
 

                  International 

OPEN      ACCESS                                                                                                             

                                       Journal 

Of Modern Engineering Research (IJMER) 

 
 

| IJMER | ISSN: 2249–6645 |                                                   ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 1 | 

 

Effective Replacement Policy For Last-Level Cache 
 

Hyun Kwon
1
, Yongchul Kim

2,*
 

1
School of Computing, Korea Advanced Institute of Science and Technology, South Korea 

2
Department of Electrical Engineering, Korea Military Academy, South Korea 

Corresponding Author: Hyun Kwon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

Due to the increasing gap between CPU and memory speed, cache performance plays a critical role in 

determining the overall performance of computer systems. Many cache performance models have been proposed in 

the literature. One of the key factors that affect cache performance is the cache replacement policy. Because the 

cache is limited in capacity, it is necessary to remove unnecessary blocks and replace them with new blocks. These 

replacement policies for caches have been studied for almost 5 decades [1][2]. Unlike offline replacement policy 

that relies on the knowledge of future address references, replacement policies that can be implemented in practice 

are online policies that have no knowledge of future references. Also, there does not exist an optimal replacement 

policy. All the replacement policies have the same average miss ratio due to the same cache’s length, because the 

replacement policy consider the set of all the possible insertion sequences of a given length, with addresses taken 

from a finite set. Nevertheless, in terms of practical performances, not all replacement policies are equivalent. 

Algorithm-generated insertion sequences [1] have characteristics that make certain policies better than the others in 

practice. Among the replacement policies, the LRU policy is known to have the best performance. However, 

LRU’s success is very dependent on a temporal locality. Last-level cache have less temporal locality than L1 and 

L2 caches. A large portion of the blocks stored in the last-level cache are never reused. Therefore, in the last-level 

cache, the LRU scheme has no significant effect and it is necessary to study an appropriate replacement policy for 

the last-level cache [3][4]. In this paper We propose a method to improve Decision Tree Analysis (DTA) in LLC.       

ABSTRACT: Since blocks stored in memory take a lot of time for the CPU to process, frequently used 

blocks are stored in the cache and placed between the CPU and memory. It is faster to access the cached 

blocks than the blocks stored in memory, hence the role of cache is important to improve the performance of 

computer systems. However, the cache has less capacity to store blocks than memory. Because of this, cache 

replacement policy, which replaces unnecessary blocks, is important. There are three cache replacement 

policies: random, least recently used (LRU), and most recently used (MRU). Generally, LRU method shows 

good performance. Cache is graded as Level 1 (L1), Level 2 (L2) and Level 3 (L3): L1 and L2 are usually 

referred to as higher level caches and L3 is referred to as last-level cache (LLC). The most frequently used 

blocks in the cache are stored in L1, while the less frequently used blocks are stored in L3. Therefore, the 

performance of LRU in L3 is limited. In this paper, we propose a method to improve Decision Tree Analysis 

in LLC. In the existing decision tree policy, some policy parts are modified to reduce storage space and we 

also reduce learning time and cache miss rate. Our experiment is implemented by using CMP$im and the 

performance evaluation uses SPEC CPU2000 and PARSEC 3.0 as the benchmark. Our results show that the 

proposed scheme improves the performance compared to the conventional LRU method  with a minimal 

expense of cache miss.  the cache are stored in L1, while the less frequently used blocks are stored in L3. 

Therefore, the performance of LRU in L3 is limited. In this paper, we propose a method to improve Decision 

Tree Analysis in LLC. In the existing decision tree policy, some policy parts are modified to reduce storage 

space and we also reduce learning time and cache miss rate. Our experiment is implemented by using 

CMP$im and the performance evaluation uses SPEC CPU2000 and PARSEC 3.0 as the benchmark. Our 

results show that the proposed scheme improves the performance compared to the conventional LRU 

method with a minimal expense of cache miss. 

KEYWORDS: Last Level Cache (LLC), Least Recently Used (LRU), Most Recently Used (MRU), Decision 

Tree Analysis (DTA) 



Effective Replacement Policy for Last-Level Cache 

| IJMER | ISSN: 2249–6645 |                                                   ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 2 | 

In the existing decision tree policy, some policy parts are modified to reduce storage space and we also reduce 

learning time and cache miss. Our contributions are as follows: 

- First, the goal of this paper is to implement well-known replacement policies in literature. Especially, we 

consider the case about Last-Level Cache. We modified decision tree presented in [5] and implement a 

hybrid-replacement policy in order to evaluate the performance. 

- Second, we find an optimal policy by modifying some parts of the existing policies with a decision tree 

analysis. We found some limitations of the DTA in the existed works and provide better solution to improve the 

performances. The lower storage architecture is expected to eliminate useless branch in the decision tree. 

 

This paper is organized as follows. In section 2, we have researched the related works regarding 

replacement policy. Then, our proposed scheme including policy implementation and source codes is presented in 

Section 3. Our experiment results are shown in Section 4 and we conclude in Section 5. 

 

II. BACKGROUND AND RELATED WORKS 

There are many various policies such as First In First Out (FIFO, Round-Robin) [6][7], Last In First Out 

(LIFO), Random [1], Least Recently Used (LRU) [2], Most Recently Used (MRU) [8], and PLRU (Pseudo-LRU) 

[9][10], Time aware Least Recently Used (TLRU) [11], Segmented LRU (SLRU) [12], Least-Frequently Used 

(LFU) [13], Least-Frequently Recently Used (LFRU) [14], Low Inter-Reference Recency Set (LIRS) [15], and 

Adaptive Replacement Cache (ARC) [16]. The FIFO method is a method of removing and inserting the first block 

accessed for the first time without a separate access history when the cache block needs to be replaced. Unlike 

FIFO, LIFO method is a method to insert and remove the last accessed block when replacement of cache block is 

needed. The Random method is a method of removing and inserting any existing block, i.e., randomly chosen block 

when it is necessary to replace the cache block. This approach has the advantage of not having to store the access 

history separately and will be useful when a stochastic method is effective. The LRU method removes and inserts 

the least recently used blocks. In order to apply this method, a separate history is needed to track how much the 

block is used in the history. Unlike the LRU method, the MRU method removes and inserts the most recently used 

blocks. This method is effective in situations where many old blocks stored in the cache are used for access. The 

PLRU approach improves LRU with less overhead and less cost than LRU for associative applications. This 

method is often used for CPU design because only one bit is used. The TLRU method is a modified LRU method 

used when a time element is inserted into a block stored in the cache. This TLRU method is widely used in network 

environments such as Information-centric networking (ICN) [17] and Content Delivery Network (CDNs) [18]. The 

SLRU method is a modified LRU method that distinguishes between probationary segments and protected 

segments. This method improves performance over LRU by storing more used blocks in the protected segment. 

The LFU method counts the number of blocks and removes and inserts the least number of blocks first. The LFRU 

method is a mixture of LRU and LFU methods. That is, replace the least frequently used and recently unused 

blocks. In this case, it is important to select appropriate weights for LFU and LRU in order to improve LFRU 

performance. The LIRS method is a method using an inter-reference recency (IRR) instead of the recently accessed 

history when the replacement policy is applied. The smallest IRR blocks will be removed and inserted. The ARC 

method is a method of combining recency and frequency and dynamically adjusting the recency and frequency with 

different weights according to importance. Among those cache replacement policies, it is not easy to determine the 

best performance policy. Al-zoubi et. al. [19] studied various cache replacement policies including above 

mentioned policies and showed comparison analysis using SPEC CPU2000 benchmark suite. 

LRU is known as one of the efficient policy but has downside regarding storing cost. However LLC 

(last-level-cache) are not used efficiently in LRU policy. Because in order to access blocks stored in L3, L1 and L2 

are checked first to see if there are corresponding blocks. Therefore, most recently used blocks by LRU policy of 

L1 and L2 are mostly stored in L1 and L2, and processed in advance by LRU policy in L1 and L2 before accessing 

L3. That is the most of the LLC blocks are rarely re-accessed by LRU policy due to filtering of the higher level 

(L1/L2) caches. As a solution to that problem, the authors in [4] present a bypassing method by analyzing the miss 

patterns of accessing or bypassing each cache block in the LLC, and predict the blocks that will not be re-accessed 

again in the LLC. However, cache bypassing algorithms suffer from several shortcomings. It needs a large storage 

overhead and a complex algorithm. Also, LRU has countless variations. Khan et. al. [5] introduce insert position 

select policy using Decision Tree Analysis. This technique requires minimal hardware modification from the novel 

LRU replacement policy. For a 1MB 16 way set-associative last level cache in a single core processor, this scheme 

uses only 2069 bits over the LRU replacement policy. The importance of this scheme is that users dynamically 

choose the insert position based on the decision tree. However, there are some limitations. The number of 

candidates are still limited because of the verification overhead of the decision tree analysis. These limits of the 



Effective Replacement Policy for Last-Level Cache 

| IJMER | ISSN: 2249–6645 |                                                   ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 3 | 

insert position select policy reduce the chances to further improve energy efficiency of the dynamic cache 

mechanism. 

 

III. PROPOSED SCHEME 

We propose a new structure of the decision tree analysis to improve cache performance. Figure 1 shows a 

basic structure of decision tree. From the results of an existing DTA analysis, it can be seen that the benchmarks 

that measure near MRU and near LRU have little effect on the performance rating at 0% and 10%. Therefore, we 

remove the insertion parts near MRU and near LRU in order to reduce storage space and learning time as shown in 

Figure 2. Moreover, each decision position of the proposed scheme is generally reflected in the benchmarks 

performance evaluation. 

 

Fig. 1: A basic structure of the decision tree 

 

Set dueling between
middle and MRU

Set dueling between
LRU and middle pos

Insert LRU pos Insert middle pos

Insert MRU pos

Figure 2. The proposed Policy

  

  

 

 
 

Fig. 2: A proposed structure of the decision tree policy 

 

To implement the proposed method, we used CMP$im [20] as a simulator and SPEC CPU2000 was used 

to evaluate the performance of the proposed method. In addition, we evaluate the success and the fail performance 

of the proposed method using a multi-threaded program for the experiment of time performance using a 

streamcluster of PARSEC 3.0 [21]. 

We compared the proposed method with LRU and DTA for each cache miss rate experiment. A total of 50 

million instructions were simulated. To implement the proposed method, we modified the replacement_policy.cpp 

part by using CMP$im as follows. This modified part can be expressed by an algorithm as shown in Algorithm 1.  

Set dueling between
middle and MRU

Set dueling between
LRU and middle pos

Set dueling between
near MRU and MRU pos

Set dueling between
near LRU and middle pos

Insert LRU pos

Insert near LRU pos Insert middle pos

Insert near MRU pos Insert MRU pos

Figure 1. The basic structure of decision tree

 

  

  

  

 

 

 



Effective Replacement Policy for Last-Level Cache 

| IJMER | ISSN: 2249–6645 |                                                   ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 4 | 

 

<MRU>: count1 < numsets/2, count2 >= numsets/2  

<Middle>:  count1 >= numsets/2, switched = 0, count2 >= numsets/2  

 count1 >= numsets/2, switched = 1, count2 >= numsets/2  

<LRU>: count1 >= numsets/2, switched = 0, count2 < numsets/2 

 

 

 
Fig. 3: Experimental step 

 

In order to evaluate the performance of the proposed method, we experimented with the steps of creating 

trace files and simulating them as shown in Figure 3. To generate the trace files, four trace files such as art, mcf, 

twolf, parser are created on the SPEC2000 benchmark using Pin (Pinkit) and a streamcluster is created in 

PARSEC3.0. And then, we use the trace files to evaluate the cache performance of the proposed method 

implemented with CMP$im. 

 

IV. SIMULATION RESULTS 

In order to compare the performance of the proposed method, performance was evaluated using CMP$im. 

Figure 4 shows the performance evaluation using the twolf benchmark in CMP$im simulator. Performance of the 

cache miss rate was measured using four art, mcf, twolf, and parser as benchmarks for performance evaluation. 

Cache miss means that the CPU does not have the memory to be referred to in the cache. When there are many 

cache misses, it takes a long time to fetch the information because the data of a certain block site is fetched from the 

main memory, stored in the cache, and then transmitted to the CPU. The total number of cycles was 50 million 

cycles. 

Algorithm 1. Proposed replacement policy of cache. 

Input: setType0 : Follower set 

setType1 : Leader set that inserts in the middlePos. 

setType2 : Leader set that inserts in the MRUPos, this is actually LRU policy. 

setType3 : Leader set that inserts in a position adaptively chosen. 

 
 this counter is responsible for selecting winner policy of MRUPos. 

 this counter is responsible for selecting winner policy between 1
st
 round 

                                And adaptive policy chosen by setType 3. 

 switched is a 1 bit count, it keeps track of the policy used in setType3 

 : this is the insert position in the middle of the LRU stack 

 

Process of proposed scheme: 

If (count1 <numset/2) Then // MRU position insertion is winner in 1
st
  round 

   InsertToPos(new_block);  // middelPos insertion is winner in 1
st
 round 

Else 

   If (switched == 0) Then 

       If (count2 >= numsets/2) Then 

         InsertToPos(new_block) // middle position insertion is winner in 2
nd

 round 

       Else 

         InsertToPos(new_block) // LRU position insertion is winner in 2
nd

 round 

   Else if (switched == 1) Then 

       InsertToPos(new_block) // MRU position insertion is winner in 2
nd

 round 

End If 



Effective Replacement Policy for Last-Level Cache 

| IJMER | ISSN: 2249–6645 |                                                   ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 5 | 

 
Fig. 4: An example of the execution result about twolf using CMP$im. 

 

Table. 1: Cache miss cycle (unit: cycle) of LRU, decision tree, and proposed solution. 

 

 
Fig. 5: Graph of Table. 1 

Table 1 shows lists the cache miss cycle of itemized LRU, DTA, and proposed scheme. Figure 5 is a 

graphical representation of the results of Table 1. In Table 1 and Figure 5, we can see that the overall decision tree 

has a lower cache miss rate than the proposed solution. However, in the twelf and parser parts, we found that the 

cache miss rate is similar to the decision tree and the proposed solution. Overall, Both the proposed method and the 

DTA method showed less cache miss rate than the existing LRU method. The goal of the proposed solution is to 

improve running time and storage space. We need comparative analysis between DTA and our solution, but we 

didn’t find solution about the method of comparison. 

 

V. CONCLUSION 

The last-level cache mitigates the impact of long memory latencies in today’s microarchitectures. The 

replacement policy in the LLC can have a significant impact on cache efficiency. However, a fixed replacement 

policy can allow useless blocks to remain in the cache longer than necessary, resulting in inefficiency. The 

selection of replacement policy using decision tree analysis of multi-set dueling is a simple efficient technique that 

can be implemented in hardware with minimal change and minimal additional hardware cost. In this paper, we 

propose a new method to improve Decision Tree Analysis in LLC by modifying selection policy that eliminates 

useless decision branch. Our simulation results show that the proposed scheme achieves better performances 

regarding running time and storage space. 

 



Effective Replacement Policy for Last-Level Cache 

| IJMER | ISSN: 2249–6645 |                                                   ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 6 | 

REFERENCES 

[1].  M Ozaki, Y. Adachi, Y. Iwahori, and N. Ishii, Application of fuzzy theory to writer recognition of Chinese 

characters, International Journal of Modelling and Simulation, 18(2), 1998, 112-116. (9) 

[2].  Zhou, S. (2010, September). An Efficient Simulation Algorithm for Cache of Random Replacement Policy. 

In NPC (pp. 144-154).  

[3].  Jelenković, Predrag R., and Ana Radovanović. "Least-recently-used caching with dependent requests." 

Theoretical computer science 326.1 (2004): 293-327.  

[4].  Albericio, Jorge, et al. "The reuse cache: downsizing the shared last-level cache." Proceedings of the 46th 

Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 2013.  

[5].  J, Gaur, M. Chauduri., et al. Bypass and Insertion Algorithms for Exclusive Last-Level Caches. In: Proc. 

38th int. Symposium on Computer Architecture (ISCA), 2011. Cache replacement 

[6].  KHAN, Samira; JIMÉNEZ, Daniel A. Insertion policy selection using decision tree analysis. In: Computer 

Design (ICCD), 2010 IEEE International Conference on. IEEE, 2010. p. 106-111.  

[7].  Guan, Nan, et al. "FIFO cache analysis for WCET estimation: A quantitative approach." Proceedings of the 

Conference on Design, Automation and Test in Europe. EDA Consortium, 2013. 

[8].  Joyce, Thomas F. "Round robin replacement for a cache store." U.S. Patent No. 4,195,343. 25 Mar. 1980 

[9].  Mounes-Toussi, Farnaz. "Method and apparatus for miss sequence cache block replacement utilizing a most 

recently used state." U.S. Patent No. 6,098,152. 1 Aug. 2000. 

[10].  Smith, Michael B., and Michael J. Tresidder. "Pseudo-LRU cache memory replacement method and 

apparatus utilizing nodes." U.S. Patent No. 5,594,886. 14 Jan. 1997. 

[11].  Grund, Daniel, and Jan Reineke. "Toward precise PLRU cache analysis." OASIcs-OpenAccess Series in 

Informatics. Vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010. 

[12].  Bilal, Muhammad, and Shin-Gak Kang. "Time aware least recent used (TLRU) cache management policy in 

ICN." Advanced Communication Technology (ICACT), 2014 16th International Conference on. IEEE, 

2014. 

[13].  Gao, Hongliang, and Chris Wilkerson. "A dueling segmented LRU replacement algorithm with adaptive 

bypassing." JWAC 2010-1st JILP Worshop on Computer Architecture Competitions: cache replacement 

Championship. 2010. 

[14].  Lee, Donghee, et al. "On the existence of a spectrum of policies that subsumes the least recently used (LRU) 

and least frequently used (LFU) policies." ACM SIGMETRICS Performance Evaluation Review. Vol. 27. 

No. 1. ACM, 1999. 

[15].  Lee, Donghee, et al. "On the existence of a spectrum of policies that subsumes the least recently used (LRU) 

and least frequently used (LFU) policies." ACM SIGMETRICS Performance Evaluation Review. Vol. 27. 

No. 1. ACM, 1999. 

[16].  Jiang, Song, and Xiaodong Zhang. "LIRS: an efficient low inter-reference recency set replacement policy to 

improve buffer cache performance." ACM SIGMETRICS Performance Evaluation Review 30.1 (2002): 

31-42. 

[17].  N. Megiddo and D.S. Modha, “Arc: A Self-Tuning, Low Overhead Replacement Cache,” Proc. Second 

USENIX  Conf. File and Storage Technologies, 2003. 

[18].  Ahlgren, Bengt, et al. "A survey of information-centric networking." IEEE Communications Magazine 50.7 

(2012). 

[19].  Choi, Jaeyoung, et al. "A survey on content-oriented networking for efficient content delivery." IEEE 

Communications Magazine 49.3 (2011). 

[20].  AL-ZOUBI, Hussein; MILENKOVIC, Aleksandar; MILENKOVIC, Milena. Performance evaluation of 

cache replacement policies for the SPEC CPU2000 benchmark suite. In: Proceedings of the 42nd annual 

Southeast regional conference. ACM, 2004. p. 267-272.  

[21].  Jaleel, Aamer, et al. "CMP$im: A Pin-based on-the-fly multi-core cache simulator." Proceedings of the 

Fourth Annual Workshop on Modeling, Benchmarking and Simulation (MoBS), co-located with ISCA. 

2008. 

[22].  Chasapis, Dimitrios, et al. "PARSECSs: Evaluating the impact of task parallelism in the PARSEC 

benchmark suite." ACM Transactions on Architecture and Code Optimization (TACO) 12.4 (2016): 41. 

Hyun Kwon.“ Effective Replacement Policy For Last-Level Cache” International Journal Of Modern 

Engineering Research (IJMER), vol. 08, no. 01, 2018, pp. 01–06. 


