
 

                  International 

OPEN      ACCESS                                                                                                 Journal 

Of Modern Engineering Research (IJMER) 

 

 
| IJMER | ISSN: 2249–6645                   www.ijmer.com                | Vol. 7 | Iss. 8 | August. 2017 | 61 | 

Coherent Structures in the Air 
 

1
V.V. Nosov, 

2
V.P. Lukin, 

3
E.V. Nosov, 

4
A.V. Torgaev 

Institute Of Atmospheric Optics SB RAS, 1, Akademicheskii Ave., Tomsk , Russia 

Corresponding Author: V.V. Nosov 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 
Processes of Benard cell origination and disintegration in air are studied experimentally. It is shown 

that temperature gradients cause a Benard cell. Our data confirm the main scenarios of turbulence origination 

(Landau–Hopf, Ruelle–Takens, Feigenbaum, and Pomeau–Menneville stochastic scenarios). It is ascertained 

that a Benard cell disintegrates according to the Feigenbaum scenario. In this case, the main vortex in the 

Benard cell is decomposed into smaller ones as a result of ten period-doubling bifurcations. It is shown that the 

resulting turbulence is coherent and determinate; the fractal character (local self-similarity) of its spectrum is 

found.   

These results allow the definition of a coherent structure as a compact formation containing a long-

lived three-dimensional hydrodynamic cell (originating from long-term action of thermodynamic gradients) and 

products of its discrete coherent cascade disintegration. The coherent structure answers all the signs of chaos 

occurrence (turbulence) in typical thermodynamic systems. Our results show that known processes of 

transformation of the laminar flows to turbulent ones (Rayleigh-Benard convection, fluxions in pipes, a fluid 

flow around hindrances, etc.) are the coherent structures (or sum of such structures). Therefore, it is possible to 

consider coherent structure a basic element of the turbulence. 

Origination of a coherent structure in a closed room follows from the experiments, described in Ref. 1. 

The most interesting are measurement results of turbulence parameters inside the astronomic spectrograph 

pavilion of the Large Solar Vacuum Telescope (LSVT)
1
. These results are of primary importance for finding 

coherent structures. Therefore, in this work (the 1st part) we describe the experiment and its results with 

necessary additions, following from an analysis of the results with relation to coherent structure origination.    

Coherent structures in open air (the 2nd part) are considered using data of other measurements, carried 

out by the authors in 2000th (see, e.g., Ref. 2). In all these measurements, a mobile ultrasound meteosystem was 

used; it records more than hundred of atmospheric parameters (with sufficient precision
1, 2

). It is shown that the 

real atmospheric turbulence is the result of mixing of different coherent structures. It follows from our data, that 

extended areas are often observed in open air, where one coherent structure exercises a decisively influence. 

Due to a difference of atmospheric coherent turbulence from the Kolmogorov non-coherent one, the values of 

Kolmogorov C and Obukhov С constants in the Kolmogorov–Obukhov law are verified. It is shown that the 

error of their definition can be 93%. This is one of the reasons of large errors in measurements of turbulent 

atmospheric parameters. 
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II. COHERENT STRUCTURE IN A CLOSED ROOM 
The scheme of measurements in the LSVT spectrograph pavilion is shown in Fig. 1. The pavilion is an 

isolated big closed rectangular room of about 5 x 16 x 7 m (height, length, width) in size, west-eastward 

elongate. Inside surfaces of the room is smooth, walls are without windows. There is an entrance (doubled-up) 

door from the south side and air hole (0.5 m × 0.5 m) in the southwest upper angle of the pavilion. 

Measurements in the spectrograph pavilion were carried out at two height levels from the floor h: the lower 

level 1.10 m corresponded to the optical path height in the pavilion (points 1–7 in Fig. 1); the height of the upper 

one was mainly 3.10 m (points 9–12 in Fig. 1, 2.55 m – for point 8). The entrance door and air hole were closed 

during the measurements. 

 A high level of temperature and refraction index fluctuations in the pavilion follows from the 

measurement results. The intensity of these fluctuations is usually characterized by the structural characteristics 

CT
2
 and Cn

2
. For example, Cn

2
 at the lower level (points 1–7) reaches the value 1.6  10

14 
cm

– 2/3
. At average, Cn

2
 

decreases with height. Noticeable gradients of average temperature <T> have been recorded in the pavilion. 

Thus, the vertical gradient between points 2 and 8 (near the east wall) reaches the value d<T>/dh = – 0.41 deg/m 

(the average temperature decreases to the top). The value of vertical gradient, averaged over all the observation 

points in the pavilion, equals –0.145 deg/m. The value of longitudinal horizontal gradient (along the east-

westward directed optical path), averaged over all the observation points at the path height 1.1 m, equals –0.028 

deg/m (average temperature decreases when transferring from the east to west wall). However, this averaged 

gradient essentially decreases at the upper measurement level (at a height of 3.1 m) and becomes equal to 

+0.009 deg/m. Considering the spectrograph-measured temperature gradients, one can see that the pavilion 

floor, east and west walls are the hottest. A built smoothed vector of pavilion temperature gradient, 

corresponding to measured vertical and side gradients, is to be a straight line directed from the ceiling near the 

southwest angle (air hole) to the floor near the northeast angle of the pavilion (alignment table).  

Spatial periodicity of some variables (of quincunx structure type) is observed in a vertical plane passing 

through the optical path in the pavilion (through points 2 and 4–6). For example, the Monin–Obukhov number 

alternates in sign, the average temperature periodically deviates from the value, smoothed over the points at one 

height. The structural characteristics CT
2
 and Cn

2
 are periodic at the lower level in this plane. Similar periodicity 

takes place for the inner and outer turbulence scales. Such behavior of the above parameters connected with 

origination of stable periodic vortex formations in large closed rooms.  
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Fig. 1. Spectrograph pavilion. Scheme of measurements in the pavilion (overhead view) and wind map. 

Numbers inside the rectangles are the numbers of measurement points; numbers near the arrays’ ends with the 

signs «+» or «–» are the values of vertical wind (m/s). Solid arrows and non-italic numbers correspond to the 

velocity at the floor of pavilion (1–7), dashed arrows and italic numbers – at the top of pavilion. The velocity 

scale is shown in the right bottom angle 

 

1.1. Incipient Convective Turbulence. Benard Cells 

 The map of recorded averaged air motion (wind map) inside the pavilion is shown in Fig. 1. 

Comparatively strong counter wind flows are observable at the lower measurement level in the pavilion centre 

(approximately, pavilion lengthwise, East–West direction). A similar pattern is observable at the upper 
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measurement level, while the motion speed essentially decreases here and motion directions are displaced 

toward the air hole. The solid alignment table strongly affects air motion near the east wall, where airflows are 

mainly directed along and toward the wall. 

  

It also follows from the obtained data that the sign of Monin-Obukhov number , characterizing the 

temperature local temperature stratification, alternates in sign at the optical path height when passing from the 

east pavilion wall to the west one (through points 2 and 4–6). Similar spatial periodicity is observed for the 

deviation T (T = <T> – <T>av) of the average temperature <T> from the smoothed average temperature <T>av, 

considered as a function of distance in the path through points 2 and 4–6. Thus,  = – 5.16, T = – 0.04 deg at 

point 2;  = + 0.47, T = + 0.29 grad at point 4;  = – 4.55, T = – 0.07 deg at point 5;  = + 0.49, 

T = + 0.06 deg at point 6. These results allow us to ascertain the character of averaged flows between 

observation points and to build a more detailed motion pattern. 

Actually, let T exceeds zero at a certain point. This means a higher temperature of air at this point as 

compared to neighboring adjoining areas at the same level. Warm air is lighter than cold one. Hence, cold air 

runs under the warm one and displaces it upward. If  > 0 at this point, then there is a warmer air over the 

observation point, which follows from the sense of the parameter , while the air at the point is colder and 

heavier. Hence, a blocking buoyancy force appears at  > 0. Thus, two vertical opposite directed forces affect the 

air volume at T > 0 and  > 0 (stabilizing action of stable stratification competes with destabilizing effect of an 

unstable temperature profile
3
). These forces restrict vertical travels of air volume and allow only horizontal 

movements (e.g., at point 4 in Fig. 1). At T < 0 and  < 0, the situation is similar (for example, at point 5 in 

Fig. 1). However, between these areas, when, e.g., T > 0 and  changes from positive to negative (T > 0, 

 < 0), both vertical force are directed upward and, hence, the air volume moves upward (gap between points 4 

and 5 in Fig. 1). Otherwise (T < 0,  > 0), both forces are directed downward and air moves downward. Such 

situation is probable in the gap between point 2 and 4 and near point 6 in Fig. 1. 

 

 
 

Fig. 2. Air motion inside the pavilion in a vertical plane through points 2 and 4–6 (their positions are 

designated by italic numbers). Ellipses show the trajectories of averaged motions, slant solid line – the 

projection of smoothed average temperature gradient 

 

 A more detailed pattern of air motion in the pavilion in a vertical plane passing 

through the optical path (through observation points 2 and 4–6) can be built on the grounds of the above data. 

Such approximate pattern is shown in Fig. 2. Here the solid slant line shows the (above plane) projection of 

smoothed average temperature gradient vector. As is seen from Fig. 2, there are rotating airflows (whirls) into 
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the pavilion. Averaged air motion in the pavilion is similar to vortex toroidal motion of liquid in a space cell, 

which is the pavilion. The cell axis (torus axis) is parallel to the temperature gradient vector (slant line in Fig. 2). 

In the pavilion center, air moves up-axis, parallel to the gradient direction, while near the walls – down-axis. 

Fig. 2 reflects only principal properties of air motion in the pavilion, real motions are more complicated. 

Artificial obstacles to the flows (mirrors, screen, etc.) distort these vortex flows. It is clear, that circulation of 

averaged flows is caused by the temperature gradient, existing in the pavilion. These equilibrium vortices, 

observable in a completely closed room, can be interpreted as Benard convection cells
3
. 

 Theoretical models, implying existence of Benard convection cells, were built 

long ago. It follows from the theory that origination of the cells (to which the convective motion is decomposed) 

requires a temperature gradient between opposite planes. The cells can take a shape of hexagonal prisms (with 

an axis along the gradient) depending on the gradient value. In the centre of such prisms, liquid moves up-axis 

(parallel to the gradient direction) and along the edges – down-axis (d/dT < 0,  is the kinematic viscosity), or 

vice versa (d/dT > 0). In more complex (than two space-apart planes) space areas, the cells can take other than 

hexagonal forms, e.g., longitudinal and transverse-longitudinal rolls (often with neck) etc. Model (vessel) 

experiments with water, oil, liquid helium as a medium, confirm the fact of origination of Benard convection 

cells
3
. Such experiments for air inside large closed rooms were not carried out earlier, as they require small 

detection device sensitive to motion of weak airflows. 

 As is known
3
, origination of Benard cells (stationary periodic motion) requires 

that the Rayleigh number Ra exceed the critical number Racr. According to the definition, Ra = gh
3
(T0 – Th)/(), 

where T0 and Th are the air temperatures at the bottom and on the top of a h-height level; g is the gravitational 

acceleration;  is the thermal-expansion coefficient ( = 1/T0);  is the kinematic viscosity;  is the air thermal 

diffusivity. Substituting values of the parameters (T0 = 285.1 K; Th = T0 + h<T>/dh, h = 5 m, d<T>/dh = –

 0.145 deg/m;  = 1.3  10
–5 

m
2
/s,  = 0.7), obtain Ra = 1.3  10

10
. The critical Rayleigh number Racr is 

(according to Ref. 3) within the range 657–1708. Hence, the recorded Ra essentially exceeds the critical number 

(Ra >> Racr) and stationary periodic motions exist. Thus, the measurement results (Figs. 1 and 2) confirm the 

presence of Benard convection cells for averaged motions inside closed rooms. 

 

 
 

 Theoretical study of stability of liquid motion between two space-apart planes (implies existence of 

Benard cells) allows several scenarios of turbulence origination (initiation) to be formulated. In particular, it was 

ascertained
3,4

 that the turbulence, originating in closed volumes, is undeveloped in conditions of instability of 

convective motions. A part of liquid energy is spent for regular (laminar) motions (vortices in Benard cells), 

another – for turbulent ones. It is clear from this definition that random air motion inside a closed room is an 

example of incipient turbulence.  

 

Statistical characteristics of the incipient undeveloped turbulence in air are insufficiently studied
3,5

. Therefore, it 

is interesting to point out some characteristic features of undeveloped turbulence, distinguishing it from the 

developed turbulence mode. Consider here (as the simplest) structure and correlation functions of temperature 

fluctuations. 
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 Figures 3 and 4 show the comparison results of experimental data for main statistical characteristics of 

air temperature fluctuations in a closed room and in open air. For a closed room, data correspond to 

measurements in point 5 inside the spectrograph pavilion ( = – 4.5, Cn
2
 = 1.6 10 

– 14
 cm 

– 2 / 3
, h = 1.1 m, <T> = 

11.95 deg, V = 0.09 m/s). For open air, typical experimental data were chosen. They were obtained separately in 

summer measurements over an approximately flat underlying surface in the clear dry weather ( = – 3.8, Cn
2
 = 

6.5 10 
– 16

 cm
– 2 / 3

, h = 3.1 m, < T > = 24.56 deg, V = 0.86 m/s). 

As is evident from Fig. 3, which shows two-minute realizations of random temperature, the random 

fluctuation process in the open air is close to a steady-flow one. In closed room conditions, fluctuation process is 

clearly divided into two intervals with different turbulence modes, one of which changes another one with 

discrete jump. The jump shows an appearance of a steady flow from the previous one, with new characteristics. 

This phenomenon is called bifurcation of stability change
3
.
 

As is follows from Fig. 4, the structure functions of temperature fluctuations DT () at small time 

intervals  are Kolmogorov functions (DT  
2/ 3

) both in developed and undeveloped turbulence. At large time 

intervals, they essentially differ. The fluctuation correlation coefficient bT inside a closed room has a number of 

sufficiently large local maxima, in contrast to open air. Each such maximum meets a local minimum of the 

structure function DT (their arguments agree). The structural function DT () at very small  in a closed room has 

a quadratic segment (see Fig. 4, bottom left subfigure), longer than in open air, which corresponds to increased 

values of the inner turbulence scale.  

 

1.2. Models Of Temperature Fluctuation Spectra In The Incipient Turbulence 

 Models of temperature fluctuation spectra, first of all, of the spatial 3D spectrum 


Т
(), are required in problems of optical radiation propagation in undeveloped turbulence. 

 

 
 

 As is known
5
, time frequency spectra of temperature fluctuations WT(f) in open air are adequately 

described by  the Karman model. The Kolmogorov developed turbulence spectra have a long inertial interval, 

where WT  f 
–5/3

 and the energy is transported from large-scale vortices to smaller ones. Smoothed time 

frequency spectra of temperature fluctuations WT are shown in Fig. 5 for a closed room (point 5 in Fig. 1) and 

open air. As is seen, the closed-room spectra roll-off much more rapidly than open-air ones within the inertial 

interval; besides, within the interval, there are only short individual frequency regions (in echelon), inside which 

the turbulence can be considered as Kolmogorov (WT  f 
–5/3

). These regions are observed between jumps of the 

spectral function at the frequencies, corresponding to local maxima of fluctuation correlation function (or 

minima of the structure function). In case of smoothed echelons, experimental spectra of undeveloped 

turbulence have a number of characteristic regions of rapid power decrease. Thus, if WT  const at a long energy 

interval, then first WT  f 
–8/3

 with frequency rise (within the inertial interval) and then WT  f 
–12/3

. Hence, energy 

transport from large to small vortices is insignificant in the incipient turbulence, i.e., the vortices are weakly 
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diffused. Spectra roll-off slows down (WT  f
 –2/3

) with further frequency rise, in the viscous interval, where the 

spectral density is close to the noise level. Similar behavior of spectra is observed at other points of the pavilion. 

The spectrum echelon is pronounced even stronger at some points. 

  

To construct an abstract model 
Т
() of incipient turbulence spectra, the Karman model with roll-off 

corresponding to Fig. 5 within the inertial interval can be used. Such a crude model was obtained in Ref. 1: 


Т 

(æ) = A0CT
2  

(6,6 æ 0)
2(–1/3)

  (æ
2
 + æ0

2
)
–(+ 3/2) exp(– æ

2
/æm

2
),                                         (1) 

A0 = 0.033, æ0 = 2/ L0, æm  = 5.92 /l0 . 

 

where L0 and l0 are the outer and inner turbulence scales, respectively;  = 1/3 for the developed 

turbulence, then 
Т
(æ)  æ

– 11 / 3
 in the inertial interval. According to Fig. 5,  = 5/6 in the incipient turbulence, 

hence, 
Т
(æ)  æ

– 14/3
 in the most part of inertial interval. Further a more rapid spectrum roll-off is described by 

the exponential factor in Eq. (1). The parameters L0 and l0 for  = 5/6 and  = 1/3 are given in Table 1, from 

which it is evident that the inner scale of incipient turbulence l0 (average l0 = 1.9 cm,  = 5/6 and l0 = 2.7 cm,  = 

1/3) is one-order-of-magnitude larger than the inner scale in open air (0.7–4 mm
3,5,2

). 

 The spectrum 
Т 

(æ) at  = 5/6, which can be considered as a n incipient turbulence spectrum, meets 

the experiment better that at  = 1/3 (developed turbulence spectrum,  = 1/3, but with L0 and l0 for incipient 

turbulence, Table 1). It is evident from the comparison of curves 4 and 5 in Fig. 5. Areas under these curves 

differ from experimental one by 15% ( = 5/6) and 28% ( = 1/3), respectively. However, model (1) with  = 

1/3 is widely used; it allows one to transfer solutions of problems of wave propagation in the developed 

turbulence to the case of incipient one. Hence, this model is preferable.   

The maximum error of spectrum approximation by Eq. (1) falls into the region of very large 

frequencies (viscous interval). Therefore, problems of wave propagation, where this interval is of great 

importance, require a more detailed model as compared to Eq. (1). The viscous interval does not significantly 

contribute into problems of optical beam shift, image jitter, etc., i.e., where wave phase fluctuations play a key 

part; therefore, equation (1) can be used here. 

The size distribution of outer turbulence scale L0 in vertical plane inside the pavilion is shown in Fig. 6. 

Periodic behavior of the inner scale l0 is similar to those shown in Fig. 6 for the outer one (see Table 1). In this 

case, the smaller outer scale corresponds to the smaller inner one. It is known, that outer and inner scales 

determine maximum and minimum sizes of inhomogeneities. Hence, a spatial periodicity of sizes of temperature 

field inhomogeneities (of quincunx structure type) inside the pavilion follows from Fig. 6 and Table 1.  
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Fig. 7. Correlation factor bT and non-smoothed frequency spectrum WT  (top right) in the pavilion. Figures 

designate the numbers of bT and WT maxima, corresponding to each other. 
 

Regions with decreased outer scales can be called turbulence locks (or focuses), where intensified 

decomposition of the large-scale averaged flow to smaller spatial components is observed. The intensity of 

random temperature variations, characterized by the periodic parameter CT;
2
, at average, decreases in the 

focuses, which is caused by smaller temperature differences (of passive admixtures
3,5

) in smaller vortices there. 

 

1.3. Stochastic Scenarios Of Convective Flows 

Compare the measurements in the pavilion with the well-known data on turbulence incipience from laminar 

flows (stochastic scenarios).  

The most known stochastic scenarios are Landau–Hopf, Ruelle–Takens, Feigenbaum, and Pomeau–

Menneville.
3
 It will be shown below, that all these scenarios are confirmed in the incipient turbulence. 

 

а) the Pomeau–Menneville scenario 

As is known
3,4

, as the distance increases (Reynolds number) in laminar flows in pipes,  small turbulent 

regions with non-laminar flow first arise. These regions are usually called turbulent locks (or focuses). The 

locks become longer with increasing the distance and finally merge in a continuous turbulent flow. Turbulent 

locks are observed in experiments with other schemes as well
4
. The locks cause alternation of laminar and 

turbulent modes. Such turbulence incipience via alternation is called the Pomeau–Menneville scenario
3, 6

. 

It follows from our measurements, that turbulent locks and alternation (and, as follows from Fig. 3, the 

corresponding bifurcations of stability change) exist in periodic flows in the Benard cell as well. The parts of 

locks are played by regions with decreased spatial components (outer L0 and inner l0 scales). The locks turn out 

to be trapped in the structure of the Benard cell and alternate with regions of large L0 and l0 scales. Hence, our 

data confirm the Pomeau–Menneville scenario. 

 

b) the Landau–Hopf scenario  

The incipient turbulence in the Benard cell is a convenient model allowing one to trace the 

decomposition of energy-carrying vortices into smaller ones. In fact, the toroidal vortex of averaged movements 

can be considered as the only energy-carrying vortex in the Benard cell. Its sizes are determined by sizes of the 

room, where it originates. It is difficult to register the sizes of the main energy-carrying vortex in open air, 

because they depend on climate-forming factors. The outer turbulence scale is usually considered as this vortex, 

which itself is the decomposition product. 

 The correlation factor bT and the sample non-smoothed temperature frequency spectrum WT, calculated 

from the pavilion measurements data, are shown in Fig. 7. The correlation factor bT has been calculated from 

different sample estimates
7–9

, which, however, give no agreement between the results and reveal the local 

maxima of bT. The correlation function can be calculated with an arbitrary small error at the large sample length 

N (a variance of bT error is proportional to 1/N). In our case, N = 19139; hence, the 95% confidence bound of bT 

definition, shown in Fig. 7, makes  0.014; this is much less than bT maxima. 

 



Coherent Structures in the Air 

 
 | IJMER | ISSN: 2249–6645                 www.ijmer.com                 | Vol. 7 | Iss. 8 | August. 2017 | 68 | 

The sample spectrum WT was calculated without smoothing with a rectangular spectral window. As is known
7,8

, 

such a window acts like a slit of about 2/T in width (T = 120 s). This resolution is sufficient to reveal the WT 

spectrum maxima, uniquely corresponding to bT maxima. Arguments of bT and WT maxima are related as 

kfk = 1, k = 1, 2,… (1 and f1 usually determine characteristic scales of bT and WT decrease). The diameter of the 

main energy-carrying vortex 2R1 is easily retrievable from the relation 2R1 = 1 = /f1; it is equal to 294.4 cm 

( = 9 cm/s, f1 = 0.00973 Hz) at point 5 in the pavilion. Virtually the same result is obtained from data of Fig. 2, 

if the trajectories of averaged movements are considered as circles. 

 Comparison of WT spectra in Figs. 5 and 7 shows disappearance of real spectrum maxima at a standard 

spectrum smoothing by a wide window (dispersion of the smoothed spectrum in Fig. 5 is equal to 1% of the 

sample spectrum dispersion in Fig. 7). Therefore, to calculate frequencies of spectrum maxima (harmonics), 

data of Fig. 7 are required. However, the rectangular spectrum window has large side lobes, causing oscillations 

especially at high frequencies. It is possible to get rid of these lobes using any of commonly used nonrectangular 

windows (difference between them is negligible), for example, the Welch window
9
. This window about two-

fold decreases the dispersion as compared to a rectangular one and similarly widens the frequency band width. 

The widening is acceptable, because the bandwidth turns out to be less than the mean width of spectrum 

maxima. This is evident from data for WT in Fig. 7. 

 To improve the sample estimate, a digital threshold filter can be used additionally to eliminate weak 

(lower than the averaged in Fig. 5) harmonics in spectrum. These harmonics can be interpreted either as high 

frequency side lobes, incompletely damped by the Welch window, or a weakly pronounced transient process of 

energy-carrying vortex decomposition to smaller ones. It is shown below (see Fig. 10), that the structure of 

weak harmonics is fractal, it does not coincide with those of side lobes. Therefore, the side lobes are completely 

damped. The level of the used threshold filter in the form of smoothed spectrum WT (with 1% dispersion) has 

been chosen on the base of detailed analysis of sample spectra at many measurement points in the pavilion. The 

threshold filter is thus singles out main maxima (or first-order harmonics) from the spectrum. 

 Based on the above analysis, the frequencies of first-order harmonics (arguments of maxima) in the 

fluctuation spectrum WT can be interpreted as frequencies of stable vortices observed in the temperature field 

(Fig. 8). The vortex frequencies fn turn out to be multiple to the frequency of main energy-carrying vortex 

f1 = 0.00973 Hz. Normalized to f1, they are integer natural numbers (n = 1, 2, ...): 

fn/f1 = 1, 6, 8, 11, 13, 17, 20, 66, 68, 77, 90, 93, 109, 113, 117, 120, 127, 130, 133, 136, 

144, 150, 152, 157, 162, 164, 167, 175, 179, 183, .… 

 

 Multiple frequencies is an exact result of discrete decomposition of the main energy-carrying vortex to 

smaller ones. The multiplicity means also that the phases of different harmonics (oscillations) are rigidly bound 

(agreed). In this case, the oscillations are called coherent (in-phase). Note that the function fn/(nf1), shown in 

Fig. 8, is tolerant to variations of threshold filter level; it varies insignificantly at essential variations of the filter 

level. 

 

Vortex diameters Rn (cm) for each harmonics can be calculated by the equation 2Rn = /fn, n = 1, 2,...: 

Rn = 147.21, 24.52, 18.39, 13.38, 11.32, 8.66, 7.36, 2.23, 2.16, 1.91, 1.63, 1.58, 1.35, 1.30, 1.26, 1.23, 

1.16, 1.13, 1.11, 1.08, 1.02, 0.98, 0.97, 0.94, 0.91, 0.90, 0.88, 0.84, 0.82, 0.80, … 

 

 They are shown in Fig. 9. As shows the comparison of data in Fig. 9 and Table 1 (point 5,  = 5/6), the 

second frequency 6f1 approximately corresponds to the outer turbulence scale L0 (2R1 = 294 cm, 2R2 = 49 cm), 

while the frequencies 127f1 and 130f1 (terminating the inertial interval) – to the inner one l0 (2R17 = 2.3 cm). 

 Vortices, which are decomposition products of larger vortices (their frequencies are multiple to lower 

ones) are observed in the viscous interval and in a part of inertial one. For example,  

fn/f2 = 11, 15, 20, 24, 25,…(n = 8, 11, 16, 21, 22,…);    fn/f3 = 15, 17, 18, 19, 36,…(n = 16, 20, 21, 23, 52, ...). 

 

 The processes, observed inside the pavilion, are stable. Therefore, both the origination of vortex in the 

Benard cell (due to a temperature gradient) and its decomposition into smaller ones happen permanently 

(probably, with simultaneous self-replication). This evidently results in a threshold N-periodic flow with the 

frequencies fn, n = 1, 2, ..., N. Transformation of a small perturbation into a stable periodic flow follows from 

solutions of the Landau equation; the origination of time-periodic flows is called normal Hopf bifurcation. The 

Landau–Hopf scenario describes the incipience of turbulence as a sequence of normal bifurcations, generating a 

limiting N-periodic flow (N >> 1) with, generally speaking, incommensurable frequencies. 
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However, the frequency (phase) incommensurability is usually unrealizable (this is seen from our data as well). 

Therefore, to save idea, it is considered now that normal bifurcations generate consequent subharmonics
3, 11

. It is 

easily seen that our results confirm the Landau–Hopf scenario. 

 

 
c) the Ruelle–Takens scenario  

 The Ruelle–Takens scenario can be considered as a refinement of the Landau–Hopf scenario. The 

difference is in the number of normal bifurcations, after which a flow can be considered as turbulent. According 

to the scenario, the turbulence occurs (a strange attractor appears) already after three normal bifurcations
3,10

, i.e., 

a three-periodic flow (N = 3) can be already considered as turbulent. Then the convective flow becomes 

turbulent after origination of the main vortex in the Benard cell and two events of its decomposition.   

 

D) The Feigenbaum Scenario  

 The Feigenbaum scenario describes the turbulence incipience (appearance of a strange attractor) as a 

result of infinite consequence of period-doubling bifurcations
11

. These bifurcations appear only after magnitude 

change of a certain controlling parameter , e.g., Reynolds or Rayleigh numbers, etc. As is known, the 

Feigenbaum scenario follows from the universality of location of periodic points x0, (x1;
0
, x1;

1
), (x2;

0
, x2;

1
, x2;

2
, x2;

3

), ... of 2
m
-multiple cycles. These points xm;

k  
on the x() curve correspond to tree branches, which symmetrically 

bifurcate at critical bifurcation points m. Asymptotic similarity relations  

 

Error!= Error!, m () = Error!= ,  = 2.503,  = 4.669. 

(m >> 1,  and  are the  Feigenbaum constants) are correct for both xm;
k
 and m. Here x is usually (due to the 

universality) considered as the main parameter, characterizing a nonlinear dynamic structure, e.g., coordinates 

(in meters), or standard (m/s) or normalized speed (Hz = 1/s), as in the case of Navier–Stokes equations. 

 Though the equality m() =  is asymptotic, its suitability already after two–three period doublings 

(up to several percents) has been shown
11

. The theory has a high predictability due to the large rate of 

convergence  ( = 4.67). For approximate evaluation, this equality can be used at m  0. It is obvious that the 

equation m() =  has the solution m = c
–m

 + , c = const. Taking m = 0, 1 in the solution, we obtain a set of 

equations to find the constants c and . Hence, c = 0 –  and  = 0 + (1 – 0)/( – 1). As is known, one 

can take 0 = 1 and 1 = 3 for the logistic equation xm+1 = xm(1 – xm), considered in Ref. 11, hence, 

 = 3.54508, which insignificantly differs from the exact value  = 3.56994, obtained in Ref. 11. Note, that 

m (at   0) can both increase (c < 0) and decrease (c > 0) with increase of m. 

 In our case, the value of the controlling parameter  is fixed (pavilion sizes, temperature gradient, etc. 

are preset) and, hence, we can observe only products of vortex decomposition. Due to self-replicating of 

harmonics in the presence of doubling bifurcations, the harmonics, resulting from these bifurcations, are 

recordable. 
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 Let, for example, the basic system parameter x be a shift with the length dimension. Then x0 (m = 0) can 

be identified with the radius of the basic vortex R1. The following variables (x1;
0
, x1;

1
) are to be the products of x0 

decomposition (nonsymmetrical bifurcation at m = 1). The only next largest radiuses R2 and R3 can play their 

parts (others are too small). Hence, as it follows from the decomposition diagram
11

, the pairs R4, R5 or R5, R6 (the 

first element in each pair is approximately equal to a half of R2 and the second – to a half of R3) can be chosen as 

the pair x 2;
0
, x 2;

2
 

 
(m = 2). Substituting these variables in the Feigenbaum equation, we obtain (R2 – R3)/(R4 –

 R5) = 2.97; (R2 – R3)/(R5 – R6) = 2.30. Another pair x 2;
1
, x 2;

3 
(m = 2) should be chosen from evident 

decomposition products of the vortices with radiuses R2 and R3 (their frequencies are multiple to f2 and f3); R8 

and R16 correspond to the first decomposition elements (see above). From the Feigenbaum equation, found (R2 –

 R3)/(R8 – R16) = 6.11. Thus, though we are at the top of bifurcation tree (m = 1, 2), the obtained values of the 

modulus of left part of Feigenbaum equation are close to  and 
2
. Note, that Rn satisfy the equation Rn = Rn/2/ 

(see Fig. 5); in the inertial and viscous intervals   2. However,    in the energy interval and in the inertial 

one near l0, hence, the equation Rn = Rn/2/ agrees with the Feigenbaum similarity equation for the Fourier 

harmonics of x [Refs. 3 and 11]. 

 The Feigenbaum constants , 
2
, and  are best pronounced in the harmonic frequency plot. As it is 

seen from Fig. 8, the normalized frequency yn = fn/(nf1) undergoes two large jumps with the rise in n. The first 

jump is observed near the outer turbulence scale L0 (as a result, the frequency yn is saturated to the level ) and 

the second one – near the inner scale l0 (yn is saturated to the level  bypassing the level 
2
). These jumps 

correspond to large steps of the function fn/f1 which can be interpreted as an analog of the “devil’s staircase” (see 

Fig. 10). The presence of , 
2
, and  in Fig. 8 and the satisfaction the similarity equation confirm the 

Feigenbaum scenario. 

Since ym   and m()   at m >> 1, then bifurcation values of the controlling parameter m can be 

connected with the harmonic frequencies fm and vortex radiuses Rm, which are different parameters of the same 

turbulence incipience process. Actually,   |ym – | <  and |m* – | <  are should be true for some positive , 1, 

and 2 as soon as m* > 1 and m > 2. Then |ym – m*| = |(ym – ) – (m* – )|  |ym – | + |m* – |  2. 

Consequently, m*  ym. The levels 1 and 2 can be connected with each other, considering the domains of the 

confident convergence at sufficiently large m* and m. It is known
3,11

 that m* converges rapidly after several 

iterations, therefore, m*  4–5 can be taken as the domain of confident convergence. This determines the level 

1. As is evident from Fig. 8, the frequency ym rapidly converges to  near the inner scale l0 at m  1730 (level 

2). Hence, levels 1 and 2 and numbers m* and m are approximately related as 2  2
1

 and m  2
m*

.  

 

Taking these relations into account and solving the equation m() = yn, where n  2
m
, obtain 

 m = c yn 
– m

 +   ,    yn = f n/(n f1) =  /(2n f1 Rn) ,  c = const ,  n  2
m
.                             (2) 

 

The constant c is determined here after the choice of , for example, in the form of the Reynolds number Re, 

Rayleigh number Ra, or others. For approximate estimates, equation (2) and m() =  are applicable at m  0. 

 

As an example, we show how equation (2) can be used provided  is the Rayleigh number. Let m = Ram /const 

in Eq. (2). The new constant simply leads to the overdetermination of c. 

 Let us observe the decomposition process of the main vortex in the Benard cell to the level, when the 

existence of steady periodic flows (vortices) becomes impossible. In this case, the Ra number decreases from 

some maximum Ra0 to the critical Racr. In the process of decomposing, Ram <<  Racr at a sufficiently large m and, 

hence, Ra can be taken equal to zero in the first approximation. From Eq. (2), obtain then Ram = Ram0 yn0
m0

 yn
– 

m
, where m0 is the m value, at which Ram0 is known (since n = 2

m
, then n0 = 2

m0
). If m0 = 0, then, according to the 

Feigenbaum numeration, Ram0 is the Rayleigh number for the main vortex in the Benard cell. This number can 

be roughly found, taking the layer thickness h in Ra definition equal to the main vortex diameter. 

The bifurcation diagram of the main vortex decomposition in the Benard cell is shown in Table 2 (the 

dependence of Ram numbers on the bifurcation number m), as well as the harmonic numbers n and vortex 

diameters 2Rn (cm) corresponding to m. As is seen from Table 2, the bifurcation numbers Ram decreases with the 

rise of m and cross the level Racr (Racr = 6571708) at m = mcr  9–10. The same mcr value is obtained from the 

number of the recorded harmonics (in Fig. 8, the maximal n equals 1849): mcr  E( log n/ log 2) = E(10.85) = 10, 

where E(x) is the integer part of x. 

 

Thus, the origination of the main vortex in the Benard cell and about ten events of its discrete decomposition are 

observed in the pavilion. Vortex diameters, corresponding to the critical values mcr (see Table 2), are within the 

0.6–1.2 mm range. They agree with sizes of minimal vortices, existing in air
3
. 
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On the base of the performed analysis, the known stochastic scenarios can be divided into two groups. The first 

one includes scenarios of origination of periodic flows from laminar ones. Among these scenarios are, first of 

all, Pomeau–Menneville and Rayleigh–Benar convection. The second group includes decomposition scenarios 

(degeneration) of the appeared vortex periodic flows, the main of them is the Feigenbaum scenario. The 

Landau–Hopf and Ruelle–Takens (origination of the limiting N-periodic flow) scenarios contain features of both 

groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It follows from the obtained results, that scenarios of both groups are confirmed in the incipient 

turbulence, a periodic flow originates (the main vortex in the Benard cell) and discretely decomposes. These 

processes in principle (in the simplest situations) are confirmed by known solutions of nonlinear equations of 

hydrodynamics. However, such solutions for a general case are presently unknown. It is clear, that vortex 

solutions should exist, since they are experimentally observed. It is also clear, that the stability of vortex 

solutions will be determined by nonlinear resonances (both between external forces and dissipative processes 

and between harmonics with commensurable frequencies). Therefore, the mechanism of hydrodynamic 

turbulence incipience and existence becomes clearer, in which the role of stochastization essentially decreases. 

Then the turbulence, usually considered as a merely random event, turns to be significantly determinate. 

 

The turbulence determinacy is much stronger than it could be expected from the above analysis. 

Actually, it follows from the consideration of the threshold-filter damped spectrum harmonics WT in Fig. 3, that 

their greatest maxima (second-order harmonics) can be extracted with the same filter. It turns out that the local 

structure of second-order harmonics location (between the neighboring first-order ones) is similar to the 

structure of first-order harmonics location throughout the spectrum WT. The local self-similarity of the spectrum 

or, in other words, the fractal structure of the turbulence spectrum is observed. 

 

The frequency dependence of the first- and second-order harmonics (normalized frequencies fn / f1 of 

harmonics) is shown in Fig. 10. This dependence is usually called the “devil’s self-similar staircase”
 12–14

; here 

each inner space between main steps is similar to the whole staircase. Each dash (step) answers its fn / f1 value 

(all these values are integers in Fig. 10). Long dashes correspond to first-order harmonics and short dashes – to 

second-order ones. 

 

The distances between arguments of the neighboring harmonics fn – fn–1 (n = 2, 3, ...) as functions of 

frequency (of frequencies fn) are shown in Fig. 11. The bottom plot here shows the distances between the 

arguments of first-order harmonics for the whole spectrum WT (see Fig. 7). (As is seen from Fig. 5, it is 

sufficient to consider only the 0–10 Hz frequency range in the spectrum WT, without weak noise component, 

which is caused by the transfer of the motion energy to heat (and the hardware errors also) and is observed at 

frequencies higher than 10 Hz.) The middle plot in Fig. 1 shows the distances between arguments of second-

order harmonics for the longest range between the first-order harmonics (0.19–0.64 Hz) and the upper one – for 

the 23.34–23.44 Hz range. As is seen from the “devil’s staircase,” other ranges contain a less number of second-

order harmonics (because of limited experimental facilities) and, hence, are not so convenient for the analysis. 

 

Table 2.  Bifurcation diagram 

in main vortex decomposition 

m n Ram 
2Rn, 

cm 

0 1 1.5510
9
 294 

1 2 5.1510
8
 49.1 

2 4 2.0510
8
 26.8 

3 8 2.7610
6
 4.5 

4 16 4.8910
5
 2.5 

5 32 1.9410
5
 1.5 

6 64 6.8610
4
 0.87 

7 128 2.6510
4
 0.50 

8 256 9.4610
3
 0.26 

9 512 1474.1 0.12 

10 1024 444.7 0.06 

11 2048 67.5 0.05 
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The comparison of the data in Fig. 11 confirms a similarity of locations of the local structures of 

second-order- and first-order-harmonics in the whole spectrum WT. The devil’s staircase is truly self-similar and 

the spectrum is fractal. Since second-order maxima are significantly weaker than first-order ones, the second-

order harmonics can be called the fractal shadows of the first-order ones. Thus, the process of turbulent flows 

originating and decomposing is evidently determinate even in weak spectral particulars. 

 

 
 

The conditions of chaos occurrence in typical dynamic systems, laid down in Refs. 12–14, allows one 

to point out the characteristic universal features observed in turbulence origination (in incipient turbulence), 

such as
12

: origination of irregular long-living spatial structures, form (character) of which is determined by 

dissipative factors, local instability and fractal character of phase space of such structures, appearance of central 

(on zero frequency) spectral peak.   

All these features are observed in our measurements. A convective Benard cell is a spatial structure; its 

form depends on medium viscosity and space geometry (form), where it originates (dissipative factors). The cell 

is locally unstable and cascade decomposes to smaller ones (vortices). The passive admixture spectrum 

(temperature) in the cell is fractal. The average temperature is not constant due to nonstationarity of a random 

process in the cell (bifurcation of stability change, see Fig. 3). Without additional actions for elimination of the 

nonstationarity (average value of random function is obtained by time averaging over the length of characteristic 

scale of function variation, but not over the whole sample) the centered random temperature includes a non-

compensated constant component.  Just this component raises the low-frequency part of Fourier spectrum and 

gives the central peak on zero frequency. Such phenomenon is observed for the Fourier transform of both 

correlation and the random nonstationary function.  It is convenient to name the above features “coherent 

structure”. A.S. Monin and A.M. Jaglom
3
 define a coherent structure as a random nonlinear superposition of 

considerably stable large-scale turbulence components. According to the above results, we can define a coherent 

structure as following. A hydrodynamic coherent structure is a compact formation containing a long-lived 

spatial structure, resulting from long-term action of thermodynamic gradients, and products of its discrete 

coherent cascade disintegration.  

The disintegrating spatial structure can be called a cell (structure) generating a coherent structure. 

Disintegration of the generating cell is accompanied by origination of the main energy-carrying vortex. The 

frequency of this main vortex can be considered as the main features of both generating cell and the coherent 

structure. Sizes of the coherent structure are fuzzy. Flows, external with respect to the generating cell, can 

transport products of its disintegration to significant distances, forming long turbulent wake. The lifetime of a 

coherent structure is determined by the action time of thermodynamic gradients. As a limit case of very weak 

local instability (when a generating structure is locally stable and does not disintegrate), a coherent structure can 

consist of only one long-living generating structure. In this case, the generating structure is some configuration 

of laminar flow. Such situation we have when observing, for example, Benard cells in a thin layer of very 

viscous liquid. 
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Thus, the process of turbulence incipience can be connected with origination of coherent structures. 

The compact formation, observed in our experiments, includes a long-living main energy-carrying vortex and 

products of its simultaneous cascade discrete decomposition (coherent vortices with multiple frequencies). The 

main vortex frequency is determined by convective Benard cell sizes. According to our definition, such 

formation is a coherent structure. Origination of coherent structures in liquid, e.g., in water, is of interest. An 

example of smoothed turbulence spectrum in ocean is given in Ref. 3. This spectrum, similar to those in a 

coherent structure in air (see Fig. 5), has echelon frequency ranges with 5/3 decrease.  The echelon structure of 

such spectrum allows it to be considered as the spectrum of coherent structure in water. 

Flows in pipes easily yield to experimental investigation. However, they are studied not enough 

theoretically. In this case it is clear from qualitative consideration that the pressure gradient P in liquid can play 

the part of temperature gradient required for convective cell origination. This follows already from the simplest 

equation of state P = const T. The density of incompressible liquid  is usually considered as constant, hence, 

P T. Therefore, cells similar to convective can appear in liquid in presence of the long-living pressure gradient. 

Disintegration of these cells should generate a coherent structure. In contrast to the Rayleigh–Benard 

convection, vertical sizes of flows in pipes (pipe length) essentially exceed horizontal ones (pipe cross-section). 

Therefore, cells are situated not horizontally, but vertically, i.e. along the pipe length. In addition, there is a 

middle flow. It distorts the cell form and transport disintegration products of generated cells (smaller vortices) to 

the orifice, where they accumulate and a segment of continuous turbulence (commonly called developed) 

appears. This situation is described by the stochastic scenarios via alternation. 

Similar patter arises in flowing different obstacles, which follows from data of numerous observations. 

A long-living main vortex (generating structure, sometimes several) originates on the obstacle surface (near the 

backwall). Clear large vortices appear behind the obstacle (at some distance); they are not larger than the main 

one. The shape of vortices is distorted by an external flow (front surface is indented). At further moving off, 

several smaller vortices are observed and again continuous turbulent flow. Absence of tight bounds (e.g., pipe 

walls) results further in transversal flowing of turbulent wake. The described phenomenon is the result of 

transport of generating structure disintegration products by the external flow. This is a coherent structure.    

 

2. COHERENT STRUCTURES IN OPEN AIR 

 

 
Fig. 12. Kolmogorov turbulence is the result of mixing of different coherent structures. WT are the 

smoothed spectra; DT is the structure functions of temperature fluctuations: curve 1 corresponds to summer 

daytime measurements in mountains (at a height of 2032 m). curve 2 corresponds to wind transfer of a frozen 

spatial pattern of flows inside the LSVT through one point. As is known from meteorology, sufficiently stable 

vortex formations (cells) of different scales exist in the atmosphere. The Ferrel and Hadley cells are the largest 

among them (up to 5000 km in radius). They can be considered as modifications of Benard cells in a thin 

spherical layer (at the Earth scale). Somewhat smaller cells (cyclones, anticyclones, thunder-cells, tornados, etc.) 
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exist there as well. The decomposition products of these vortices have clearly pronounced deterministic 

character (corresponding to a coherent structure or the non-Kolmogorov incipient turbulence) and are 

observable in open air.  

Open-air measurement data (The Sayan Solar Observatory, July 5, 2007) are shown in Fig. 12 along 

with the modeled results of the steady-wind transfer of a frozen spatial pattern of flows inside the LSVT 

(sequential slow transfer of data, recorded at seven abreast neighboring points, located along a straight line at 

one height
1
, through point 5, Fig. 1). This straight line includes not only points 5, 4, and 2 in the spectrograph 

pavilion, but also another four points, located in neighboring closed LSVT rooms, which are isolated from the 

pavilion. Frequencies of main energy-carrying vortices are different in these rooms and the pavilion. 

Comparison of Figs. 12, 5, and 4 shows that the results for open air, given in Fig. 12, indicate the prevailing 

activity of one coherent structure (WT  f 
–8/3 

within the inertial interval). On the contrary, transfer of determinate 

vortices, formed inside closed rooms, through one point results in the turbulence close to Kolmogorov (WT  f 
–

5/3
). Hence, the conclusion can be drawn that the real atmospheric Kolmogorov turbulence is a mixture of 

determinate vortices from different coherent structures. Inequality (non-multiplicity, incommensurability) of 

frequencies of main vortices of different coherent structures results in out-of phase (non-coherent) oscillations 

which are disintegration products. Hence, is naturally to call the turbulence, originating in mixing of coherent 

structures with incommensurable frequencies of main vortices, non-coherent. 

As a result of expeditionary works in mountain and flat conditions in 2000th years, the authors gather 

an extensive experimental database of surface measurements of main turbulence parameters in various 

geographical areas and meteorological situations. It follows from the data that extensive areas, where one 

coherent structure exercises a decisively influence, are observed in open air. Moreover, characteristic features of 

coherent structures (coherent turbulence) are present in the majority of gathered data. The Kolmogorov non-

coherent developed turbulence usually   appears only over large areas with flat and uniform underlying surface.  

The coherent turbulence differs from non-coherent one, first of all, in more rapid roll-off of the 

smoothed spectrum WT in the inertial interval ( f 
–8/3

) and less contribution of high-frequency component 

(small-scale vortices). Therefore, in air, the spectrum in the inertial interval has two pronounced decrease 

regions within the areas with decisive influence of one (local) coherent structure, i.e., first a sufficiently rapid 

decrease is observed (usually  f 
–8/3

, sometimes even more rapid), and than the decrease slows down ( f 
–5/3

) 

with frequency rise. The second Kolmogorov region is characterized by a mixture of disintegration products of 

other large generating structures existing in the atmosphere. Sometimes the inertial interval of the spectrum has 

two pronounced stepwise regions with the 8/3-decrease. In this case, one can tell about presence of two local 

coherent structures in the measurement site. 

Due to a difference of atmospheric coherent turbulence from the Kolmogorov non-coherent one, the 

Kolmogorov–Obukhov law applicability limits are to be specified.  In particular, the values of Kolmogorov C 

and Obukhov С constants are to be verified. In accordance with the Kolmogorov–Obukhov law, the structure 

function of longitudinal velocity fluctuations Drr(r) in the inertial interval of the scales r is expressed via the 

structural characteristic CV
2 

of longitudinal velocity fluctuations: Drr(r) = CV 
2
r

2/3
. The structure function of 

temperature fluctuation DT(r) is expressed via the structural characteristic CT
2 

of temperature fluctuations: DT(r) 

= CT
2
r

2/3
. The structural characteristics CV

2
 and CT

2
 determine the intensity of velocity and temperature 

fluctuations and are important parameters of medium turbulent motion. In their turn, CV 
2
 and CT 

2
 depend on the 

average dissipation rate of kinetic energy ε and temperature N and Kolmogorov С and Obukhov С constants: 

CV 
2 
= Сε

2/3
, CT 

2 
= Сε

–1/3
N. Hence, velocity and temperature fluctuations are to be functions of С and С at 

known ε and N. The constants С and С were measured in different media by different methods. The values С = 

1.9 and С = 3.0 are recommended
3
 as the most probable estimates of the constants. This estimate is average 

with respect to data of different authors. Deviations from the average value are sufficiently large
3
, e.g., the 

values 0.9, 1.6, and 2.8 were observed for C and 1.1, 1.4, 2.5, 2.7, 3.3, 3.5, 5.6, 5.8, 6.5, 9.0 – for С. 

 As is known
3,5

, the Kolmogorov constant С is related with the asymmetry S of probability distribution 

of longitudinal velocity difference of by the equation С = (0.8/ |S| )
2/3

, S = Duuu/ |Duu|
3/2

. The third moment of 

longitudinal difference of wind velocities Duuu(r) = < [u(r+r,t) – u(r,t)]
3 

> can be obtained from the time 

moment Duuu() = < [u(r,t+) – u(r,t)]
3 

> and the frozen condition
3
 Duuu(v) = Duuu (). Here u(r,t)= u(r,t) – 

<u(r,t)>, where u(r,t) is the random value of longitudinal velocity (usually the projection of random velocity 

vector to the vector of average velocity) at the point r at the moment t. The constant С is related with the 

asymmetry S of probability distribution of longitudinal temperature difference by the equation
3,5

 С = – (4/3) / 

(C
1/2

S), S = DuTT /(Duu

1/2
DT). The third spatial moment of difference DuTT(r) = <[u(r+r,t) – u(r,t)] [T(r+r,t) – 

T(r,t)]
2 

> can also be found from the time moment DuTT () = < [u(r,t+)–u(r,t)] [T(r,t+)–T(r,t)]
2 

> and 

the frozen condition DuTT (v) = DuTT (). Here T(r,t) = T(r,t) – <T(r,t)>, u(r,t) = u(r,t) – <u(r,t)> is the centered 

random temperature and longitudinal velocity. 
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The process of Kolmogorov С and Obukhov С constants determination is shown in Figs. 13 and 14 for the case 

of atmospheric non-Kolmogorov turbulence. The frequency spectrum, shown in Fig. 13, have a long inertial 

interval, where WT  f 
–8/3

.  

 

 
 

 Analyzing more than 30 observation points, the following has been ascertained. If turbulence is close to 

Kolmogorov (flat underlying surface, time spectra in the inertial interval Wu(f)  f 
–5/3

 etc.), then С can be taken 

equal to 1.9 with an accuracy of 1–12 % and С – to 3.0 with an accuracy of not worse than 30%. If the 

turbulence deviates from Kolmogorov and close to coherent (Wu(f)  f 
– 8/3

 etc.), then C is within the 0.9–3.7 

range and С is within the 1.3–5.1 range. In this case, С = 1.9 with an accuracy of 19–93%, while the error of 

С = 3.0 can reach 70%. 

 As follows from experience, atmospheric turbulent parameters measurement errors are usually 

significant. The main reason of these errors is clear from our measurement data. Variations of the Kolmogorov 

and Obukhov constants within 100% (depending of observation point) result in similar errors in determination 

of the characteristics CT
2
, CV

2
, and Cn

2
.  

 Another reason of errors is the structure function of temperature fluctuations DT(r), if CT
2 

is found using 

the Kolmogorov–Obukhov law DT(r) = CT
2
r

2/3
. As is known

5
, the function DT(r) is representable as 

DT(r) = 8 


0

d æ [1 – sin(ær)/ (ær) ]Т (æ) æ
2
. 

Substitute spectrum (1), written in exponential form: 

 

Т (æ) = A0 CТ 
2
 (6.6 æ0e) 

2( – 1/ 3)
 æ

 – 2( + 3/ 2)  
exp(

 
– æ

2
/æm

2
)  [1- exp(

 
– æ

2
/ æ0e

 2],                         (3) 

æ0e = 2/L0e,       = 5/6, 1/3. 

 

Spectrum (3) differs from (1) only in its behavior in the energy interval, where æ
2
/æ0

2 
<< 1. There is a 

correlation between the Karman outer scale L0 and exponential L0e (usually L0e = 0.54 L0), when spectrum (3) 

gives the results similar to Karman (1). At the same time, it significantly simplifies calculations. After 

calculating the corresponding integrals, obtain asymptotic representations for the structure function DT(r) in 

coherent turbulence ( = 5/6): 

 

DT(r) = 53.45CT

2
 L0

 –1
 l0

–1/3
 r

2
,                                r << l0, 

DT(r) = CT

2
r

2/3  
f(r/ L0),   f (x) = 49.87 (x – 1.34 x

 4/3
),     l0 << r << L0,                                 

DT(r) = 3.56CT

2
 L0

 2/3
[1 – 0.63(r/ L0)

–1/3
],               L0e <<   r.  
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The function DT(r) evidently deviates from the Kolmogorov–Obukhov "2/3” law. DT(r) ~ r
2
 at small r 

(r << l0) like in the Kolmogorov turbulence; however, the asymptotic coefficient becomes dependent on the 

outer scale L0. There is an extended initial region in the inertial range (l0 << r << L0), where DT(r) ~ r
5/3

. The 

regions ~r
 2

 and ~r
 5/ 3

 intersect at r = 0.8 l0 (remind here that the inner scale l0 of the coherent turbulence is one 

order of magnitude larger than those of the Kolmogorov one). The function f(x) has a maximum; therefore, a 2/3 

Kolmogorov region, where DT(r)  CT

2
fmax r

2/3
, is approximately observed in the inertial range of coherent 

turbulence 3.0 l0   r   0.4 L0, where f(x)  const = fmax = 2.17. Hence, when measuring CT

2
 from the 2/3-

asymptotics of DT(r), the values are more than two-time overestimated.  
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