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I. INTRODUCTION 
WITH the rapid growth of social networks, such as Facebook and Linkedin, more and more researchers 

found  that  it  is  a  great  opportunity  to  obtain  useful information from these social network data, such as the 

user behavior, community growth, disease spreading, etc. However, it is paramount that published social 

network data should not reveal private information of individuals. Thus, how to protect individual’s privacy and 

at the same time preserve the utility of social network data becomes a challenging topic. In this paper, we 

consider a graph model where  each  vertex  in  the  graph  is  associated  with  a sensitive label. Fig. 1a shows 

an example of such a graph. Recently, much work has been done on anonymizing tabular microdata. A variety 

of privacy models as well as anonymization algorithms have been developed (e.g., k-anonymity [26], l-diversity 

[20], t-closeness [17]). In tabular microdata, some of the nonsensitive attributes, called quasi identifiers, can be 

used to reidentify individuals and their sensitive attributes. When publishing social network data, graph 

structures are also published with corresponding 

A structure attack refers to an attack that uses the structure information, such as the degree and the 

subgraph of a node, to identify the node. To prevent structure attacks, a published graph should satisfy k-

anonymity [18], [32], [15], [34]. The goal is to publish a social graph, which always has at least k candidates in 

different attack scenarios in order to protect privacy. Liu and Terzi [18] did pioneer work in this direction that 

defined a k-degree anonymity model to prevent degree attacks (Attacks use the degree of a node). A graph is k-

degree anonymous if and only if for any node in this graph, there exist at least k 1 other nodes with the same 

degree. 

 

Fig. 1a shows an example of a possible structure attack using degree information. If an adversary knows that 

one person has three friends in the graph, he can immediately know that node 2 is that person and the related 

attributes of node 2 are revealed. k-degree anonymity can be used to prevent such structure attacks. However, in 

many applica-tions, a social network where each node has sensitive attributes should be published [5], [33]. For 

example, a graph may contain the user salaries which are sensitive 

[33]. In this case, k-degree alone is not sufficient to prevent the inference of sensitive attributes of 

individuals. Fig. 1b shows a graph that satisfies 2-degree anonymity but node labels are not considered. In it, 

nodes 2 and 3 have the same degree 3, but they both have the label “80K.” If an attacker knows someone has 

three friends in the social network, he can conclude that this person’s salary is 80K without exactly reidentifying 

the node. Therefore, when sensitive labels are considered, the l-diversity should be adopted for graphs. Again, 

the l-diversity concept here has the same meaning as that defined over tabular data [20]. For example, if we 

choose the distinct l-diversity, for the nodes with the same degree, their associated sensitiveFig. 1. Publish a 

graph with degree and label anonymity. 

 

 

labels must have l distinct values. Fig. 1c shows a graph that satisfies 2-degree anonymity and 2-diversity. For 

each distinct degree appearing in this graph, there exist at least two nodes. Moreover, for those nodes with the 

same degree, they contain at least two distinct sensitive labels. Thus, the attacker cannot reidentify a node or 

find the node-label relation with degree knowledge. In this paper, we select the degree-attack, one of the popular 

attacks methods [18], [15], to show how we can design mechan-isms to protect both identities and sensitive 

labels. With respect to other types of attacks, such as subgraph query attacks or hub node query attacks [15], we 

believe that the key ideas proposed in this work can be adopted to handle them as well, though more 

complicated extensions may be needed. We give an extensive discussion in Section 6. 
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Current approaches for protecting graph privacy can be classified into two categories: clustering [15], [7], [30], 

[4] and edge editing [10], [29], [32], [18], [30]. Clustering is to merge a subgraph to one super node, which is 

unsuitable for sensitive labeled graphs, since when a group of nodes are merged into one super node, the node-

label relations have been lost. Edge-editing methods keep the nodes in the original graph unchanged and only 

add/delete/swap edges. For example, to protect privacy of Fig. 2a, we convert it to satisfy 3-degree anonymous 

and 3-diversity by adding edges as shown in Fig. 2b. However, edge editing may largely destroy the properties 

of a graph. The edge-editing method sometimes may change the distance proper-ties substantially by connecting 

two faraway nodes together or deleting the bridge link between two communities. In Fig. 2b, the distance 

between nodes 6 and 12 is changed from 5 to 1 hop. This phenomenon is not preferred. Mining over these data 

might get the wrong conclusion about how the salaries are distributed in the society. Therefore, solely relying on 

edge editing may not be a good solution to preserve data utility. 

To address this issue, we propose a novel idea to preserve important graph properties, such as distances 

between nodes by adding certain “noise” nodes into a graph. This idea is based on the following key 

observation. Most social networks satisfy the Power Law distribution 

 

 

 

 

 

 

 

 

 

 

 

[2], i.e., there exist a large number of low degree vertices in the graph which could be used to hide added noise 

nodes from being reidentified. By carefully inserting noise nodes, some graph properties could be better 

preserved than a pure edge-editing method. Fig. 2c is a graph converted from Fig. 2a by adding noise nodes to 

satisfy 3-degree-3-diversity. The distances between the original nodes are mostly preserved. 

Our privacy preserving goal is to prevent an attacker from reidentifying a user and finding the fact that a certain 

user has a specific sensitive value. To achieve this goal, we define a k-degree-l-diversity (KDLD) model for 

safely publishing a labeled graph, and then develop correspond-ing graph anonymization algorithms with the 

least distor-tion to the properties of the original graph, such as degrees and distances between nodes. 

To summarize, we made the following contributions: 

. We combine k-degree anonymity with l-diversity to prevent not only the reidentification of individual 

nodes but also the revelation of a sensitive attribute associated with each node. We use distinct l-diversity to 

demonstrate our algorithm and give the detailed discussion about how more complex recursive ðc; lÞ-diversity 

can be implemented. 

. We propose a novel graph construction technique which makes use of noise nodes to preserve utilities 

of the original graph. Two key properties are consid-ered: 1) Add as few noise edges as possible; 2) Change the 

distance between nodes as less as possible. 

. We present analytical results to show the relation-ship between the number of noise nodes added and 

their impacts on an important graph property. We further conduct comprehensive experiments for both distinct 

l-diversity and recursive ðc; lÞ-diversity to show our technique’s effectiveness. 

 

The rest of the paper is arranged as follows: Section 2 defines the problem and introduces the framework. 

Sections 3 and 4 describe the details of the algorithm implementation. Section 5 demonstrates how the more 

complex ðc; lÞ-diversity 

 

 

 

 

 

 

 

 

 

Fig. 2. Example for adding noise node. 
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model is adapted into our framework in detail. We discuss the possible extension of our work to handle more 

complex graph protection model in Section 6. We report the experi-ment results on real data sets in Section 7. 

Finally, we compare our work with related proposals in Section 8 and conclude in Section 9. 

 

II. PROBLEM DESCRIPTION 
In this paper, a social network graph is defined as: 

Definition 1. Social Network Graph: a social network graph is a four tuple GðV ; E; ; Þ, where V is a set of 

vertices, and each vertex represents a node in the social network. E V V is the set of edges between vertices, is a 

set of labels that vertices have. : V ! maps vertices to their labels. 

In this paper, we use the words “node” and “vertex” interchangeably. In a published (privacy preserving) social 

network graph, an attacker could reidentify a node by degree information [18] and further infer sensitive labels. 

To prevent this possible leakage, we define “k-degree-l-diver-sity” principle for published graphs, which have 

the same spirit of k l diversity in relational data [26], [20]. 

 

Definition 2(KDLD). For each vertex in a graph, there exist at least k 1 other vertices having the same degree in 

the graph. Moreover, the vertices with the same degree contain at least 

 

l distinct sensitive labels. 

Here, we use distinct l-diversity [20] to ensure that there exist at least l distinct labels in each equivalent class 

(group), i.e., a group of nodes having the same degree.
1
 We use distinct l-diversity to demonstrate the basic 

working procedure of our method. We give the detailed discussion about how to handle more complex l-

diversity such as recursive ðc; lÞ-diversity in Section 5. We call a graph a KDLD graph if it satisfies the k-

degree-l-diversity constraint. A KDLD graph protects two aspects of each user when an attacker uses degree 

information to attack: 1) The probability that an attacker can correctly reidentify this user is at most 
1

k ; 

 

2) The sensitive label of this user can at least be related with l different values. Since each equivalent class 

contains at least k nodes, when an attacker uses the degree to reidentify a 

node, the probability he correctly reidentifies this user is at most k
1
 . Furthermore, since there are at least l 

distinct labels in each equivalent class, a user’s sensitive label is related to at least l values. Our goal is to protect 

each user’s privacy by adding certain edges/nodes to transfer a social network graph to a KDLD graph. We refer 

the added edges/nodes as noise edges/nodes. To guarantee the correctness of informa-tion, for any user who 

appears in the published graph, we also preserve the sensitive label associated with this user’s node. In order to 

keep the utility of the published graph, when generating the KDLD graph, two key properties should be 

preserved [24]: 

 

. Low overhead: It is necessary to add as few noise edges as possible to reduce the additional overhead 

on the social infrastructure; 

1. If nodes have other labels (quasi identifiers) than the sensitive label, the quasi identifiers of the nodes in 

each equivalent class will be adjusted to be the same. 

 

. Social distance: The noise edges/nodes added should connect nodes that are close with respect to the 

social distance. 

Since each noise node connects with at least one noise edge, “Low Overhead” also limits the number of noise 

nodes that can be added. The social distance between two nodes u, v is the shortest path length between u and v 

in the original graph. The social distance between all node pairs of a graph is measured by Average shortest path 

length (AP L). AP L is a concept in network topology that is defined as the average of distances between all 

pairs of nodes. It is a measure of the efficiency of information or mass transport on a network. Some queries like 

“the nearest node for a group of nodes” are related to AP L. The AP L of a graph G is 

2 X 
AP LG

 
¼
 NðN  1Þ 8ni;nj2G 

d ni; nj
 
; 

 

where, dðni; njÞ is the length of the shortest path between nodes ni and nj, N is the number of nodes in the graph. 

 

We design a two step algorithm to generate the KDLD graph which tries to preserve the above two key 

properties. In the first step, we compute a target degree for each node so that it makes the original graph satisfy 

KDLD constraint with the minimum sum of degree change. Clearly, smaller degree change needs fewer noise 

edges to implement the change. In the second step, we change each node’s degree to its target degree by adding 
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noise edges/nodes. We utilize the noise nodes to make the change of AP L as small as possible. Our proposed 

two step algorithm considers both the “Low Overhead” and the “Preserve Social Distance” requirements. 

Next, we first introduce two data structures we use in the rest of this paper, and then give the formal description 

the two steps in our algorithm. We borrow the concept of “degree sequence” used in [18] and define a sensitive 

degree sequence P as follows: 

Definition 3. Given a graph G, its sensitive degree sequence is a sequence of n triples: ½P ½1 &; . . . ; P ½n&& 

where P ½1&:d P ½2&: d P ½n&:d, P ½i& is a triple ðid; d; sÞ at position i in P , 

 

d is the degree, and s is the sensitive label associated with node id. 

We use lowercase pu to represent node u’s corresponding triple in P . For example, the sensitive degree sequence 

of the graph in Fig. 1b is [(2,3,80K), (3,3,80K), (1,2,100K), (4,2,60K), (5,2,60K), (6,2,100K), (7,2,60K)]. In it, 

p2 ¼ ð2; 3; 80KÞ represents node 2 in the graph. For a node u, we use u:d to denote its degree and u:s for its 

label. Now, we can define KDLD model of a graph based on its sensitive degree sequence: 

Definition 4. KDLD sequence: A sensitive degree sequence P is a KDLD sequence if P satisfies the following 

constraint: P can be divided into a group of subsequences ½½P ½1&; . . . ; P ½i1&&; ½P ½i1 þ 1&; . . . ; P 

½i2&&; ½P ½i2 þ 1&; . . . ; P ½i3&&; . . . ; ½½P ½im þ 1&; . . . ; P ½j&& such that for any subsequence Px ¼ 

½P ½ix&; . . . ; P ½ixþ1&&, Px satisfies three constraints: 1) All the elements in Px share the same degree (P 

½ix&:d ¼ P ½ix þ 1&:d ¼ ¼ P ½ixþ1&:d); 2) Px has size at least k (ixþ1 ix þ 1 k); 3) Px’s label set fP ½t&: sjix t 

ixþ1g have at least l distinct values. 

 

 

TABLE 1:Meanings of Symbols Used 

 
For example, the sensitive degree sequence of the Fig. 1c is [(2,3,80K), (6,3,100K), (1,2,100K), (3,2,80K), 

(4,2,60K), (5,2,60K), (7,2,60K)], it is a 2D2D sequence. For a KDLD sequence P , each its subsequence ½P 

½ix&; . . . ; P ½ixþ1&& forms a same degree group cx. Then, from P , we can get same degree 

 

groups: C ¼ fc1; c2; . . . ; cmg. For each ci 2 C, we use ci:d to denote the degree of the corresponding group. It is 

obvious 

that a graph GðV ; EÞ is a KDLD graph if and only if the sensitive degree sequence of G is a KDLD sequence. 

The benefit of using KDLD sequence is that it compactly represents the conditions to make a graph be a KDLD 

graph. The sensitive degree sequence in the above example is a 2D2D sequence, therefore Fig. 1c is a 2D2D 

graph. Based on the above two data structures, we use two steps to solve the following two subproblems, 

respectively: 

. KDLD sequence generation: Given the sensitive degree sequence P of graph G and two integers k and 

l, compute a KDLD sequence P 
new

 which 

contains the same set of nodes as P with minimum 

P 

LðP ; P 
new

Þ ¼ 8u jpu:d p 
new

u:dj. This equation com-putes the degree change by comparing the same node u’s 

degree in these two sequences. The purpose is to obtain a new KDLD sequence from G so that the degree 

change of all the nodes in G is as small as possible. Clearly, smaller degree change needs fewer noise edges to 

implement the change. 

. Graph construction: Given a graph GðV ; E;  ;  Þ and 
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a sensitive degree sequence P 
new

, construct a new graph G
0
ðV 

0
; E

0
; ; 

0
Þ with V V 

0
. The sensitive degree 

sequence P 
0
 of G

0
 is a KDLD sequence and P 

0
 has all the elements in P 

new
 since G

0
 is constructed from G by 

adding some noise nodes. Meanwhile, jAP LG AP LG0 j is minimized. 

Next, we introduce how to implement these two steps. To be convenient, we summarize the commonly used 

symbols of this paper in Table 1. 

 

III. KDLD SEQUENCE GENERATION 
To generate a KDLD sequence, the triples in P should be divided into groups. All the corresponding 

nodes in the same 

group shall be adjusted to have the same degree. We employ two algorithms for this problem: Algorithm K-L-

BASED and Algorithm L-K-BASED.
2
 The algorithms tend to put the nodes with similar degrees into the same 

group to reduce the degree changes. Given the degree sequence P of the original graph, Algorithm K-L-BASED 

selects the first k elements in P as a group. We keep on merging the next element into the current group until the 

l-diversity constraint is satisfied. After a group satisfies k-degree and l-diversity constraints, we calculate two 

costs: 

. Cnew: the cost of creating a new group for the next 

 

k elements (the total degree changes that make all the nodes in this group have the same degree). 

. Cmerge: the cost of merging the next element into the current group and creating a new group for the 

next 

 

k elements by skipping the next element. 

 

If Cmerge is smaller, we merge the next element into the current group and continue this comparison process. If 

Cnew is smaller, we create a new group with the next k elements and continue checking l-diversity constraints 

described above. When the remaining elements are less than k or contain less than l distinct sensitive labels, 

they are merged into the last group. Since nodes are sorted by their degrees in 

 

P , building groups using the above method helps to group 

the nodes with similar degrees together. For example, if using this algorithm to make P ½ð1; 5; s1Þ; ð2; 2; s1Þ; 

ð3; 2; s1Þ; ð4; 1; s2Þ; ð5; 1; s2Þ; ð6; 1; s1Þ; . . .& satisfy 2D2D constraint ðk ¼ l ¼ 2Þ, we get P 
new

 ¼ ½ð1; 5; 

s1Þ, ð2; 5; s1Þ; ð4; 5; s2Þ; ð3; 2; s1Þ; ð5; 2; s2Þ; ð6; 2; s1Þ; . . .&. 

 

Different from Algorithm K-L-BASED which checks the k-degree first, Algorithm L-K-BASED tries to satisfy 

the l-diversity first. If we use t to represent the position number of each element in P . Each time Algorithm L-

K-BASED picks 

l nongrouped P ½t&s in P that do not share any common labels 

PP 

with the minimum t. Minimum t guarantees the algorithm select l nodes with most similar degrees in the 

nongrouped nodes. The algorithm then continues merging P[t] with minimum t in the remaining elements until 

we get 

 

k items. Then similar to Algorithm K-L-BASED, we use the same cost function to determine if the next 

element should 

be merged or not. For example, if using Algorithm L-K-BASED to make P ½ð1; 5; s1Þ; ð2; 2; s1Þ; ð3; 2; s1Þ; 

ð4; 1; s2Þ; ð5; 1; s2Þ; ð6; 1; s1Þ; . . .& satisfy 2D2D constraint ðk ¼ l ¼ 2Þ, we can get P 
new

 ¼ ½ð1; 5; s1Þ; ð4; 

5; s2Þ; ð2; 2; s1Þ, ð5; 2; s2Þ; ð3; 2; s1Þ; ð6; 

 

2; s1Þ; . . .&. Ghinita et al. [12], [13] designed a heuristic algorithm for 1D l-diversity models, which do not 

have k-anonymous requirement. For distinct l-diversity with 

 

k ¼ l, our LK-based algorithm follows the same logic as their heuristic algorithm. 

All the nodes in the same group will be adjusted to have the same degree in the next graph construction step. We 

use the mean degree of a group as its target degree. This target degree is also used to estimate the cost in 

Algorithm K-L-BASED and Algorithm L-K-BASED. The Algorithm K-L-BASED runs in OðnÞ time since it 

only scans the degree sequence P 

2. For the case that each node has some quasi-identifier labels, the generalization cost on quasi-identifier 

labels in each group can be combined into the cost function in the KDLD sequence generation algorithms. 
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TABLE 2 Algorithm 1: Neighborhood_Edge_Editing() 

 

 

 
 

 

 
once. The Algorithm L-K-BASED can also run in OðnÞ time if we store a candidate list for each node. 

 

IV. GRAPH CONSTRUCTION 
4.1 Algorithm Skeleton 

After getting the new sensitive degree sequence P 
new

, a new graph G
0
 should be constructed. Suppose P 

0
 is the 

sensitive degree sequence of G
0
, Po

0
 is the sensitive degree sequence of G

0
 that only contains the nodes in G. 
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Our graph construction algorithm makes Po
0
 ¼¼ P 

new
 and P 

0
 as a KDLD sequence. For example, if graph G’s 

degree sequence P ¼ ½ð1; 3; s1Þ; 

 

ð2; 2; s2Þ; ð3; 1; s1Þ; ð4; 1; s1Þ; ð5; 1; s2Þ& a n d P 
new

 ¼ ½ð1; 3; s1Þ; ð2; 3; s2Þ; ð3; 1; s1Þ; ð4; 1; s1Þ; ð5; 1; 

s2Þ&, then a new graph G
0 

can be constructed with degree sequence P 
0
 ¼ ½ð1; 3; s1; ð2; 3; s2Þ; ð3; 1; s1Þ; ð4; 1; s1Þ; ð5; 1; s2Þ; ð6; 1; 

s1Þ]. 

Motivated by the observation example (Fig. 5), we propose graph construction algorithms by making use of 

noise nodes to preserve the AP L better. We use the following algorithm to construct the published graph which 

preserves the AP L. The algorithm contains five steps: 

 

Step 1: Neighborhood_Edge_Editing() 

We add or delete some edges if the corresponding edge-editing operation follows the neighborhood rule (The 

details can be found in Section 4.2). By doing this, the sensitive degree sequence P of original graph G is closer 

to P 
new

 in case AP L is preserved; 

 

Step 2: Adding_Node_Decrease_Degree() 

For any node whose degree is larger than its target degree in P 
new

, we decrease its degree to the target degree by 

making using of noise nodes; 

 

Step 3: Adding_Node_Increase_Degree() 

For any node whose degree is smaller than its target degree in P 
new

, we increase its degree to the target degree 

by making using of noise nodes; 

Step 4: New_Node_Degree_Setting() 

 

For any noise node, if its degree does not appear in P 
new

, we do some adjustment to make it has a degree in P 
new

. Then, the noise nodes are added into the same degree groups in P 
new

; 

Step 5: New_Node_Label_Setting() 

We assign sensitive labels to noise nodes to make sure all the same degree groups still satisfy the requirement of 

the distinct l-diversity. It is obvious that after Step 4 and Step 5, the sensitive degree sequence P 
0
 of the 

published graph G
0
 is a KDLD sequence. 

In Steps 2, 3, and 4, we carefully connect the noise nodes into the graph to make the change of AP L as less as 

possible. Next, we introduced these steps in detail. 

4.2 Step 1 

 

We use Algorithm 1 (Table 2) to change some nodes’ degrees by adding/deleting edges first. In order to 

preserve AP L, we force each change to follow the neighborhood rule described as follows: 

. Case 1: Node u needs to increase its degree, v needs to decrease its degree and u,v are direct neighbors. 

In this case, we randomly select one direct neighbor w of v which does not connect to u. Remove the edge ðv; 

wÞ and add a new edge ðu; wÞ (See Fig. 3a). By doing this, u’s degree is increased by 1 and v’s degree is 

decreased by 1 while all the other nodes’ degrees remain unchanged. This operation changes the distance 

between u; w from 2 to 1 and the distance between v; w from 1 to 2. Therefore, only the paths passing through 

u; w or v; w change their lengths at most by 1; 

. Case 2: Two nodes u, v are two hop neighbors and they both need to increase their degree. If there does 

not exist link ðu; vÞ, we add link ðu; vÞ (See Fig. 3b). The distance between u; v is changed from 2 to 1. Only 

the lengths of shortest paths passing though u, and v change by 1; 

 

. Case 3: Two nodes u and v that both need to decrease their degrees are direct neighbors. If after 

removing link ðu; vÞ, u and v are still two hop neighbors, remove the link ðu; vÞ (See Fig. 3c). The distance 

between u; v is changed from 1 to 2. So it only changes the lengths of shortest paths passing through u; v at 

most by 1. 

 

A node’s degree could be either increased or decreased. So the above policies consider all the cases for two 

nodes u and v whose degrees need to be changed. It is easy to see that any edge-editing operation between these 

two nodes may 
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cause the lengths of shortest paths passing through u and v change at least by 2 except the above three situations. 

 

4.3 Step 2 

For any node u whose degree is still larger than its target degree after Step 1, we decrease its degree 

following the steps below (Algorithm 2, as shown in Table 3): 

 

. Create a new node n and connect u with n, now u:d ¼ pu:d þ 1 and n:d ¼ 1. 
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. Set n’s target degree targetnew to a degree in P 
0
. If u:d þ 2 p

0
u:d is less than the minimum degree in P 

0
, 

set targetnew as this minimum degree. Otherwise, set targetnew as a degree in P 
0
 which is less than and closest to 

u:d þ 2 p
0
u:d. We select u:d þ 2 p

0
u:d because we change u’s degree through n. As a consequence, n’s degree is 

changed to u:d þ 2 p
0
u:d. 

 

. Randomly select an edge ðu; v Þ from the original graph, delete this edge, then add a new edge ðn; vÞ. 

By doing this, v only changes from u’s one hop neighbor to its two hop neighbor. We repeat this random edge 

modification process until n:d ¼ targetnew or u:d ¼ p
0
u:d. An example of decreasing node degree by 

 

 
dding the noise node can be found in Fig. 4b. If n:d ¼ targetnew and u:d > p

0
u:d, goto the first step to create a new 

noise node. If u:d ¼ p
0
u:d but n:d < targetnew, node u’s degree has been successfully adjusted to p

0
u:d. We finish 

the adjustment of node u, and leave node n to noise hiding step. Since each time, we reduce u’s degree by 1 to 

increase n’s degree by 1, and the creation of n (described in previous step) adds degree 1 to both u and n, u:d þ 2 

p
0
u:d is n’s degree when u reaches its target degree. 

 

4.4 Step 3 

For each vertex u in G which needs to increase its degree, we use Algorithm 3 (Table 4) to make its degree 

reach the target degree. We first check whether there exists a node v within two hops of u, and v also needs to 

increase its degree (In Step 2, some noise nodes are added, such v may exist.), we connect n with v. Since v is 

within two hops of u, connecting v with n will not change the distance between u and v. Fig. 4a shows an 

example of this operation. After this step, if n’s degree is bigger than the minimum degree in P 
new

 but does not 

appear in P 
new

, we recursively delete the last created link until the degree of n equals to a degree in P 
new

. 

Otherwise, we leave n to Step 4 for processing and continue adding noise to u if u:d < p
0
u:d. By doing this, u’s 

degree is increased to its target degree. 

 

4.5 Step 4 

In this step, we make sure each noise node has a degree in P 
new

. By doing this, all the noise nodes are added into 

existing same degree groups in P 
new

. Furthermore, since we 

 

Fig. 4. Strategies to adding noise nodes. 
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TABLE 5 Algorithm 4: New_Node_Degree_Setting 
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TABLE 6 Algorithm 5: New_Node_Label_Setting 

 

assume an attacker use the degree information of some nodes to do the attack, if the noise nodes have 

degrees as the same as some original nodes, an attacker cannot distinguish them from the original nodes with the 

degree information. So, we need to make all the noise nodes’ degrees to be some degrees that already exist in P 
new

. To keep the AP L, during the process, we only change connections in the noise nodes’ neighborhoods to 

minimize the distance changes. 

 

 

The details of Step 4 is shown in Algorithm 4 (Table 5). We first select pairs of noise nodes (which need to 

increase their degrees) that each pair of nodes are within three hops to each other and build a link for each pair. 

If two noise nodes are within three hops, they are either connected to the same node in the original graph or they 

are, respectively, connected to two directly connected nodes in the original graph. If the two noise nodes are 

connected to the same original node, connecting them does not change any shortest path between original nodes. 

If the two noise nodes are, respectively, connected to two original nodes which are direct neighbors, since 

connecting these two noise nodes does not change the distance between the two original nodes, the shortest path 

lengths between the nodes in the original graph are not changed, too. 

 

Then, for each noise node whose degree is an even number, we select an even degree in P 
new

 (a degree 

in P 
new

 which is an even number) that is close to and bigger than this noise node’s current degree as its target 

degree. For example, if a noise node’s degree is 8 and the degrees appear in P 
new

 are {3, 4, 5, 6, 7, 9, 10, 12, 15, 

16}, we set its target degree as 10. We find all the nearest edges which do not directly connect with current 

processing noise node. The “nearest” edge to a noise node means the average distance of the two points 

ðu; vÞ of an edge to this noise node 
disðu;noiseÞþdisðv;noiseÞ

  is 

minimum among all edges. We select one edge within the nearest edge set randomly, remove the edge from the 

graph and connect the endpoints of this edge to the current processing noise node as shown in Fig. 4c. After that, 

the degree of the noise node increases by 2, and meanwhile, all the other vertices’ degrees remain unchanged. 

We repeat this procedure until the noise node’s degree reaches the target degree. For each noise node with an 

odd degree, we select an odd target degree and conduct the same adjustment. 

Since the two endpoints of the removed edge are both near to the noise node, directly connecting them to the 

noise node makes them stay in the neighborhood of the noise node. 
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Moreover, since the distance between the two endpoints increases only by 1, the lengths of paths 

through these two endpoints are increased only by 1 as well. When only even or odd degree groups exist, it’s 

easy to change the KDLD sequence generation algorithm to get a new sensitive degree sequence that contains 

both even and odd degrees by increasing some groups’ degrees by 1. 

 

4.6 Step 5 

The last ste is to assign sensitive labels to noise nodes to make all the same degree group still satisfy the 

requirement of distinct l-diversity. Since in each same degree group, there are already l distinct sensitive labels 

in it, it is obviously the new added noise nodes can have any sensitive label. We use the following way to 

sensitive label to a noise node n: suppose u is the original node in G which n is created for. We randomly find a 

label from the direct neighbors of u in the original graph G. Since there is a node with this label directly 

connected with u in the original graph, the noise node n with the same label connected with u can help preserve 

the distances between this label and other labels in the graph. The label distribution’s change after this setting is 

very small. We show this in Section 7.4.3 of the experiment part. The details of this step is shown in Algorithm 

5 (Table 6). 

 

4.7 Anonymization Utility Analysis 

In Step 1, we add or delete some edges following the “neighborhood rule.” To show the effectiveness of the 

noise nodes adding strategies in Steps 2, 3, and 4, we analyze the bound of the AP L change when given the 

number of added noise nodes in the average case. 

 

Theorem 1. Suppose G0 is the graph generated after Step 1 with 

N nodes, whose AP L is AP LG0 . If GM is the KDLD graph 

 

generated by adding M noise nodes. Our algorithm guarantees that the AP L of GM , AP LGM is bounded in 

average case: 

 

1 

 4   
M

 AP LG0      AP LGM 

 

N 

þ 

1  

  

4 

 

M 2 

  

      

1 þ 

 

 

 

AP LG0  þ 

 

 : N  N  4 

Here, “in average case” means the expected change value. We assume the adding/deleting of each edge changes 

the same number of shortest paths. When adding 1,000 noise nodes into a graph with 10,000 nodes, the upper 

bound of AP LGM is around 1:49AP LG0 and the lower bound of AP LGM is around 0:67AP LG0 . The detailed 

proof can be found in Appendix I, which can be found on the Computer Society Digital Library at 

http://doi.ieeecomputersociety. org/10.1109/TKDE.2011.259. 

 

 

TABLE 7Algorithm 6: New_Node_Label_Setting() 
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V. MORE COMPLEX L-DIVERSITY MODEL 

 

Besides distinct l-diversity, Machanavajjhala et al. [20] also proposed two other l-diversity models: entropy l-

diversity and recursive ðc; lÞ-diversity. Entropy l-diversity requests tighter privacy constraints. However, it is 

too restrictive for the practical purpose [20], [12], [13]. Recursive l-diversity has a more relaxed condition. For 

any equivalent group C (in our case, an equivalent group is a same degree group), if there are 
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m sensitive labels appearing in C, C satisfies recursive ðc; lÞ-diversity if f1 < cðfl þ flþ1 þ ::: þ fmÞ. Where 

c and l are two pregiven constants and fi is the number of occurrences of the ith most frequent sensitive label in 

C. For example, in Fig. 2b, there are eight nodes with degree 2 and the sensitive labels associated with these 

nodes are 60K, 80K, and 100K, respectively. 80K is the most frequent sensitive label which appears four times. 

60K is the second one which appears three times and 100K is the third one which appears two times. Thus, this 

same degree group satisfies 2-diversity with 

c ¼ 1 (4 < 1ð2 þ 3Þ) and 3-diversity with c ¼ 3 (4 < 3ð2Þ). In this section, we show how to adapt our algorithm 

to make it 

provide recursive ðc; lÞ-diversity instead of distinct l-diver-sity protection for sensitive labels. 

If the generated KDLD sequence P 
new

 satisfies recursive ðc; lÞ-diversity and all the same degree groups also 

satisfy ðc; lÞ-diversity after adding noise nodes, our algorithm works for recursive ðc; lÞ-diversity. So, the key 

points are to modify the KDLD sequence generation algorithm and graph construction’ Step 5 

(New_Node_Label_Setting()). 

 

5.1 Step 5 for Recursive ðc; lÞ-Diversity 

We use Algorithm 6 (Table 7) to assign sensitive labels to noise nodes. For a same degree group, the 

basic procedure to assign labels to new nodes added into this group is: 1) Assign labels to new nodes follows the 

label distribution of the original nodes in this group; 2) If the ðc; lÞ-diversity is not satisfied, assign the least 

frequent label in current group to a noise node who is assigned with the most frequent label (By doing this, the 

most frequent label’s occurrence number is decreased by 1 and the least frequent label’s occurrence 

 

number is increased by 1). We repeatly do this until the new group satisfies the recursive ðc; lÞ-diversity. 

Theorem 2. For any equivalent group C which satisfies recursive ðc; lÞ-diversity (i.e., f1 < cðfl þ flþ1 þ þ fmÞ) 

and f1 ðm  lþ1Þ < c, after adding noise nodes into C with their 

sensitive labels setted by Algorithm 6, the new group still satisfies ðc; lÞ-diversity. 

 

The detailed proof of this theorem can be found in Appendix II, available in the online supplemental material. 

We can generate the KDLD sequence where each same degree 

 
group in it satisfies

 
f
1 

< c
ð

f
l þ 

f
lþ1 þ þ 

f
mÞ 

and
 f1 ðm  lþ1Þ 

< 

c to achieve the recursive ðc; lÞ-diversity requirement. 

 

5.2 KDLD Sequence Generation for Recursive ðc; lÞ-Diversity 

 

We design Algorithm 7 (Table 8) to generate the KDLD sequence for recursive ðc; lÞ-diversity. The basic idea 

is to put the nodes with similar degrees together to minimize the 

 

cost L P ; P 
new

Þ ¼   8u jpu:d  pu
new

:dj. We call the condition 

that a
ð
 same degree

P 
group C must satisfies the Safety 

Grouping Condition, which requests: 1) C   k; 2) f1 < 

 
c
ð

f
l þ 

f
lþ1 þ þ

f
mÞ

; 3)
 f1 ðm  lþ1Þ 

< c. Note when we use 

the pure edge-editing method to construct the published graph, the Safety Grouping Condition only contains the 

first two constraints. Given the degree sequence P , Each time, we create a new group C for P ½0& and remove 

P ½0& out of P . We use d to record the degree of P ½0&. Then, we recursively 
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Fig. 5. Publish a graph with neighborhood graph anonymity. 

check the next element. If this element has degree d, we directly add it into the current group C. 

Otherwise, we check whether its label is a label that appears top L 1 times in C. If not, we add this element into 

C. After adding one element, we remove this element out of P and start check from the head of P since the label 

appearance numbers may be changed. We use this method to increase the size of C until C satisfies the Safety 

Grouping Condition. After getting a group, we copy it into P 
new

 and start to construct the next group. If a group 

cannot reach the Safety Grouping Condition after checking all left nodes in 

P , we record the elements in this group into a set R. Finally, for each element in R, we assign it to an 

existing group if this group satisfies the Safety Grouping Condition after adding this node. 

 

VI. DISCUSSION 
For stronger graph protection models such as k-neighbor-hood anonymity [32], it is also helpful to preserve AP 

L by carefully adding some nodes. A graph is k-neighborhood anonymous if: for every node there exist at least 

other k 

1 nodes sharing isomorphic neighborhood graph. For example, a 2-neighborhood anonymity graph of 

Fig. 5a (shown in Fig. 5b) generated by edge editing can be published. If an attacker uses a node’s neighborhood 

graph to reidentify it, he always gets at least two candidates. However, the distance between nodes 6 and 7 are 

changed from 5 to 1 in Fig. 5b. If we simply add one node, we can also generate a 2-neighborhood anonymous 

graph as shown in Fig. 5c. In Fig. 5c, the shortest distances between nodes are changed much smaller than Fig. 

5b. 

The basic procedure to generate a k-neighborhood anonymous [32] graph is: 1) Sort all nodes by their 

neighborhood graph size in descending order; 2) Recur-sively adjust two nodes’ neighborhood graphs to be the 

 

same until a k-neighborhood anonymity graph is generated. When adjusting neighborhood graphs Gu and Gv 

with jGuj > jGvj to be the same, new nodes should be introduced into Gv. An unanonymized node with the 

smallest degree has the highest priority to be added. The noise node adding strategy should be considered in this 

step to improve the utility of the published graph. 

 

VII. EXPERIMENTS 
In this section, we test our algorithm on the distinct l-diversity. We also conduct corresponding experiments for 

recursive ðc; lÞ-diversity model. Both testing results show the effectiveness of our algorithm. Interested readers 

can find the testing results for recursive ðc; lÞ-diversity model in the Appendix IV, 

available in the online supplemental material. 

 

7.1 More Utilities 

We first test how well the published graph represents the original graph. In order to measure the changes on the 

original graph, besides AP L, we examine another two utilities: Average Change of Sensitive Label Path Length 

(ACSP L) and Remaining ratio of top influential users (RRTI). 

 



Protecting Sensitive Labels in Social Network Data Anonymization 

| IJMER | ISSN: 2249–6645 |                        ww.ijmer.com                            | Vol. 8 | Iss. 01 | January 2018 | 59 | 

 

1. ACSP L: In order to measure the connections between any two sensitive labels (including the same 

label), we define average path length between any two labels l1 and l2 as: 

 

AP LG; 

l

1 ;l2 

Þ 
¼ 

P
8ni:s¼l1 ;nj:s¼l2 

d
ð

n
i
; n

jÞ : 

ð   
P
8ni:s¼l1 ;nj:s¼l2 

1 
 

 

The average change of average sensitive value path length is defined as: 

 

 

P
8l1 ;l2 AbsðAP 

L  AP L    

ACSP LG;G0  

¼ M
G;

 
ðl

1
;l
2 

Þ 
 

G
0
;ð

l1 

;l2 

Þ
Þ 

; 

ð2 Þ þ M     

where M is the number of unique sensitive attribute labels, ð
M

2 Þ is the number of two combinations of these M 

values. ð
M

2 Þ þ M computes the number of all possible two combinations of the sensitive label set. 

 

2. RRT I: One important data mining task on a graph are to find the top influential users (experts) in it. 

We test the remain ratio of top influential users to show how the published graph preserves this utility. 

Suppose the set of top 20 percent influential users in G is INFG and the corresponding one in G
0
 is INFG0 , the 

remaining ratio of the top jINFGj users is computed as: 

 

RRT I ¼ j
INF

G \ 
INF

G
0
 j : 

The larger RRT I is, the better the published graph preserves the information in the original graph. We use the 

PageRank algorithm [23] to compute the users’ influential values. 

 
 

Fig. 6. Average path length for different k. 
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Fig. 7. Average change of sensitive label path length for different k. 

 

7.2 Data Sets 

In this experiment, we exam our algorithm on three real data sets: Arnet Data Set (6,000 nodes and 37,848 

edges), Cora data set (2,708 nodes and 5,429 edges), and DBLP data set (6,000 nodes and 29,843 edges). Details 

of these data sets can be found in Appendix III, available in the online supple-mental material. 

 

7.3 Results 

To demonstrate the effectiveness of our graph construction algorithm, we compare our work with two pure 

edge-editing graph construction algorithms: adding edges [18], simulta-neous swap [18]. We test the KD3D 

model for Cora and DBLP data sets, and KD5D model for Arnet data set, we choose a larger l for Arnet data set 

since it contains more distinct sensitive labels. We generate the KDLD graph for each data set using the K-L-

BASED sensitive degree sequence generation algorithm. Note here we use different graph construction 

algorithms to generate anonymized graphs for the same KDLD sequence. 

 

Figs. 6a, 6b, and 6c are AP L results of the three data sets, respectively, in terms of changing k values using 

different graph construction algorithms. From the results we can see that for all the three data sets, our noise 

node adding algorithm performs much better than two edge-editing algorithms. This is because our methods do 

not connect nodes far away. As a result, our method keeps the distance property well. 

 

We show the ACSP L results in Figs. 7a, 7b, and 7c. The less the ACSPL value is, the better a graph 

construction algorithm works. From the figures, we can observe that the curve of our noise node adding 

algorithm is quite low compared with adding edge method and simultaneous swap 

 

method. Our algorithm helps to preserve the distances between labels. 

We show the RRT I results in Figs. 8a, 8b, and 8c. The larger the RRTI value is, the better a graph construction 

algorithm works. Except simultaneous swap has competitive performance as our algorithm at two points (k ¼ 30 

and k ¼ 35) of Cora, for all the other cases, our algorithm also works the best. 

 

To summarize, after comparing AP L, ACSP L, and RRT I values, our adding noise node method 

performs much better than the two edge-editing algorithms. Making use of noise nodes to construct a graph 

helps to keep the utilities of the published graph. 

We also test the AP L, ACSP L, and RRT I results of the three data sets with different k based on L-K-BASED 

sensitive degree sequence generation algorithm. Very similar results as the Algorithm K-L-BASED are 

observed. Due to the page limitation, we do not show the test results here. When the k value becomes large 

compared with l value, the results of K-L-BASED algorithm and L-K-BASED algorithm become nearly the 

same. In our testing, the sum of degree change’s difference between L-K-BASED and K-L-BASED sensitive 

degree sequence generation algorithm is within 5 percent. In our following experiments, we only show the 

results of our algorithm with the K-L-BASED sensitive degree sequence generation algorithm. 

Since Cora and DBLP data sets do not contain the enough number of sensitive labels, in order to see the effect 

of l, we test 15DlD models of Arnet Data Set. The results are shown in Fig. 9. Similar results can be observed as 

the changing k case, our algorithm performs much better than the two edge-editing algorithms. 
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Fig. 8. Remaining ratio of top influential users for different k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Utilities of Arnet Data Set for different l. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. AP L and the estimated bounds. 

 

7.4 More Experiments 

Besides the quality of the published graph, we also test several other aspects of our algorithm. 

 

7.4.1  Bounds of APL Change 

In order to test the bounds derived in Section 4.7, we compute the bounds for these three data sets and compare 

the true AP Ls with them. The results are shown in Fig. 10. 

 

7.4.2  Percentage of Noise Nodes 

Fig. 11a shows the percentage of noise nodes added by our algorithm with different ks. In all cases, our 

algorithm add less than 7 percent noise nodes. Our method only put a small “burden” to achieve a much better 

effect comparing with pure edge-editing algorithms. 

 

7.4.3  Change of Label Distribution 
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Fig. 11b shows the percentage of average label distribu-tion change. The percentage of average label 

distribution change is calculated as: 

 

 
 

Fig. 11. More experiments. 

 
 

 

 

 

 

 

 

 

where M stands for the number of unique node labels, ratioli;G stands for label li’s percentage in G, and ratioli;G0 

stands for its percentage in G
0
. From the result, we can see although some noise nodes are added, the change of 

label distribution is very small. The maximum change ratio is 11 percent and in most cases, the change ratio is 

less than 6 percent. This change includes the labels that only appear a small number of times in the original 

graph. A small change to this kind of labels will cause a large distribution change. 
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7.4.4  Algorithm Efficiency 

We record the running time of our algorithm for different k in Fig. 11c.
3
 From the result we can see our 

algorithm is very efficient, the largest running time is less than 6,000 ms. 

 

3. We test the running time of noise node adding algorithms on a PC computer running with the Microsoft 

Windows Vista operating system, which has Intel Core 2 Duo CPU with 2.53 GHz, 4.0 GB main memory. 

 

7.4.5  New Added Nodes Hiding 

 

Since each noise node n has a degree included in P 
new

, there at least exists k original node with the 

same degree as n. An attacker cannot determine whether a node is a noise node based on the degree information. 

For any noise node n, our algorithm always connects n with some nodes that are near to the node when n is 

created. As a result, all n’s neighbors are from a small region of the graph. This is the best way to guarantee that 

any noise node’s connection satisfies the basic characteristic [25], [28] of social network. That is, for any node, 

most neighbors of it should be close to each other. 

In this section, we show the noise nodes are well mixed with original nodes by testing the ability that an attacker 

can filter out the noise nodes. 

 

Test 1. In this testing, we make a strong assumption that the attacker knows the accurate characteristics of noise 

nodes 

and uses these characteristics to filter noise nodes out. We want to test whether the characteristics of noise nodes 

are special comparing to original nodes. 

We first suppose the attacker already knows the degrees of all the noise nodes and uses this information to filter 

all the nodes with these degrees out. Table 9(1) shows the average percentage of real noise nodes in the filtered 

out nodes. From the result, we can see that our algorithm hides the noise nodes well, there exists a large portion 

of original nodes have the same degrees as noise nodes. 

Clustering coefficient (CC) of a vertex is an important value [25], [28] to represent the characteristic of its 

neighborhood graph. It is defined as the actual number of edges between the vertex’s directed neighbors divides 

the max possible number of edges between these directed neighbors. We suppose an attacker knows the CC 

values of 
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all the noise nodes and do the filtering. The result is shown in Table 9(2), similar results as the degree filtering 

method can be observed. A large portion of original nodes have the same CCs as noise nodes. The result shows 

the connection of noise nodes are the same as most original nodes. 

 

Test 2. There are some works [22], [9] to detect abnormal structures in graph databases. For each 

degree that contains noise nodes, we extract all the labeled neighborhood graphs of the nodes with this degree in 

the published graph. We use the tool in [9] to detect abnormal structures in the graph database formed by these 

neighborhood graphs. Eberle and Holder [9] designed graph-based approaches to uncovering anomalies in 

labeled graphs where the anomalies consist of unexpected entity/relation-ship deviations that resemble the 

nonanomalous behavior. They make use of the minimum description length principle and probabilistic 

approaches in their tool. In our experiment, the interesting result is, for all the cases, either no abnormal 

structure is found or the abnormal structures found out are all in the neighborhood graphs of normal nodes. The 

result shows the neighborhood graph of the noise nodes do not have any special characteristics for noise filtering 

purpose. 

 

Test 3. In this testing, we enhance an attacker’s back-ground knowledge by the number of noise nodes in each 

same degree group. An attacker originally has the knowl-edge of some node’s degrees. From our algorithm, he 

also knows we change the degrees of original nodes as less as possible. So, in the very worst case, for a same 

degree group 

 

C with degree d, the attacker may know the number of noise nodes in it. For a same degree group C, if 

there are m noise nodes in C, we follow the distance-based outliers detection [14], [16] method to extract m 

nodes out based on certain characteristics of each node. Distance-based outliers detec-tion is a general method to 

detect outliers in a set. We divide 

C into two sets C1 and C2 with jC2j ¼ m where the nodes in 
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C 2 are detected as outliers. Suppose in the extracted nodes, 

there are r nodes which are real noise nodes, we compute the correct filtering ratio as ratio ¼ m
r
 100%. We 

compute the average correct filtering ratio of all same degree groups which contain at least one noise node. We 

conduct two experiments: 

 

 

. Filtering 1: For a node n in C, n is represented by its certain connection characteristic. We use two con-

nection characteristics: CC and the influential value to do the filtering. 

. Filtering 2: For a node n in C with degree d, n is represented by a sorted vector with size d which 

contains certain connection characteristic of n’s neighbors. We use three connection characteristics: degree, CC, 

and the influential value to do the filtering. 

Tables 9(3) and 9(4) show the average correct filtering ratio of Filtering 1. From the result, we can see the 

correct filtering ratios are very low. Even an attacker knows the number of noise nodes we added for each 

degree, it is still impossible for them to find these noise nodes. Tables 9(5), 9(6), and 9(7) show the average 

correct filtering ratio of Filtering 2. Similar results can also be observed. Most of the 

detected outliers are original nodes. The neighbors of noise nodes do not exhibit special connection 

characteristics either. The results show the noise nodes added by our algorithm have no special graph 

characteristics. They are well mixed with the original nodes in the graph. 

 

From the experiments, we can see comparing with the current edge-editing-based algorithms, our noise node 

adding algorithm can generate a privacy preserving graph efficiently, which provides better utilities. 

 

VIII. RELATED WORK 
Simply removing the identifiers in social networks does not guarantee privacy. The unique patterns, 

such as node degree or subgraph to special nodes, can be used to reidentify the nodes [15]. The attack that uses 

certain background knowledge to reidentify the nodes/links in the published graph is called “passive attack.” 

There are two models proposed to publish a privacy preserved graph: edge-editing-based model [18], [32], [34], 

[6], [29] and clustering-based model [15], [30], [4], [7], [3]. The edge-editing-based model is to add or delete 

edges to make the graph satisfy certain properties according to the privacy requirements. Clustering-based 

model is to cluster “simi-lar” nodes together to form super nodes. Each super node represents several nodes 

which are also called a “cluster.” Then, the links between nodes are represented as the edges between super 

nodes which is called “super edges.” Each super edge may represent more than one edge in the original graph. 

We call the graph that only contains super nodes and super edges as a clustered graph. 

Most edge-editing-based graph protection models im-plement k-anonymity [26] of nodes on different 

background knowledge of the attacker. Liu and Terzi [18] defined and implemented k-degree-anonymous model 

on network structure, that is for published network, for any node, there exists at least other k 1 nodes have the 

same degree as this node. Zhou and Pei [32] considered k-neighborhood anonymous model: for every node, 

there exist at least other k 1 nodes sharing isomorphic neighborhoods. In paper [33], the k-neighborhood 

anonymity model is extended to k-neighborhood-l-diversity model to protect the sensitive node label. Zou et al. 

[34] proposed a k-Automorphism protection model: A graph is k-Automorphism if and only if for every node 

there exist at least k 1 other nodes do not have any structure difference with it. Cheng et al. [6] designed a k-

isomorphism model to protect both nodes and links: a graph is k-isomorphism if this graph consists k disjoint 

isomorphic subgraphs. The sensitive attributes of nodes are protected by anatomy model [27] in a k-

isomorphism graph. Ying and Wu [29] proposed a protec-tion model which randomly changes the edges in the 

graph. They studied how random deleting and swapping edges change graph properties and proposed an 

eigenvalues oriented random graph change algorithm. All the edge-editing-based models prefers to generate a 

published graph with as less edge change as possible. Our model is also based on edge-editing method. The 

main difference of our work with other previous works is that besides as less change as possible, we guarantee 

the published graph preserves another important utility, the average path length 

 

AP L, which reflects the distortion of node relationships on the original graph. 

For clustering-based models, since a clustered graph only contains super nodes and super edges, by making each 

cluster’s size at least k, the probability to reidentify a user can be bounded to be at most k
1
 . Hay et al. [15] 

proposed a heuristic clustering algorithm to prevent privacy leakage using vertex refinement, subgraph, and 

hub-print attacks. Campan and Truta [4] discussed how to implement clustering when considering the lost of 

both node labels and structure information. Zheleva and Getoor 

 

[30] developed a clustering method to prevent the sensitive link leakage. Cormode et al. [7], [3] introduced 

(k,l)-clusterings for bipartite graphs and interaction graphs, respectively. Campan et al., [5] implemented a p-
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sensitive-k-anonymity clustering model which requests each cluster satisfy distinct l-diversity. Since a clustered 

graph only contains super nodes and super edges, to mine a clustered graph, people samples a group of graphs 

which are consisted with this clustered graph. Then, the mining task can be finished by mining each sampled 

graph and computing the average results. Since a user should do the sampling, the utility of the published graph 

does not have any guarantee and this user could never know how many samplings can guarantee to get a “well 

enough” result. Comparing with a clustering-based model, the benefit of our model is that we can guarantee to 

preserve some utilities of the published graph. 

Besides the “passive attack,” there’s another type of attack on social networks, which is called “active attack.” 

“Active attack” is to actively embed special subgraphs into a social network when this social network is 

collecting data. An attacker can attack the users who are connected with the embedded subgraphs by 

reidentifying these special sub-graphs in the published graph. Backstrom et al. [1] described active attacks based 

on randomness analysis and demonstrated that an attacker may plant some constructed substructures associated 

with the target enti-ties. One method to prevent the active attack is to recognize the fake nodes added by 

attackers and remove them before publishing the data. Shrivastava et al. [25] and Ying et al. 

 

[28] focused on a special active attack named Random Link Attack. Shrivastava et al. [25] proposed an 

algorithm that can identify fake nodes based on the triangle probability difference between normal nodes and 

fake nodes. Ying et al. 

 

proposed another method, which uses spectrum analysis to find the fake nodes. To publish a graph that is 

potentially changed by Random Link Attack, the publisher can use a two step mechanism. First, the graph is 

filtered by the methods introduced by Backstrom et al. [1] or Shrivastava et al. [25]. Then, he can generate the 

published graph using our model from the filtered graph. 

There are also two other works which focus on the edge weight protection in weighted graphs. Liu et 

al. [19] treated weights on the edges as sensitive labels and proposed a method to preserve shortest paths 

between most pairs of nodes in the graph. Das et al. [8] proposed a Linear Programming-based method to 

protect the edge weights while preserving the path of shortest paths. These two works focused on the protection 

of edge weights instead of nodes, which are different with our work. 

 

Some works studied other attacks besides the “passive attack” and “active attack.” Zheleva [31] 

analyzed the ability of an attacker to learn the unpublished attributes of users in an online social network when 

he uses the published attributes and relationships between users to do the data mining. Arvind [21] studied the 

ability of an attacker to reidentify nodes in an anonymized graph Ga when he knows a different graph Gaux 

whose membership partially overlaps with Ga. The attacker knows the mapping of some “seed nodes” between 

Ga and Gaux. Narayanan and Shmatikov [21] showed from these “seed nodes,” a large portion of other nodes can 

be reidentified. These two attacks are different with the “passive attack” which we target on in this paper. 

 

IX. CONCLUSION 
In this paper, we propose a k-degree-l-diversity model for privacy preserving social network data 

publishing. We implement both distinct l-diversity and recursive ðc; lÞ-diversity. In order to achieve the 

requirement of k-degree-l-diversity, we design a noise node adding algorithm to construct a new graph from the 

original graph with the constraint of introducing fewer distortions to the original graph. We give a rigorous 

analysis of the theoretical bounds on the number of noise nodes added and their impacts on an important graph 

property. Our extensive experimental results demonstrate that the noise node adding algorithms can achieve a 

better result than the previous work using edge editing only. It is an interesting direction to study clever 

algorithms which can reduce the number of noise nodes if the noise nodes contribute to both anonymization and 

diversity. Another interesting direction is to consider how to implement this protection model in a distributed 

environment, where different publishers pub-lish their data independently and their data are over-lapping. In a 

distributed environment, although the data published by each publisher satisfy certain privacy require-ments, an 

attacker can still break user’s privacy by combining the data published by different publishers together [11]. 

Protocols should be designed to help these publishers publish a unified data together to guarantee the privacy. 
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