

Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hierarchy Process (Ahp)

Shashikant Tamrakar¹, Dr. Ajay Tiwari², Praveen Tandon³

¹(Mechanical Engineering Department, /Dr. C.V. Raman University, India) ²(Principal, Rungta Engineering College / Dr. C.V. Raman University, India) ³(Mechanical Engineering Department, / Dr. C.V. Raman University, India)

ABSTRACT: In this paper the maintenance activities of the Machine shop of Steel plant have been considered. As maintenance is a routine activity to keep a machine at its normal operating condition so that it can deliver its expected performance without causing any loose of time on account of accidental damage or breakdown and maintenance is a recurring activity. So for reduction of maintenance cost and safety of the operator as well as the residents of nearby area it is better to decide which machines should go for which type of maintenance. For this decision AHP is used and the Expert choice software is used for that calculations and this paper is for the validation of results.

Keywords: AHP Analytic Hierarchy process, Bath Tub Curve, Opportunistic maintenance, Consistency ratio.

I. INTRODUCTION

The oldest and most common maintenance and repair strategy is "fix it when it breaks". The appeal of this approach is that no analysis or planning is required. The problems with this approach include the occurrence of unscheduled downtime at times that may be inconvenient, perhaps preventing accomplishment of committed production schedules. But when an unscheduled downtime occurs it has more serious consequences in applications such as aircraft engines. So these problems provide motivation to perform maintenance and repair before the problem arises. Now simplest approach is to perform maintenance and repair at pre-established intervals, defined in terms of elapsed or operating hours.

Maintenance is a routine activity to keep a machine at its normal operating condition so that it can deliver its expected performance without causing any loose of time on account of accidental damage or breakdown and maintenance is a recurring activity. For any machine the failure rate as unit age over time and repeatedly obtain a graph is called as its shape like bath tub.

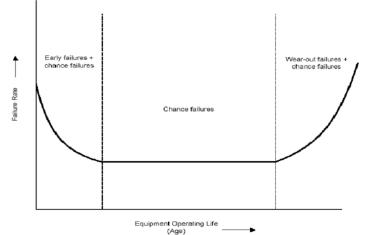


Figure 1. Illustrates the typical incidence of failure over the life of equipment.

At this bath tub curve the left, so-called "infant mortality" failures are plotted. Failure rates are low throughout the useful life of a piece of equipment, and rise towards the end of life. This curve however doesn't

capture the complex interactions between the components of a system and is loosely based on the assumption that the system progresses (or deteriorates) deterministically through a well defined sequence of states (however, the curve might in some cases be valid even if the sequence is not well defined). This assumption is not true especially in the case of discrete manufacturing systems and other complex environments where seemingly random failure behaviour is a function of the changes in the work content, schedule and environment effects, as well as unknowable variations between nominally identical components or systems. The only way to minimize both maintenance and repair costs and probability of failure is to perform ongoing assessment of machine health and ongoing prediction of future failures based on current health and operating and maintenance history. This is the motivation for prognostics: minimize repair and maintenance costs and associated operational disruptions, while also minimizing risk of unscheduled downtime.

Types Of Maintenance: - There are number of maintenance activities as under

- (1) **Preventive Maintenance:** This type of maintenance activity performed on any machine when that is going to breakdown. Then it is very important to stop the machine before breakdown. Any experienced operator or foreman may be able to take any decision for stopping the machine. Some guidelines given in the machine O&M and any previous accident in experience are the input to decision of stopping any machine. So there is no written brochure for this type of maintenance. Preventive maintenance is the strategy organized to perform maintenance at predetermined intervals to reduce the probability of failure or performance degradation.
- (2) Corrective Maintenance: When inspection shows that corrective action is necessary the machine tool should be withdrawn from production. As the object of this inspection is to take action before a failure occurs, such action should be taken as quickly as possible, as, however, the machine is still capable of producing satisfactory work; this action can be taken at a time to meet both the convenience of production and the maintenance department.
- (3) **Opportunistic Maintenance**: It means the opportunity to maintenance so this type of maintenance in the machine or plant that are already in Breakdown maintenance or when the machine is not having any work, then carried out.
- (4) **Breakdown Maintenance**: In all the plant number of general purpose machines are available they are not so costly. So these machines are generally left for breakdown maintenance like Pumps, compressors, lathes drilling milling machines etc.

Maintenance is a legacy practice: maintenance only after the manifestation of the defect, breakdown or stoppage. It is appropriate in facilities where the installed machinery is minimal and the plant is not totally dependent on the reliability of any individual machine.

Sr. No.	Type of Maintenance	% of Machines covered
1.	Preventive Maintenance	25
2.	Corrective Maintenance	20
3.	Opportunistic Maintenance	10
4.	Breakdown Maintenance	45

In any heavy work shop the type of maintenance carried by different studies are as follows:

Now it is a laborious work to select which type of machine should go for Preventive maintenance, Corrective, Opportunistic and Breakdown maintenance. So it is better if we use any software or related thing, in search of this I find AHP that may be suitable for this purpose.

II. OBJECTIVE

Validate the result of maintenance policies of machines find by AHP. The Analytical Hierarchy Process (AHP) is a decision making method developed by T. L. Saaty. It aims at quantifying relative priorities for a given set of alternatives on a ratio scale, based on the judgment of the decision-maker, and stresses the importance of the intuitive judgments of a decision-maker as well as the consistency of the comparison of alternatives in the decision-making process. Since a decision-maker bases judgments on knowledge and experience, then makes decisions accordingly, the AHP approach agrees well with the behaviour of a decision maker. The strength of this approach is that it organizes tangible and intangible factors in a systematic way, and provides a structured yet relatively simple solution to the decision making problems.

Analytical Hierarchy Process (AHP) is generally used for the making priority of anything (like purchase of any Robot, Air condition, car or even any machine). So for the selection of one type of maintenance activity to be adopted in one machine is to be priorities for all 270 machines. AHP is used in many different type of activities from selecting any fruit for eating to the prioritising the activities of difference (like selection of missile, tanks, radar etc.) also for selection of any investment decision, selection of any strategy etc.

Its validity is based on the many hundreds (now thousands) of actual applications in which the AHP results were accepted and used by the cognizant decision makers (DMs).

III. METHODOLOGY

AHP is a viable, usable decision-making tool. Saaty $[24\pm27]$ developed the following steps for applying the AHP:

- 1. Define the problem and determine its goal.
- 2. Structure the hierarchy from the top (the objectives from a decision-maker's viewpoint) through the intermediate levels (criteria on which subsequent levels depend) to the lowest level which usually contains the list of alternatives.
- 3. Construct a set of pair-wise comparison matrices (size n x n) for each of the lower levels with one matrix for each element in the level immediately above by using the relative scale measurement shown in Table 1. The pair-wise comparisons are done in terms of which element dominates the other.
- 4. There are n (n-1)/judgments required to develop the set of matrices in step 3. Reciprocals are automatically assigned in each pair-wise comparison.
- 5. Hierarchical synthesis is now used to weight the eigenvectors by the weights of the criteria and the sum is taken over all weighted eigenvector entries corresponding to those in the next lower level of the hierarchy.
- 6. Having made all the pair-wise comparisons, the consistency is determined by using the eigenvalue, λ_{max} , to calculate the consistency index, CI as follows:

 $CI = (\lambda_{max} - n) \ddagger /...(n-1) \ddagger$

where n is the matrix size. Judgment consistency can be checked by taking the consistency ratio (CR) of CI with the appropriate value in Table 2. The CR is acceptable, if it does not exceed 0.10. If it is more, the judgment matrix is inconsistent. To obtain a consistent matrix, judgments should be reviewed and improved.

7. Steps 3 ± 6 are performed for all levels in the hierarchy.

2

1

Numerical Rating	Verbal judgments of preferences
9	Extremely preferred
8	Very strongly to extremely
7	Very strongly preferred
6	Strongly to very strongly
5	Strongly preferred
4	Moderately to strongly
3	Moderately preferred

Equally to moderately Equally preferred

Table 1 Pair wise comparison scale for AHP preferences

 Table 2. Average random consistency (RI)

1 40	IC 2. 1	ivera _z	50 ran	uomic	Jusie	ncy (n	1)			
Size of	1	2	3	4	5	6	7	8	9	10
Matrix										
Random	0	0	0.5	0.9	1.12	1.24	1.32	1.4	1.45	1.49
consistency			8					1		

Now days, number of software are available and calculations are faster and decision making is easier and one can review the decisions. *Expert Choice* Software has been used for calculation.

IV. CALCULATION

4.1 Details of machine shop:- A total of about 270 machine tools and other equipments are installed out of which 135 machines are earmarked in direct production group viz.

Sr. Number	Name of Machine	Quantity
1	Heavy & Medium Lathe	32
2	Light Lathe	35
3	Vertical & Horizontal Boring Machine	21
4	Slotting & Drilling Machine	12
5	Shaping & Planning Machine	11
6	Milling & Gear Cutting Machine	24

Table 3. Machines in Machine Shop

Remaining machine tools are to contribute indirectly towards production. There are 16 heat treatment / heating furnaces. Material handling equipments provided in all the bays include EOT, Jib, Telphers, Electrical transfer cars to connect different bays of machine shop and 2 cranes has been in open Gantry of CPD along with a battery trolleys etc. Railway wagons can inter into assembly bay at one end for the transportation of heavy spares and assemblies.

	Table 4:- Details of		
Sr. No.	Grade I(High Grade)	Grade II	Grade III
1.	Lt07	Lt04	Lt01
2.	Lt13	Lt05	Lt02
3.	Lt15	Lt06	Lt03
4.	Lt20	Lt08	Lt11
5.	Lt23	Lt09	Lt12
6.	Lt28	Lt10	Lt14
7.	Lt30	Lt16	Lt21
8.	Lt32	Lt17	Lt33
9.	Lt37	Lt18	Lt34
10.	Lt40	Lt19	Lt41
11.	Lt56	Lt22	Lt42
12.	Lt58	Lt24	Lt44
13.	Lt61	Lt25	Lt45
14.	Lt66	Lt26	Lt53
15.		Lt27	Lt54
16.		Lt29	Lt62
17.		Lt31	Lt63
18.		Lt35	
19.		Lt36	
20.		Lt38	
21.		Lt39	
22.		Lt43	
23.		Lt46	
24.		Lt47	
25.		Lt48	
26.		Lt49	
27.		Lt50	
28.		Lt51	
29.		Lt52	
30.		Lt55	
31.		Lt57	
32.		Lt59	
33.		Lt60	
34.		Lt64	
35.		Lt65	
36.		Lt67	

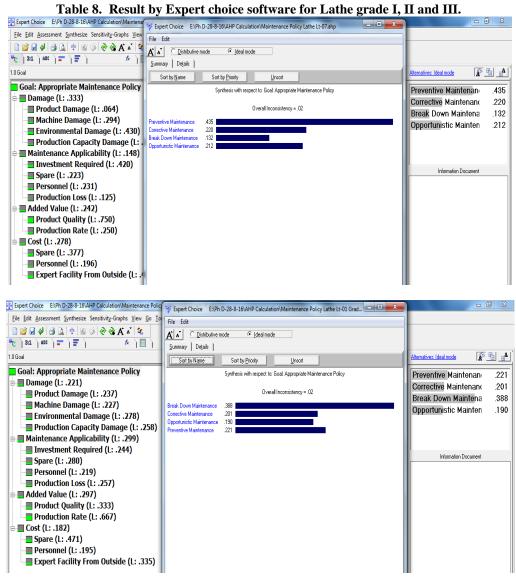
Table 4:- Details of Lathe Machine (Grading)

Cable 5:- Preventive Maintenance Schedule for machines as under	
uble e . The condition maintenance benediate for machines as ander	•

Date	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec
1	Bv03		Lt23		v	Lt35	Lt07	0		Lt30	Lt60	
2	Lt07		Dr02	Bv08	Lt27		Bv03	Lt15	Lt50	Bv08		Lt65
3		Lt15				Lt56			Bh07	Bg06	Lt37	
4	Bh02			Lt30	Lt29		Gs01	M107	Lt61		Sh06	M108
5	Dr01	Bg04	Pl02		Bv09				Bg07	Bh06		
6					Lt37		Bh02					
7						Bh05				M101		
8	Gs01		Lt16	Gf01	Dr04		M103		Bg08			
9				S102								Sh08
10			Lt61				Sh04		Sh05			Lt58

Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hierarchy Process (Ahp)

11	Lt04	S103	Bh04							Bv09		
12				Bh06		Lt36				Lt55	Lt40	
13	Lt05	Lt08	Gs02					Lt47	P102			
14		Bv01		Lt18	Bv04	Lt58		Bv05		Lt57		Bv06
15	Lt06	Lt09	Bg01		Lt31			Lt48				Bv12
16		Bv07		Lt19	Bv12		Lt13	Bv07		Lt32		
17	Lt13	Lt10			Lt40	Bg03		Lt20	Lt51			
18		M102		Lt22	Sh03		Dr05					
19		Lt20	Lt17						Lt28			
20				Lt32		Bg05						Lt66
21			Lt28						Dr06	S104		
22	Sh02		Bg02			Lt38						Pl01
23				M101							Dr08	
24		Gf02				Lt66	Bg04	S103				Bh08
25	M103		Sh05					Lt49		Gf01		
26					M106		Lt39				Lt64	
27								Lt23				
28							Lt43			Lt59	Lt56	
29				Bg06								
30							Lt46		Lt52			Lt67
31												


4.2 Testing of Machine :- The machines of shop are tested as per the rules given below :-**Table 6. Testing of Lathe: -** Test chart for finish turning Lathe up to 400mm height of c

Geometrical Test	1. Test to be applied – Bed	Permissible Error (mm)
	Bed straight in longitudinal direction apron side (convex	0 - 0.02 per
	only)	1000mm
	Same opposite (concave only)	0.02 per
		1000mm
	Bed level in transverse direction	$\pm 0.02^{*}$ per
		1000mm
	Straightness of sideways (for machines of more than 3m	0.02 per
	turning length only; measurements taken by measuring	1000mm
	taut wire and microscope or long straight edge.)	
	Tailstock guideways parallel with movement of carriage	0.02 per
		1000mm
	2. Test to be applied – Work	Permissible
	Spindle	Error (mm)
	Centre point of true running	0.01
	Centre sleeve for true running	0.01
	Work spindle for axial slip, measured at 2 points,	0.01
	displaced by 180 ⁰	
	Taper of work spindle runs true	0.01
	(a) Nearest spindle nose	0.03
	(b) At a distance of 300 mm	
	Work spindle parallel with bed in vertical plane (rising	0 to 0.2 per 300
	towards the free end of mandrel only)	mm
	Work spindle parallel with bed in horizontal plane (free	0 - 0.02 per 300
	end of mandrel inclined towards the direction of tool	mm
	pressure)	
	3. Test to be applied – Carriage	Permissible
		Error (mm)
	Movement of upper slide parallel with work spindle in	0.03 per 150mm
	vertical plane (hand free)	I I I I I I I I I I I I I I I I I I I
	When automatic feed is provided in vertical plane	0.03 per 300 mm
	In horizontal plane	0.02 per 300 mm
	4. Test to be applied – Tailstock	Permissible
	**	Error (mm)
	Tailstock sleeve parallel with bed in vertical plane (front	0 to 0.02 per
	end rising)	100mm
	Same in horizontal plane (front end inclined towards the	0 to 0.01 per
	direction of tool pressure)	100mm
	Cone of sleeve parallel with bed in vertical plane (free	0 to 0.03 per
	end of mandrel rising)	300mm

* Either + or - on full length, no twist permitted.

	Τa	ıbl	e 7:	-M	lach	ine	Runni	ng	Tin	ne R	leadi	ngs	fro	om	06/01	/201	15 tc	o 30)/07/ 20)15	
	9	- 0	¥ •)	₹	-		-								Mc runnin	ig Tim	e Lath	e Grac	le I - Micro	soft Ex	cel
9	Home		Insert		Page	Layo	it Formu	las	Dat	ta	Review	1	View								
-	K Cut									_	_	~	ı L	_ .	Nrap Text						-
		οv		C	alibri		• 11 •	A	A		= =	\$\$/~~		="	/vrap Text		Gei	neral			
Paste		-	Painter		BI	U	- 🖽 - 🗳) - I	A -			*		+a+	Merge & Ce	enter 🔻	\$	- %	· · · · · · · · · · · ·	.00	Condition
	Clipboar		5				Font		5			Aliz	gnme	nt		5		Nu	mber	6	Formattin
		u							-)(Aug	grinic				0	ING	mber		
	A1 A B		С	• ((E	j F G	¥ H	1	J	LZ.	1		M	N	0	Р	G	RS	т	U	V
1	м В		L	U	E	FБ	H		J	ĸ	L		191	N		Р	ų	RS		0	V
2						the - l												athe - L			
3	Sr.		late		luction	Sr.	Date		duction					Sr.	Date	Produ		Sr.	Date		duction
4 5	No 1		#####	1ime 19	(Hr:Min) 40	No 31	15/04/2015	1ime 18	e (Hr:Min 20	<u> </u>				No.	06/01/2015	Time (h	1r:Min) 10	No.	15/04/2015	118	e (Hr:Min) 30
6	2		*****	20	30	32		20	10	-				2	07/01/2015	19	10	31		18	20
7	3		#####	19	50	33		19	20	-				3	09/01/2015	20	40	33	22/04/2015	18	55
3	4		1/2015	19	0	34		19	50	1				4	10/01/2015	20	20	34	23/04/2015	20	20
Э	5		1/2015	19	15	35		18	40					5	14/01/2015	19	50	35	24/04/2015	19	30
	6		1/2015	20	40	36		20	40					6	15/01/2015	18	40	36	25/04/2015	19	55
I	7		1/2015	19	20	37	05/05/2015	19	20	_				7	17/01/2015	0	0	37	05/05/2015	18	50
2	8		##### ######	20 19	10 15	38		20 19	10	-					20/01/2015	0	0	38	08/05/2015	20 19	40
) 	10		*****	20	40	40		13	40	-				10	22/01/2015 23/01/2015	19	40	40	09/05/2015	10	40
5	11		#####	19	30	4		19	20	-					30/01/2015	20	10	40	15/05/2015	18	50
6	12		1/2015	18	40	42		19	30	-				12		19	15	42	22/05/2015	19	10
7	13	###	#####	19	20	43	23/05/2015	20	20					13	******	18	40	43	23/05/2015	18	20
3	14	###	#####	20	30	44	24/05/2015	19	20					14	******	20	30	44	24/05/2015	18	40
9	15		#####	21	40	45		20	50							18	40	45	04/06/2015	18	50
0	16		#####	20	10	46		19	30	_				16	13/02/2015	19	50	46	10/06/2015	20	30
1	17		##### #####	19 20	25 40	47	11/06/2015	18 19	30	_				17	14/02/2015	20	10 20	47	11/06/2015	20 19	40
3	10		*****	20	10	40		20	55	-				18	******	18	10	40	13/06/2015	19	10
4	20		#####	19	30	50		19	0	-				20		20	30	50	22/06/2015	18	20
5	21		#####	18	40	5		18	45	-				21	########	19	50	51	23/06/2015	18	35
6	22	###	#####	20	20	52		0	0					22	*******	20	50	52	03/07/2015	19	10
7			#####	19	20	53		0	0					23		18	0	53		19	50
8	24		#####	18	40	54		19	40						17/03/2015	19	40	54	15/07/2015	20	10
9	25		#####	19	50	55		20	20	-				25	19/03/2015	18	20	55	17/07/2015	0	0
0	26		##### #####	20 19	40	56	20/07/2015	19 18	40	-				26	*******	20 19	10 50	56	18/07/2015	0	0
2	28		*****	18	50	58		19	20	-				28	******	18	20	58	21/07/2015	0	0
3	20		#####	20	30	53		18	30	-				29	*******	19	50	59		19	40
4			#####	19	20	60		19	10	1					******	19	40	60		20	10
5				18	20											18	30				
36				20	10											18	20				
7				19	20	Av	g = 18Hr 58 Min									18	55	Avg	= 17Hr 03 Min		
8				19 18	50 40											20	20 30				
a I ▲ ▶	→ Sh	eet1	L / Sh	ieet/		neet	2										.50			_	
leady	_				-															Ave	rage: 825
						-		T			-	_	_		_						,
-				2		0	W		X												
			<u> </u>						لسب												

+				Auto Fill	oSum • 🛔	1	ñ.		C		E	F	G
inser	t Delete	Forma	t	Clea	Sor		Find & Select *		Average F	roduction II	me of Lati	nes of Grade I	
	Cells				Editing		Select		Sr. No.	Lathe No.	Avg. Tin	ne (Hr. Min.)	
								≈	1	Lt07	18	58	1
Z	AA	AB	AC A	AE AE	AF	AG	AH	-	-	107	10		
			Lat	ne - Li	:15				2	Lt13	17	3	
Sr.	Date	Produ		Sr.	Date		duction		<u> </u>		17	<u> </u>	
No.		Time (h		No.			e (Hr: Min)		3	Lt15	18	56	
1	******	20	40	31		20	50	- 11	5	1 115	10	50	
2	******	19 20	20 30	32	18/04/2015 22/04/2015	19 20	10 20	- 11	4	1420	10	6	
4	******	19	10	34	23/04/2015	19	50		4	Lt20	19	6	
5	******	19	15	35	24/04/2015	20	40					_	1
6	******	19	40	36		20	40		5	Lt23	19	0	
7	******	20	40		05/05/2015	19	10		-			_	-
8	******	18	10		08/05/2015	18	10	- 11	6	Lt28	18	58	
9	******	18	15		09/05/2015	20	20	- 11			10		
10	*******	20	40 30	40	14/05/2015 15/05/2015	20 19	40 50	- 11	7	Lt30	19	16	
12	******	19 20	40	41		20	10	- 11	/	LL30	19	10	
13	******	20	0	43		19	20		-			_	
14	******	0	ŏ	44		18	40		8	Lt32	19	7	
15	******	19	40			19	50		-				4
16	******	20	10	46		20	30		9	Lt37	18	49	
17	******	18	15	47	11/06/2015	19	30			2007	10		
18	*****	20	40	48		19	20		10	Lt40	19	12	
19	******	19	10		13/06/2015	19	55		10	LL40	19	12	
20	*******	18 19	40		22/06/2015 23/06/2015	18 19	35 55		4.4	1.50	4.0	-	
22	******	18	10		03/07/2015	18	55		11	Lt56	19	3	
23	******	19	15		04/07/2015	19	50		-				1
24		18	40		15/07/2015	18	40		12	Lt58	19	40	
25	*****	20	50	55	17/07/2015	20	40						-
26	*****	19	10	56		20	40		13	Lt61	19	21	
27	******	20	20	57	20/07/2015	20	10		10	101	1.7	21	
28		19	50 10		21/07/2015	18	20 25		14	Lt66	10	29	
30		18 19	20		29/07/2015 30/07/2015	18 19	40		14	LTOD	19	29	
30	******	20	50	100	3010 112015	13	40						
		19	10								260	358	25.5714
		20	20	Ave	= 18Hr 56 Min								
		19	50	_									10 571/
		20	40				•		3 / 🞾 /				
Sum:	35493417.	47	▦ (□) !	JU) 7	0% 😑			(+)					
Jann	551551211					~							
					📴 🎿 🍕	ຄ	12:31 PM 09/10/2005			X			

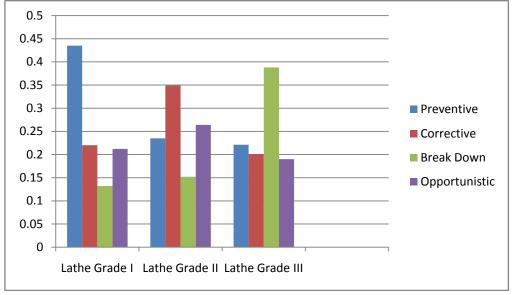


		Table 9	:- Results of Ma	aintenance Polio	cies	
Sr. No.	Machine Name	Grade		Priorities fo	or type of Maintenanc	e
			Preventive	Corrective	Break Down	Opportunistic
1	Lathe	Ι	0.435	0.220	0.132	0.212
2	Lathe	II	0.235	0.349	0.152	0.264
3	Lathe	III	0.221	0.201	0.388	0.190
4	Boring Machine Horizontal	I	0.496	0.236	0.125	0.143
5	Boring Machine Horizontal	п	0.188	0.461	0.097	0.254
6	Boring Machine Horizontal	III	0.162	0.191	0.511	0.137
7	Boring Machine Vertical	I	0.488	0.224	0.127	0.161
8	Boring Machine Vertical	п	0.166	0.509	0.076	0.249
9	Boring Machine Vertical	ш	0.162	0.191	0.501	0.147
10	Slotting Machine	Ι	0.502	0.190	0.113	0.195
11	Slotting Machine	II	0.246	0.276	0.083	0.395
12	Slotting Machine	III	0.186	0.148	0.448	0.218
13	Shaper	Ι	0.457	0.216	0.122	0.205
14	Shaper	II	0.195	0.462	0.110	0.234

Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hierarchy Process (Ahp)

15	Shaper	III	0.152	0.191	0.521	0.137
16	Planner	I	0.526	0.217	0.089	0.168
17	Planner	II	0.199	0.510	0.088	0.204
18	Planner	III	0.152	0.182	0.557	0.109
19	Milling Machine	Ι	0.369	0.255	0.111	0.265
20	Milling Machine	II	0.207	0.380	0.135	0.278
21	Milling Machine	III	0.201	0.188	0.440	0.172
22	Bevel Gear	I	0.476	0.157	0.138	0.229
23	Bevel Gear	П	0.185	0.468	0.073	0.274
	Gear Shapping		01200	01100	01070	0.271
24	Machine	I	0.529	0.145	0.127	0.199
	Gear Shapping	-	0.02	012 10		01277
25	Machine	п	0.140	0.533	0.108	0.219
	Gear Shaving		011 10	0.000	0.100	0.217
26	Machine	I	0.475	0.205	0.092	0.227
	Gear Shaving	-		01202	0.072	0.227
27	Machine	п	0.175	0.478	0.073	0.274
	Gear Hobbing		01170	0.170	0.070	0.271
28	Machine	I	0.546	0.207	0.100	0.146
	Gear Hobbing		0.240	0.201	0.100	0.140
29	Machine	п	0.183	0.511	0.081	0.225
	Gear Hobbing		0.105	0.011	0.001	0.225
30	8	ш	0.166	0.174	0.555	0.105
30	Machine	III	0.166	0.174	0.555	0.105

Chart 1 :- Bar Chart Showing Lathe maintenance strategy of grade I,II, and III

V. CONCLUSION

The result of Lathe of Grade-I the priorities are 0.435 comes first for Preventive maintenance, 0.220 second corrective, 0.212 third opportunistic and 0.132 forth breakdown maintenance, similarly for other grade and different machines are shows in table 9. Chart 1 shows the Bar Chart Showing Lathe maintenance strategy of grade I,II, and III. Lathe grade-I should maintain Preventive, Lathe grade-II is corrective and Lathe grade-III got his first priorities on breakdown maintenance.

REFERENCES

- Thomas L. Saaty, (2008), Decision making with the analytic hierarchy process, Int. J. Services Sciences, Vol. 1, No. 1, 83-98, Inderscience Enterprises Ltd.
- [2]. Subhajyoti Ray, (2007), Analytical Hierarchy Approach to the Selecting a Doctoral Dissertation, International Journal of Doctoral Studies Volume 2,
- [3]. Z. Srdjevic, V. Kolarov and B. Srdjevic, (2007), Finding the Best Location for Pumping Stations in the Galovica Drainage Area of Serbia: the AHP Approach for Sustainable Development, John Wiley & Sons, Ltd and ERP Environment, Business Strategy and the Environment Bus. Strat. Env. 16, 502–511 (2007) Published online in Wiley Inter Science (www.interscience.wiley.com) DOI: 10.1002/bse.598
- [4]. Chun-Chin Wei, Chen-Fu Chien, Mao-Jiun J. Wang*,(2005), An AHP-based approach to ERP system selection, International Journal of Production Economics 96 Pg.47–62

- [5]. Ozden Bayazit , (2005), Use of AHP in decision-making for flexible manufacturing systems, Journal of Manufacturing Technology Management Vol. 16 No. 7, pp. 808-819
- [6]. A. Ishizaka and M. Lusti, (2004), An expert module to improve the consistency of AHP matrices, International Transactions In Operational Research., 11 97–105
- [7]. Malcolm Beynon, (2002), DS/AHP method: A mathematical analysis, including an understanding of uncertainty, European Journal of Operational Research 140 148–164
- [8]. Jiaqin Yang and Ping Shi, (2002) Applying Analytic Hierarchy Process in Firm's Overall Performance Evaluation, International Journal Of Business, 7(1), Issn:1083-4346
- [9]. Maggie C.Y. Tama, V.M. Rao Tummalab, (2001), An application of the AHP in vendor selection of a telecommunications system, Elsevier Science Ltd., International Journal of Management Science Pg. 171-182.
- [10]. John Jackson, Prioritising customers(2001), and other stakeholders using the AHP, European Journal of Marketing, Vol. 35 No. 7/8, pp. 858-871.
- [11]. Kamal M. Al-Subhi Al-Harbi , (2001), Application of the AHP in project management , International Journal of Project Management , Pg. 19-27.
- [12]. Adolfo Crespo Marqueza, Jatinder N.D. Guptab, (2006), Contemporary maintenance management: process, framework and supporting pillars, Omega 34 313 326.
- [13]. CHUA SJL, Ali AS, Alias AB, (2015), Implementation of Analytic Hierarchy Process (AHP) decision making framework for building maintenance procurement selection, Eksploatacja i Niezawodnosc –Maintenance and Reliability 7–18.
- [14]. Doraid Dalalah *, Faris AL-Oqla, Mohammed Hayajneh, 2010, Application of the Analytic Hierarchy Process (AHP) in Multi Criteria Analysis of the Selection of Cranes, Jordan Journal of Mechanical and Industrial Engineering, Pg. 567-578.
- [15]. Liberatore MJ. (1987), An extension of the analytic hierarchy process for industrial R& D project selection and resource allocation. IEEE Transactions on Engineering Management; EM-34(1):Pg. 12-8.
- [16]. Liberatore MJ, Nydick RL, Sanchez PM, (1992), The evaluation of research papers (or how to get an academic committee to agree on something). Interfaces; 22(2):Pg. 92-100.
- [17]. Forman EH, Saaty TL, Selly MY, Waldron R. (1983), Expert choice. McLean, VA: Decision Support Software.
- [18]. McLean, VA(1986) Expert choice: Decision Support Software.
- [19]. Tummala VMR, Wan YW. Analytic hierarchy process (AHP) in practice: a survey of applications and recent developments, Journal of Mathematical Modelling and Scientific Computing 1994;3(1):1-38.
- [20]. Despodov Zoran1, Mitić Saša2, Peltečki Dragi3,(2011), Application of the AHP method for selection of a transportation system in mine planning, Underground mining engineering, Pg. 93-99.