with a mutation probability. If 

mutation probability is 100%, the entire chromosome is changed, if it is 0%, nothing is changed. Thus, offspring 

are generated immediately after crossover in case the mutation probability is zero. However, if mutation is 

performed, one or more parts of a chromosome are changed. The mutation probability used to examine the 

simple GA in this work is 0.2 permitting diversity in the population of solutions. 

 

2.1.4. Replacement 
Once offspring are produced, the parent population is assessed with the offspring for possible 

replacement to form new set of solutions. The weaker parents are replaced in a weak replacement procedure to 

ensure optimum performance of the GA. This involves replacing a weaker parent by a strong child. For instance 

given two parents and two offspring, only the fittest two of the four individuals, parent or child form part of the 

new population. Replacing the weak parents with fitter children improves the fitness of the candidate population 

solution. 

 

2.1.5. Termination of Search 
The algorithm converges after a specified number of generations, a fixed time and a zero change in the 

fitness value over a specified number of consecutive generations. 

 

2.2 Test Functions 
Test functions enable the evaluation of optimization algorithms with respect to their convergence rate, 

robustness and precision. These functions belong to the class of multi-modal and multidimensional functions 

with large number of extrema. Examples of such functions are the Rosenbrock function [24], the Rastrigin 

function [25,26], the Schwefel function and the Shubert function [27]. 

 

2.2.1. Rosenbrock Function 
The Rosenbrock function (Fig. 4) given by Equation (5), has a global optimum that lies inside a long, 

narrow, parabolic-shaped flat valley.  

         82.048,2.041001
222

 yx,,xy+x=yx,f    (5) 

 

The convergence to the global optimum by search algorithms is difficult and hence this problem has 

been frequently used to test the performance of optimization algorithms. The minimum point causes a lot of 

problems for search algorithms such as the method of steepest descents which will quickly find the entrance to 

the valley and then spend several times searching from one side to the other. Such algorithms converge very 

slowly toward the minimum. 
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Figure 4. Overview of Rosenbrock function 

 

2.2.2. Rastrigin Function 

This function is highly multi-modal as illustrated in Fig. 5. Nevertheless, the locations of local minima 

are regularly distributed across the plot of the function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Overview of Rastrigin function 

 

The Rastrigin function is given by Equation (6). 
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2.2.3. Schwefel Function 

The Schwefel function is given by Equation (7). It is highly deceptive in that the global minimum is 

geometrically distant over the parameter space. That is the consecutive best local minima are distant from one 

another (See Fig. 6). This makes search algorithms falter in converging to the direction of the global minimum 

of the function. 
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Figure 6. Overview of Schwefel function 

 

2.2.4. Shubert Function 

The Shubert function is a multi-variable function with multiple modes making it difficult for several algorithms 

to easily obtain the optimal solution. The complex nature of the function is illustrated in Fig. 7. The Shubert 

function can be written as a function of two variables shown in Equation (8). 
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Figure 7. Overview of Shubert function 

 

III. RESULTS 

3.1. Performance Indicators of Algorithms 
The performance of the simple GA is measured by the values of the optimal solutions. The manual 

implementation of the GA is infeasible due to the huge population size that is generated at each stage of the 

algorithm. Therefore, the minima of the test functions were solved with MATLAB codes (MathWorks Inc., 2006) 

and the results were examined to ascertain the performance of the algorithm. For optimum performance of the 

algorithm, the initial population size was limited to 50. This ensures an effective exploration of search space and 

quick convergence.   

Furthermore, a maximum of 100 generations was specified since the generations hereafter do not produce 
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significant difference in the optimal values for each function. Nevertheless, the algorithm stops when there are 

no improvements in the optimal value after 50 consecutive generations. This accounts for the limit on the stall 

generations. It must, however, be stated that there is no perfect way for setting parameters except by 

experimental training which have been conducted [28]. Therefore, the choice of these parameters and the others 

are well justified. 

 

3.2. Performance on Test Functions 
The minima of the Rosenbrock function, Rastrigin function, Schwefel function and Shubert function 

are presented in Table 1. The minima of all the functions were reached at the end of 51 generations and at a 

point where the average change in fitness values were less than the tolerance,
-6101 . 

 

Table 1. Results of Mimina of functions 
Function Number of decision 

Variables 
Optimal solution Optimal value 

Rosenbrock 2 1.0070, 1.0140 0.0000 

Rastrigin 1 0.0000 0.0000 

Rastrigin 5 0.0125, 0, -0.0*, 0.001, -
0.0* 

0.0309 

Schwefel 1 420.9618 -418.9829 

Schwefel 10 
V11410  

114107620.4 
 

Shubert 1 -0.2001 -14.5080 

Shubert 3 -0.1887, -0.2017, -0.2258 3103.0246  

                     Vector, V = (-0.0*,0.0*,-0.0*,-0.0*,-0.0*,0.0*,-0.0*,-4.9300,-0.0*,0) 

                     * value is not zero 

 

The simulations of the search for best fitness values were investigated. In search for best fitness values 

from the initial values, it was revealed that though the fitness values for the population differed greatly, the GA 

was able to identify the best value at each stage of the search. For instance, the search for the minimum of the 

Rosenbrock function identified a mean fitness value of 30 though the optimal value was about zero (0) in the 

first generation. Details of similar observations at each stage of the search are presented in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. A simple Genetic Algorithm search for optimal value of the Rosenbrock function. The best fitness 

value overall the generations was approximately zero (0) and the mean fitness value over all generations was 

68.3697.  

 

Although the simple Genetic Algorithm began with a poor initial randomly generated population of 

solutions having achieved a mean fitness value of 9.6 for the Rastrigin function, it achieved the expected 

optimal value from the beginning of the search over 51 generations. Details of these observations and the 

thorough search through the regularly distributed modes of the Rastrigin function are presented in Fig. 9. 
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Figure 9. The blue plot is mean fitness for generation and the black plot is the best fitness for 

generation. A simple Genetic Algorithm search for optimal value of the Rastrigin function.  

 

The nature of the simple GA search for the optimal value of the Schwefel function was also 

investigated. It was revealed that though an optimal value of -418.9829 was achieved after 51 generations, the 

best initial value at the first stage of the search was about zero which coincided with the mean fitness value. The 

progress of the search for the minimum of the Schwefel function from the initial optimal value to the final 

optimal value at the end of 51 generations are presented in Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. A simple Genetic Algorithm search for optimal value of the Schwefel function. The blue plot is mean 

fitness for generation and the black plot is the best fitness for generation. 

 

Besides these exploratory abilities shown by the GA, it was able to identify the optimal value of the 

Shubert function. In particular, after 38 generations, the mean fitness value of population coincides with the 

optimal value at subsequent generations. Fig. 11 presents details of the search for the best minimum of the 

Shubert function. 
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Figure 11. A simple Genetic Algorithm search for optimal value of the Shubert function. The blue plot is mean 

fitness for generation and the black plot is the best fitness for generation. 

 

IV. DISCUSSION 
The Rosenbrock function had the optimal value of zero which occurred at the point (1.0070, 1.0140). 

The results of the Rosenbrock function confirms results in the literature that it has a minimum value of zero 

occurring at (1, 1) [27]. The simple GA obtained this optimal value at the 51st generation in 2.35 seconds. This 

implies that though the Rosenbrock function has an optimal value difficult to achieve by classical optimization 

techniques, the precision of GA is proved by the optimal value it achieved. In addition, the simple GA has quick 

convergence rate. This is justified by the time the GA used to achieve the optimal value of zero. Thus, GA 

performs a thorough search to find near optimal value of the Rosenbrock function within a shorter time escaping 

most possible traps of local minima.  

The exploratory nature of the GA search for best minima of the Rosenbrock function is described in Fig. 

8. Though the minimum of the function is found in a valley, the average mean fitness values depict that the 

algorithm proved robust during the search as it had to choose from high and low fitness values at consecutive 

generations. For instance, after 21 generations, the mean fitness was zero but it increased to about 171 after the 

47th generation. The algorithm proved robust achieving the optimal value at the end of 51 generations. These 

varying mean fitness values of the Rosenbrock function indicate that the function is complex. 

The global minimum for an n-dimensional Rastrigin function has been found to be zero (0) at  0ix  

for i =1, 2, …, n [27]. The Simple GA found the minimum value of the single-variable Rastrigin function to be 

zero and it occurred at zero. The optimal value of the Rastrigin function of five variables was zero. These values 

are indications of the accuracy of the GA to achieve optimal values within shorter time limits. 

The robustness of the GA was proved by the nature of its exploration over search space whose minima 

are regularly distributed across the Rastrigin function (See Fig. 9). Although the algorithm started with a poor 

mean fitness value due to the nature of the function, it converged in subsequent generations until the 51
st
 

generation where it achieved the optimal value of the Rastrigin function (See Fig. 9). Thus, precision of the near 

optimal values make GAs robust and highly recommended for solving complex optimization problems. 

The accuracy of GA was proved when it located the minimum of a single-variable Schwefel function at 

420.9618 with an optimal value of -418.9829 in 23.02 Seconds. In the literature, the global minimum for an n-

dimensional Schwefel function is -418.9829n at xi = 420.9618 for i = 1, 2,…,n [27]. The GA further revealed the 

minimum of the Schwefel function of 10 variables which are presented in Table 1.  

Despite the deceptive nature of the Schwefel function having consecutive best local minima distant 

from one another (See Fig. 6), the GA was able to produce the best minimum value as in the literature. These 

suggest that GAs are robust, efficient and do not compromise on time of search. In Fig. 10, it is shown that 

though the search was unstable in the initial generations of the search, it stabilizes at the end of the 20th 

generation. It converged to the optimal value from the 25th generation to the 51st generation. These prove the 

suitability of the GA to solve problems of such nature. These results provide enough justifications for the use of 
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GA for optimizing complex and multi-variable problems.  

The simple GA found the minimum of a Shubert function to be -14.5080 at -0.2001. This value was 

reached at the 51st generation when the stopping criterion was satisfied. In general, the global minimum for an 

n-dimensional Shubert function is multiple of -14.5080 [27]. Further results with n = 3 is presented in Table 1.  

The robustness of the GA was proved further by the search for the optimal value of complex Shubert 

function (Fig. 7). Though the simple GA started with a poor mean fitness value due to the nature of the function, 

it was able to keep the best fitness throughout other generations until a better value was found. This resulted in 

repeated optimal values from the 15th generation to 44th generation. This is due to the selection criteria that 

were implemented by the algorithm. These results indicate the ability of the GA to exhaustively search for the 

near optimal value of a single variable shubert function. Thus, based on the performance of the GA on the 

Shubert function, they show they are robust and accurate while maintaining good search over short time. 

The results answer skepticism of Wang (1991) and others as to the efficiency and robustness of GAs 

[29,30]. Furthermore, the results prove that GAs easily escape from millions of local optima and reliably 

converge to a single value close to the optimum which was suggested in [31]. 

 

V. CONCLUSION 
The simple GA has provided good solutions to the test functions. Except for some randomization of the 

initial population especially when set distant from a local optimum, the time taken by the algorithm to complete 

each search is small. GAs are therefore robust, works with precision and has quick convergence to the direction 

of the global optimum making them more desirable for complex search problems.  
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