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I. INTRODUCTION 

The statistical control chart is a well-known tool in today's industry, and it is One of the most powerful 

tools in quality control. First developed in the 1920's by Walter Shewhart, the control chart found widespread 

use during World War II and has been employed, with various modifications ever since. The drawbacks to 

multivariate charting schemes is their inability to identify which variable was the source of the signal. 

With today's use of computers, it is common to monitor several correlated quality characteristics 

simultaneously. Various types of multivariate control charts have been proposed to take advantage of the 

relationships among the variables being monitored. Alt (1985), Jackson (1988), Lowry and Montgomery (1995), 

and Mason et al. (2002) discuss much of the literature on this topic. The formatter will need to create these 

components, incorporating the applicable criteria that follow. 

The rapid growth data acquisition technology and the uses of online computers for process monitoring 

led to an increased interest in the simultaneous control of several related quality characteristics. These 

techniques are often referred to multivariate statistical process control procedures. The use of separate univariate 

control chart for each quality characteristic has proved to be inappropriate. This is because, it neglects the 

correlation between the multiple quality characteristics; and this leads to incorrect results. 

The modern statistical process control took place when Walter A. Shewhart (1931) developed the 

concept of a control chart based on the monitoring of the process mean level through sample mean (𝑋̅ chart) and 

process dispersion through sample range (R chart) or sample standard deviation chart. In the multivariate setting, 

Harold Hotelling (1947) published what can be called the first major works in multivariate quality control. 

Hotelling developed the 𝑇2 statistic and the statistics based on the sample variance-covariance matrix 𝑆 

procedure, and its extensions to control charts to combine measurements taken on variables in several 

dimensions into a single measure of excellence. 

ABSTRACT 

In this paper, comparing between two important procedures: Multivariate Exponentially Weighted 

Moving Average (MEWMA)quality control chart and Hotelling's 𝑇2quality control chart. The first 

procedure MEWMA is an example of a multivariate charting scheme whose monitoring statistic is 

unable to determine which variable caused the signal. The average run length (ARL) performance of 

MEWMA chart is studied. The second procedure is Hotelling's 𝑇2quality control chart is used to 

determine whether or not the process mean vector for two or more variables is in-control. It is allowing 

us to simultaneously monitor whether two or more related variables are in control, and it is shown that 

multivariate quality control chart do not indicate which variables cause the out-of-control signal so 

that the interpretation of the out-of-control signal. Also, in this paper develops the multivariate quality 

control charts of the out of-control signal, this will be maintained by making and industrial application 

on the fertilizers factory. It is important to know that this factory has a special department for quality 

control, in order to maintain International Standardization Organization (ISO).  
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After Hotelling there was no significant work done in this field until the early sixties, when with the 

advances in computers, interest in multivariate statistical quality control was revived. Since then, some authors 

have done some work in this area of multivariate quality control. 

Houshmand, A. and Javaheri, A. (1998) presented two procedures to control the covariance matrix in a 

multivariate setting. The advantages of these procedures are that they allow the investigators to identify the 

sources of the out-of-control signal. These procedures are based on constructing tolerance regions to control the 

parameters of the correlation matrix. 

Linna, Woodall (2001) presented a model for correlated quality variables with measurement error. The 

model determined the performance of the multivariate control charting methods. The usual comparison of 

control chart performance does not directly Apply in the presence of measurement error. 

The most familiar multivariate process monitoring and control procedure is the Hotelling's 𝑇2 control 

chart for monitoring the mean vector of the process. It is a direct analog of the univariate Shewhart  𝑋̅ chart. 

Shewhart, a pioneer in the development of the statistical control chart (Shewhart charts), first recognized the 

need to consider quality control problems as multivariate in character. Hotelling (1947) did the original work in 

multivariate quality control. He applied his procedure, which assumed that P-quality characteristics are jointly 

distributed as P-variate normally and random samples of size n are collected across time from the process. 𝑇2 is 

sensitive to shifts in the means, as well as to shifts in the variance, but it cannot distinguish between location 

shifts and scale shifts. 

Multivariate charts are also useful for monitoring quality profiles as discussed by Woodall et al. (2004). 

Alt (1985) defined two phases in constructing multivariate control charts, with Phase I divided into two Stages. 

In the retrospective Stage 1 of Phase I, historical data (observations) are studied for determining whether the 

process was in control and to estimate the in-control parameters of the process. The Hotelling's 𝑇2 control chart 

is utilized in this stage (Alt and Smith, 1988, Tracy et al. 1992, and Wierda,1994). In Phase II, control charts are 

used with future observations for detecting possible departure from the process parameters estimated in Phase I. 

In Phase II, one uses charts for detecting any departure from the parameter estimates, which are considered in 

the in-control process parameters (Vargas,2003). 

 An important aspect of the Hotelling's 𝑇2 control chart is how to determine the sample variance-

covariance matrix used in the calculation of the chart statistics, the upper control limit (UCL) and the lower 

control limit (LCL).   

 Onwuka (2012) discussed the Principal Component Analysis and Hotelling's 𝑇2 tests were used, with 

the 3-characteristics measured showing negligible low correlation with nearly all the correlation coefficients 

small.  

 

II. MULTIVARIATE QUALITY CONTROL CHART 

Multivariate quality control charts are a type of variables control that how correlated, or dependent, 

variables jointly affect a process or outcome. The multivariate quality control charts are powerful and simple 

visual tools for determining whether the multivariate process is in-control or out-of-control. In other words, 

control charts can help us to determine whether the process average (center) and process variability (spread) are 

operating at constant levels. Control charts help us focus problem – solving efforts by distinguishing between 

common and assignable cause variation. Multivariate control chart plot statistical from more than one related 

measurement variable. The multivariate control chart shows how several variables jointly influence a process or 

outcome. 

It is demonstrated that if the data include correlated variables the use of separate control chart is 

misleading because the variables jointly affect the process. If we use separate univariate control chart in a 

multivariate situation, type I error and probability of a point correctly plotting in- control are not equal to their 

expected values the distortion of those values increases with the number of measurement variables. 

It is shown that multivariate control chart has several advantages in comparison with multiply 

univariate charts: 

 

▪ The actual control region of the related variables is represented. 

▪ We can maintain specification type I error. 

▪ A signal control limit determines whether the process is in control. 

▪ Multivariate control chart simultaneously monitors two or more correlated variables. To monitor more than 

one variable using univariate charts, we need to create a univariate chart for each variable. 

▪ The scale on multivariate control charts unrelated to the scale of any of the variables. 

▪ Out-of-control signals in multivariate charts do not reveal which variable or combination of variables cause 

the signal. A multivariate control chart consists of: 

▪ Plotted points, each for which represents a rational subgroup of data sampled from the process, such as a 

subgroup mean vector individual observation, or weighted statistic.  
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▪ A center line, which represents the expected value of the quality characteristics for all subgroups. 

▪ Upper and lower control limits (UCL and LCL), which are set a distance above and below the center line. 

These control limits provide a visual display for the expected amount for variation. The control limits are 

based on the actual behavior of the process, not the desired behavior or specification limits. A process can 

be in control and yet not be capable of meeting requirements. 

 

III. COMPARISON METHODOLOGY 

The following arrangement used for compare methodology between two procedures: 

 

3.1 The MEWMA Control Chart 

3.1.1 The EWMA Control Chart Procedure 

Timm (1996) developed a control chart using the EWMA to control a process mean. The EWMA techniques give 

the most recent observation the greatest weight with all previous observations weights decreasing in a geometric 

(exponential) progression from the recent back to the first. To demonstrate the EWMA technique, suppose that 

we observe sample means  𝑋1  . 𝑋2  .   𝑋3  , …   in the univariate case, where,   

𝑋 ~ 𝑁 (𝜇0 . 𝜎𝑥
2)                                                                              (1) 

 MacGregor (1995) as introduced the univariate Exponentially Weighed Moving Average (EWMA) 

control chart: 

𝑍𝑖 = 𝑟𝑋𝑖 + (1 − 𝑟)𝑍𝑖−1 .    𝑖 = 1. 2. 3. …                                                       (2) 

where  𝑟is a smoothing constant and 𝑍𝑖  is the value of the EWMA after observation 𝑖. where 𝑖 represents the 

observation number as well as an index of a point in time, where we required     𝑍0 =  𝜇0 =  0      without loss of 

generality and    0 <  𝑟 ≤  1 . and he supposed that if 𝑋1  . 𝑋2  .   𝑋3  , …   are independently and identically 

distributed   𝑁 (0 .  𝜎2)  random variables, the mean of𝑍𝑖  is0 and the variance is  

𝑣𝑎𝑟 (𝑍𝑖) = 𝜎𝑍 
2 = {

𝑟 [1− (1−𝑟)2𝑖]

2−𝑟
} 𝜎𝑋̅

2.   𝑖 = 1. 2. 3. …                                               (3) 

Thus, he suggested that when the in-control value of the mean is 0, the control limits of the EWMA chart are   at  

± 𝐿𝜎𝑍𝑖  . where 𝐿 and  𝑟 are the parameters of the chart. 

Lucas and Saccucci (1990) have discussed that the choice of 𝐿 and  𝑟  for the interval  (0.05 ≤ 𝑟 ≤ 0.25) work 

well in practice, with  𝑟 = 0.05 .  𝑟 = 0.10 and 𝑟 = 0.20  being popular choices. A good rule of thumb is to use 

smaller values of  𝑟  to detect smaller shifts. They have also found that   𝐿 = 3  (the usual three – sigma limits) 

works although when  𝑟  is small – say,  𝑟 ≤ 0.1  -  there is an advantage in reducing the width of the limits by 

using a value of  𝐿  between about 2.6 and 2.8 although their control limits, were based on the asymptotic form of  

𝜎𝑍𝑖 which is given by   𝜎𝑍𝑖  ≅ 𝜎𝑋√
𝑟

2−𝑟
  . 

3.1.2 Multivariate Extension of The EWMA Control Chart 

Lowry et al. (1992) has generalized the concept of the univariate EWMA control chart to the multivariate case. 

They defined the MEWMA vectors as: 

𝑍𝑖 = 𝑅𝑋𝑖 + (1 − 𝑅)𝑍𝑖−1 .    𝑖 = 1. 2. 3. …                                                   (4) 

where  𝑍0 = 0  and  

𝑅 = 𝑑𝑖𝑎𝑔 (𝑟1. 𝑟2. … . 𝑟𝑝 .  0 < 𝑟𝑗 ≤ 1). 𝑗 = 1. 2. … . 𝑝 and 𝑝 > 1. 

The MEWMA control chart gives an out of control signal as soon as:  

𝑇𝑖
2 = 𝑍𝑖

י ∑   𝑍𝑖 > 𝐿−1
𝑖                                                                         (5) 

where   𝐿 > 0  is chosen to achieve a specified in-control ARL, and Σ𝑍𝑖  is the covariance matrix of  𝑍𝑖 . 

Mason et al. (2002) provide a technique to interpret the out-of-control signal and identify an assignable cause 

from a multivariate control chart. Their method can be applied to MEWMA control chart. 

Mason et al.'s method has assumed that Phase I of process control is when the first subgroups are drawn from the 

process and little is known about the joint distribution of the quality characteristics. Phase II is when sufficient 

information is known about the process and subgroups are drawn to test if the process is in control. 

Often there is no reason to apply different exponential weights to past observations of the  p  deferent quality 

characteristics. In this situation, Lowry et. (1992) assumed   the equal weights across characteristics where𝑟 =
 𝑟𝑗 .    𝑗 = 1. …, 𝑝,  the MEWMA vectors can then be written as  

𝑍𝑖 = 𝑟𝑋𝑖 + (1 − 𝑟)𝑍𝑖−1 .    𝑖 = 1. 2. 3. …                                                      (6) 

Under the assumption of equal weights, Lowry et al. (1992) have shown that the covariance matrix of 𝑍𝑖  can be 

written in terms of the exponential weight  𝑟  and the covariance matrix of the process data  Σ𝑋as: 

Σ𝑍𝑖 = {
𝑟 [1− (1−𝑟)2𝑖]

2−𝑟
} Σ𝑋                                                                     (7) 

note that if  𝑟 = 1 , the MEWMA chart is equivalent to Hotellin's 𝑇2 chart. 
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 Lowry et al. (1992) have suggested that when the process is likely to stay in-control for some time 

period, the asymptotic from of the covariance matrix   Σ𝑋used to calculate the MEWMA test statistic: 

Σ𝑍𝑖 = {
𝑟  

2−𝑟
} Σ𝑋                                                                            (8) 

 Lowry et al. (1992) have also, added the use of exact variance of the EWMA statistic leads to a natural 

fast initial response for the EWMA chart. Thus, the initial that, out-of-control conditions can also, applied to the 

MEWMA chart. Because, however, it may be more likely that the process will stay in control for a while and then 

shift out of control, they assumed for chart design that the asymptotic (as 𝑖 → ∞) covariance matrix, is given by 

Equation (8). 

 Linderman and Love (2000) have pointed out that the used of exact covariance matrix and the 

asymptotic covariance matrix lead to two different procedures; actually, they have concentrated their efforts 

concerned solely on the MEWMA chart using the asymptotic covariance matrix and the exact covariance matrix. 

They have depended on the use of MEWMA chart in order to study the 𝑝 quality characteristics associated with a 

process. The process begins in the in-control state with mean vector   𝜇0 = 0  and covariance matrix Σ𝑋 . They 

supposed also that the process is subject to a single assignable cause, which shifts the process mean from μ
0
 to a 

point on the constant probability density contour D; defined by 

𝐷 =  ⌊𝜇1|𝜇1́ ∑ 𝜇1 = 𝛿2−1
𝑋 ⌋                                                                  (9) 

where 𝛿, the parameter describing the size of shift, is known. Note that Equation (9) is the constant probability 

density contour for a 𝑝- dimensional multivariate normal distribution. This contour forms an ellipsoid which is 

centered at 𝜇0  and has axes at 

± δ √ξ
j
ej  , where  ∑ ejX = ξ

j
ej .  for   j = 1. … , p. 

Khoo (2003) has suggested that the main choice for the value of 𝑟  in Equations (7) and (8) is, founded on the 

magnitude of shift where a quick detection is required. In general, small values of  𝑟 used for quick detection of 

small shifts, whereas larger values of  𝑟  used for quick detection of large shifts. He has, also added that in case of 

(𝑖 → ∞) the exact covariance matrix in Equation (7) is approximately equal to the asymptotic covariance matrix in 

Equation (8); pointing out that this, the two covariance matrices in Equation (7) and (8) differ only in initial 

periods when 𝑖  values are small. However, the advantages of the exact MEWMA chart over the asymptotic 

MEWMA chart are that the exact MEWMA chart enables quicker detection of initial out-of-control conditions 

and is more sensitive for detecting shifts involving smaller values of  𝑟. 

 

3.1.3 The Average Run Length Performance for a MEWMA 

 The average run length is metric used to determine the control chart's ability in order to determine if the 

process is in control or out of control. Lowry et al. (1995) established that ARL performance for a MEWMA 

control chart is directionally invariant and determined solely by the non-centrality parameter. This means that the 

average run length depends only on the distance between the in control and out of control mean, and not on the 

direction. The non-centrality parameter given by Lowry et al. (1995), as: 

𝛿2(𝜇𝑦) = (𝜇𝑦 − 𝜇0)
′ ∑ (𝜇𝑦 − 𝜇0)

−1
𝑋                                                       (10) 

where 𝜇𝑦  is the mean when the process is out of control. They supposed that if  𝜇𝑖 = 𝜇 ,  𝑖 = 1. 2. ….     the non-

centrality parameter is given as: 

𝛿2 = (𝜇′ ∑ 𝜇
−1

𝑋
) 

Recent researches have been developed to approximate the ARL for a MEWMA control chart. These 

methodologies have assumed that the in-control distribution is given as  𝑁𝑝(𝜇0. Σ𝑋) . In addition, all these 

methodologies have made use of the ARL following fact that the performance depends only on the non-centrality 

parameter. As a result, to determine the ARL for a MEWMA control chart with an in-control distribution 

𝑁𝑝(𝜇0. Σ) and out-of-control distribution 𝑁𝑝(𝜇1. Σ), we can determine the ARL performance of a MEWMA 

control chart with an in-control distribution 𝑁𝑝(0. 1) and out of control distribution 𝑁𝑝(𝜇𝛿 . I), where  𝜇𝛿 =

(𝛿. 0. … . 0). That is, the non-centrality parameter between both problems is identical. 

Actually, the ARL performance, which only depends on the non-centrality parameter, is central to methodologies 

that have suggested to approximate ARL0 and ARL1 for a MEWMA chart. The approximation methodologies 

include simulation Lowry et al. (1995), a bivariate Markov chain method Runger et al. (1996), and integral 

equation Rigdon (1995).  

 

3.2 Construction of Hotelling's 𝑻𝟐 Control Chart 

The Hotelling multivariate control chart signals that a statistically significant shift in the mean has occurred as 

soon as: 
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χ2 = (𝑋̅𝑖 − 𝜇𝑜)
′Σ−1(𝑋̅𝑖 − 𝜇𝑜)                                                          (11) 

 

 If the sample covariance matrix Σ and the sample mean vector 𝜇0 are known, but if Σ and 𝜇0 are 

known, then the 𝑇2 statistic is the appropriate statistic for the Hotelling multivariate control chart. In this case 

the sample covariance matrix, S and sample mean vector 𝑋̅ , are used to estimate Σ and𝜇0  respectively. 

 

This statistic has the from: 

𝑇2 = (𝑋̅𝑖 − 𝑋̿)′𝑆−1(𝑋̅𝑖 − 𝑋̿)                                                           (12) 

 

 Suppose that we have a random sample from a multivariate normal distribution – Say,  𝑋1  . 𝑋2  .   𝑋3  , 

…, 𝑋𝑛  where the 𝑖𝑡ℎ sample vector contains observations,  𝑋𝑖1  . 𝑋𝑖2  .   𝑋𝑖3  , …, 𝑋𝑖𝑝 . 

 

Let the sample mean vector is: 

 

𝑋̅1×𝑝 = (𝑋̅1. 𝑋̅2. … . 𝑋̅𝑝) 

where 

𝑋̅𝑖 = ∑ 𝑋𝑖𝐿            .               (𝑖 = 1. 2. … . 𝑝)

𝑛

𝐿=1

 

 

and the sample covariance matrix is: 

𝑆 =

[
 
 
 
𝑠1

2 𝑠12
⋯ 𝑠1𝑝

𝑠21 𝑠2
2 ⋯ 𝑠2𝑝

⋮
𝑠𝑝1

⋮
𝑠𝑝2

⋱
⋯

⋮
𝑠𝑝

2 ]
 
 
 

                                                    (13) 

where 𝑠𝑖
2 is the variance of the 𝑖𝑡ℎ variable and (𝑖𝑗)𝑡ℎelement of S-matrix is the estimated covariance between 

the variables i and j, 

𝑆𝑖𝑗 = 
1

𝑛 − 1
∑(𝑋𝑖𝐿 − 𝑋̅𝑖)

𝑛

𝐿=1

(𝑋𝑗𝐿 − 𝑋̅𝑗)  

 

Not that we can show that the sample mean vector and the sample covariance matrix are unbiased estimators of 

the corresponding population quantities that is  

 

𝐸 (𝑋̅) =  𝜇      𝑎𝑛𝑑      𝐸 (𝑆) =  Σ                                                        (14) 

 

 Seber (1984) gives the distribution properties of this estimate as follows: 

(i) 𝑋̅ ~ 𝑁𝑝 (𝜇.
1

𝑛
Σ) .                                                                                                                                    (15) 

(ii) If  𝑋̅  distribution as in (i) then:𝑛 (𝑋̅ −  𝜇)′Σ−1(𝑋̅ −  𝜇) ∼  χ
p
2                                                              (16) 

(iii) (𝑛 − 1)𝑆 ∼ 𝑊𝑝 (𝑛 − 1. Σ) 

       where  𝑊𝑝 (𝑛 − 1. Σ) stands for the Wishart distribution. 

(iv) If Z and D are independent, random variables distributed respectively as:  

 

𝑍 ∼ 𝑁𝑝(0. ΣZ) 

(𝑛 − 1)𝐷 ~ 𝑊𝑝(𝑛 − 1. ΣZ) 

   then the quadratic form: 

𝑇2 = 𝑍′𝐷−1 𝑍                                                                        (17) 

    is distributed as:  

𝑇2 ~ 
(𝑛−1)𝑝

(𝑛−𝑝)
𝐹𝑝.  𝑛−𝑝                                                                    (18) 

 

(v)   If  𝑍 ~ 𝑁𝑝(0. ΣZ)  𝑎𝑛𝑑  (𝑛 − 1)𝐷 ~ 𝑊𝑝(𝑛 − 1. ΣZ).  (𝑛 − 1) > 𝑝 

 where (𝑛 − 1)𝐷 can be decomposed as:  

(𝑛 − 1)𝐷 = (𝑛 − 2)𝐷1 + 𝑍𝑍′ 
      where: 

(𝑛 − 2)𝐷1 ~ 𝑊𝑝(𝑛 − 2. ΣZ) 
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     and Z is independent of 𝐷1 then the quadratic form:  

𝑇2 = 𝑍′𝐷−1 𝑍                                                                         (19) 

     is distributed as:  

𝑇2 ~ (𝑛 − 1)𝛽 (𝑝. 𝑛 − 𝑝 − 1) 
     where: 

                𝛽 (𝑝. 𝑛 − 𝑝 − 1) is the central Beta distribution. 

 

(vi) If the sample is composed of k subgroups of size n with subgroup means𝑋̅𝑗. 𝑗 = 1. 2. 3. … . 𝑘  and grand 

mean 𝑋 ̿. i.e. 

𝑋̅ =  ∑𝑋̅𝑗 𝑘⁄ =  ∑ ∑𝑋𝑖𝑗 𝑘𝑛⁄

𝑛

𝑖=1

𝑘

𝑗=1

𝑘

𝑗=1

 

    then 

 

√
𝑘𝑛

𝑘−1
(𝑋̅𝑗 − 𝑋̿) ∼ 𝑁𝑝 (0. Σ)                                                                (20) 

 

(vii) If the sample is composed of K subgroups of n identically distributed multivariate normal observations 

and if Sj is the sample covariance matrix from the  𝑗𝑡ℎsubgroup,  j = 1, 2 , 3, …, K) then : 
 

Σ(𝑛 − 1)𝑆𝑗  ~ 𝑊𝑝 (𝐾𝑛−1. Σ)                                                              (21) 

 

these distributional properties of  𝑋̅.  𝑆 𝑎𝑛𝑑 𝑇2 are used in the multivariate quality control procedures. 

Now, we present two versions of Hotelling 𝑇2 chart:  

 

a) Subgroup Data: 

Suppose that P-related quality characteristic 𝑋1. 𝑋2. 𝑋3. … . 𝑋𝑝 are controlled jointly according to the P-

multivariate normal distribution. The procedure requires computing the sample mean for each of the P-quality 

characteristics from a sample of size n. 

Let the set of quality characteristic means is represented by the  (𝑝 × 1) vector  𝑋̅  as: 

𝑋̅ =  

[
 
 
 
𝑋̅1

𝑋̅2

⋮
𝑋̅𝑝]

 
 
 

 

Then the test statistic plotted on the Chi-square control chart for each sample is:  

 

𝜒0
2 = 𝑛 (𝑋̅ −  𝜇)

′

Σ−1 (𝑋̅ −  𝜇)                                                        (22) 

where: 𝜇′ = ( 𝜇1. 𝜇2. … . 𝜇𝑝) is the (𝑝 × 1) vector of in-control means for each quality characteristic and  Σ is 

covariance matrix. 

 

 Now, suppose that m-subgroup are available. The sample means and variances are calculated from each 

subgroup as usual that is: 

 

𝑋̅𝑗𝑘 = 
1

𝑛
∑ 𝑋𝑖𝑗𝑘

𝑛

𝑖=1

 

𝑆𝑗𝑘
2 = 

1

𝑛 − 1
∑(𝑋𝑖𝑗𝑘 − 𝑋̅𝑗𝑘)

2
.

𝑛

𝑖=1

 

 𝑗 = 1. 2. … . 𝑝  ; 𝑘 = 1. 2. … .𝑚                                                          (23) 

 

where  𝑋𝑖𝑗𝑘  is the  𝑖𝑡ℎ observation on the  𝑗𝑡ℎ quality characteristic in the 𝑘𝑡ℎsubgroup. 

𝑆𝑗ℎ𝑘 = 
1

𝑛 − 1
∑(𝑋𝑖𝑗𝑘 − 𝑋̅𝑗𝑘)

𝑛

𝑖=1

(𝑋𝑖ℎ𝑘 − 𝑋̅ℎ𝑘).  

𝑘 = 1. 2. … . 𝑛 . 𝑗 ≠ ℎ                                                                   (24) 
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represents the covariance between quality characteristic  j and quality characteristic  h in the  𝑘𝑡ℎ subgroup. 

 

 The statistics  𝑋̅𝑗𝑘 .  𝑆𝑗𝑘
2 .  𝑆𝑗ℎ𝑘 are the averaged over all m-subgroups to obtain  

𝑋̿𝑗 = 
1

𝑚
∑ 𝑋̅𝑗𝑘  .  𝑗 = 1. 2. … . 𝑝

𝑚

𝑘=1

 

 

𝑆𝑗̅
2 = 

1

𝑚
∑ 𝑆𝑗𝑘

2   .  𝑗 = 1. 2. … . 𝑝

𝑚

𝑘=1

 

and                      

𝑆𝑗̅ℎ = 
1

𝑚
∑ 𝑆𝑗ℎ𝑘

𝑚

𝑘=1

                                                                           (25) 

 

where  𝑗 ≠ ℎ  𝑎𝑛𝑑  𝑋̿𝑗  are the 𝑖𝑡ℎ elements of the (𝑝 × 1) sample mean vector  𝑋̿ 𝑎𝑛𝑑 (𝑝 × 𝑝) average of 

sample covariance matrices S is formed as: 

 

𝑆 =  

[
 
 
 
 
𝑆1̅

2𝑆1̅2   …   𝑆1̅𝑝

𝑆2̅
2    …   𝑆2̅𝑝

         …
𝑆𝑝̅

2 ]
 
 
 
 

                                                                   (26) 

 

There are consider the unbiased estimate of  𝜇 𝑎𝑛𝑑 Σ  when the process is in control. 

If, we replace 𝜇 with 𝑋̿ 𝑎𝑛𝑑 Σ with S in (22), the test statistic now becomes  

𝑇2 = 𝑛 (𝑋̅ − 𝑋̿)
′
𝑆−1 (𝑋̅ − 𝑋̿)                                                           (16) 

 Alt (1985) has pointed out that there are two distinct phases of control chart using. Phase (I) is the use 

of the chart for establishing control, that is, testing whether the process was in control when m- subgroups were 

drawn and the sample statistic  𝑋̿ and S computed. The objective in phase (I) is to obtain an in-control set of 

observations, so that control limits can be established for phase (II) which is the monitoring of future 

production. 

 

In the phase (I) the control limits for the 𝑇2-control chart is given by:  

UCL =  
𝑃(𝑚−1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1
𝐹𝛼.  𝑃.  𝑚𝑛−𝑚−𝑝+1

LCL = 0                                                 
 

}                                                     (28) 

In the phase (II) when the chart is used for monitoring future production, the control limits are as follows: 

 

UCL =  
𝑃(𝑚+1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1
𝐹𝛼.  𝑃.  𝑚𝑛−𝑚−𝑝+1

LCL = 0                                                
}                                                     (29) 

  

when the parameters 𝜇 and Σ are estimated from a large number of subgroups, it is often to use   UCL =  𝜒𝛼.  𝑝
2    

as the upper limit in both phases. Retrospective analysis of samples to test for statistical control and establish 

control limits also occurs in the univariate control chart setting. For the  𝑋̅-chart, it is well-known that if use 

𝑚 ≥ 20 𝑜𝑟 25 , samples, the distribution between phase I and phase II limits is usually unnecessary, because 

the phase I and phase II limits will nearly coincide. However, with multivariate control charts, we must be 

careful. 

 

Lowry and Montgomery (1995) showed that in many situations a large number of samples would be required 

before the exact phase II control limits are well approximate by the Chi-square. 

 

b) Individual Observations: 

In some situation the subgroup size is naturally  n = 1. Suppose that  m  samples each of size  n = 1 are available 

and that p is the number of quality characteristics observed in each sample. The Hotelling 𝑇2 statistic becomes: 

 

𝑇2 = (𝑋 − 𝑋̅)′𝑆−1 (𝑋 − 𝑋̅)                                                          (30) 
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 Ryan (1989) defined the phase II control limits for this statistic as: 

 

UCL =  
𝑃(𝑚+1)(𝑚−1)

𝑚(𝑚−𝑝)
𝐹𝛼.  𝑃.  𝑚−𝑝

   LCL = 0                                          
}                                                       (31)  

  

 Jackson (1988) suggested that for large  𝑚 (𝑚 > 100) then we can use an approximate control limit, 

either  

 

UCL =  
𝑃(𝑚−1)

(𝑚−𝑝)
𝐹𝛼.  𝑃.  𝑚−𝑝                                                             (32) 

or  

UCL =  𝜒𝛼.  𝑝
2                                                                           (33) 

Equation (33) is only appropriate if the covariance matrix is known. 

 

 Lowry and Montgomery (1995) suggested that if p is large-say  p ≥ 10 then at least 250 samples must 

be taken (m ≥ 250) before Chi-square upper control limit is a reasonable approximation to the correct value. 

 

 Tracy, Young and Mason (1992) point out that if  n = 1, the phase (I) limits should be based on a beta 

distribution that is, the phase (I) limits defined as: 

 

 
UCL =  

(𝑚−1)2

𝑚
𝛽

𝛼.  
𝑃

2
.  

𝑚−𝑝−1

2

  LCL = 0                                  
}                                                          (34) 

 

3.2.1 The Average Run Length Performance for a Hotelling's 𝑻𝟐  

Mason, Tracy and Young (2002) suggested that the average run length (ARL) for a control procedure is defined 

as:   ARL =
1

𝑝
, 

where P represents the probability of being outside the control region. For a process that is in-control, this 

probability is equal to α, the probability of type I error. The ARL has a number of uses in both univariate and 

multivariate control procedures. They suggested that it can be used to calculate the number of observations that 

one would expect to observe, on average, before a false alarm occurs. This given by:    ARL =
1

𝑝
 . 

Another use of the ARL is to compute the number of observations one would expect to observe before detecting 

a given shift in the process. The probability of a type II error. The ARL for detecting the shift is given by:      

 ARL =
1

1−𝛽
 . 

Multivariate control charts using Hotelling’s 𝑇2 statistic is popular and easy to use. A major advantage of 

Hotelling’s 𝑇2 statistic is that it can be shown to be the optimal test statistic for detecting a general shift in the 

process mean vector for an individual multivariate observation. However, the technique has several practical 

drawbacks. A major drawback is that when the 𝑇2 statistic indicates that a process is out of control, it does not 

provide information in which variable or set of variables is out of control. Further, it is difficult to distinguish 

location shifts from scale shifts since the 𝑇2 statistic is sensitive to both types of process changes. 

 

3.2.2 The MYT Decomposition 

Mason, Young and Tracy (MYT) extended that the interpretation of signals from a  𝑇2chart to the setting where 

there is more than process variables MYT decomposition. The MYT decomposition is the primary tool used in 

this effort, and they examined many interesting properties associated with it. They showed that the 

decomposition terms contained information on the residuals generated by all possible Linear regressions of one 

variable on any subset of the other variables. And they add that to being an excellent aid in locating the source 

of a signal in terms of individual variables or subsets of variables, this property has another major function. It 

can be used to increase the sensitivity of the 𝑇2 statistic in the area of small process shifts.  

Mason, Tracy and Young (1995) presented decomposition procedure. They considered that, the 𝑇2 statistic for a 

p-dimensional observation vector  𝑋 = (𝑋1. 𝑋2. … . 𝑋𝑝)  can be represented as 

𝑇2 = (𝑋 − 𝑋)
∖
𝑆−1(𝑋 − 𝑋),                                                             (35) 

where 𝑋 and 𝑆 are the common estimators of the mean vector and covariance matrix obtained from Historical 

Data Set (HDS), they partitioned the vector (𝑋 − 𝑋) as:  
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(𝑋 − 𝑋)
∖

= [(𝑋(𝑝−1) − 𝑋
(𝑝−1)

). (𝑋𝑝 − 𝑋𝑝)]
∖  , 

where  𝑋(𝑝−1)∖ = (𝑋1. 𝑋2. … . 𝑋𝑝−1) represented the (𝑝 − 1)-dimensional variable vector excluding the 

𝑝𝑡ℎvariable 𝑋𝑝 and 𝑋
(𝑝−1)

 represented the corresponding 𝑝 − 1 elements of the mean vector. They also partition 

the matrix 𝑆 so that.  

𝑆 = [
𝑆𝑋𝑋 𝑠𝑥𝑋

𝑠𝑥𝑋
∖

𝑠𝑥𝑥

],                                                                          (36) 

where 𝑆𝑋𝑋 is the (𝑝 − 1) × (𝑝 − 1) covariance matrix for the first (𝑝 − 1) variables, 𝑆𝑝
2 is the variance of 𝑋𝑝, 

and 𝑠𝑥𝑋 is a (𝑝 − 1) −dimensional vector the containing the covariances between  𝑋𝑝 and the remaining (𝑝 − 1) 

variables. 

The 𝑇2statistic in (35) can be partitioned into two independent parts (see Rencher (1993)). These components 

are given by 

𝑇2 = 𝑇𝑝−1
2 + 𝑇𝑝.1.2.….𝑝−1

2  .                                                           (37) 

The first term in (37),  

𝑇𝑝−1
2 = (𝑋(𝑝−1) − 𝑋

(𝑝−1)
)∖𝑆𝑋𝑋

−1(𝑋(𝑝−1) − 𝑋
(𝑝−1)

),                                         (38) 

uses the first (𝑝 − 1) variables and is itself a  𝑇2statistic. 

Mason, Tracy and Young (1995) proved that the last term in (37) was the 𝑝 𝑡ℎ component of the vector 𝑋𝑖 

adjusted by the estimates of the mean and standard deviation of the conditional distribution 𝑋𝑝  given 

(𝑋1. 𝑋2. … . 𝑋𝑝−1). It is given by 

𝑇𝑝.1.2.….𝑝−1
2 =

(𝑋𝑝−𝑋𝑝.1.2.….𝑝−1)2

𝑆𝑝.1.2.….𝑝−1
2 ,                                                           (39) 

where  𝑋𝑝.1.2.….𝑝−1 = 𝑋𝑝 + 𝐵𝑝
∖
(𝑋(𝑝−1) − 𝑋

(𝑝−1)
) , and 𝐵𝑝

∖
= 𝑆𝑋𝑋

−1𝑠𝑥𝑋 ,is the (𝑝 − 1)-dimensional vector estimate 

of the coefficients from the regression of 𝑋𝑝 on the (𝑝 − 1) variables 𝑋1. 𝑋2. … . 𝑋𝑝−1. It can be shown that the 

estimate of the conditional variance is given as  𝑆𝑝.1.2.….𝑝−1
2 = 𝑆𝑝

2 − 𝑠𝑥𝑋
∖

𝑆𝑋𝑋
−1𝑠𝑥𝑋  , since the first term of (37) is a 

𝑇2statistic, it too can be separated into two orthogonal parts: 𝑇𝑝−1
2 = 𝑇𝑝−2

2 + 𝑇𝑝−1.1.2.….𝑝−2 
2 . the first term, 𝑇𝑝−2

2  , 

is a 𝑇2statistic, on the first (𝑝 − 2) components of the 𝑋 vector, and the second term 𝑇𝑝−1.1.2.….𝑝−2 
2 , is the square 

of 𝑋𝑝−1 adjusted by the estimates of the standard deviation of the conditional distribution of 𝑋𝑝−1 given 

(𝑋1. 𝑋2. … . 𝑋𝑝−2). They proposed one from of MYT decompositions of a  𝑇2statistic. It is given by, 

𝑇2 = 𝑇1
2 + 𝑇2.1

2 + 𝑇3.1.2
2 + …+ 𝑇𝑝.1.2.….𝑝−1

2  

= 𝑇1
2 + ∑ 𝑇𝑗+1.1.….𝑗

2𝑝−1
𝑗=1  .                                                                          (40) 

The 𝑇1
2 term in (40) is the square of the univariate for the first variable of the vector 𝑋 and is given as  

𝑇1
2 =

(𝑋1−𝑋1)2

𝑆1
2  .                                                                        (41) 

This term is not a conditional term, as its value does not depend on a conditional distribution. In contrast, all 

other terms of the expansion in (40) are conditional terms, since they represent the value of a variable by the 

mean and standard deviation from the appropriate conditional distribution.  

 

Computing the Decomposition Terms: 

They considered that the first (𝑝 − 1) terms of (40) correspond to the  𝑇2 value of the sub vector  𝑋𝑝−1
∖

=

(𝑋1. 𝑋2. … . 𝑋𝑝−1) ;  i.e., 𝑇(𝑋1.𝑋2.….𝑋𝑝−1)
2 = 𝑇1

2 + 𝑇2.1
2 + 𝑇3.1.2

2 + … + 𝑇𝑝−1.1.2.….𝑝−2
2 , 

similarly, the first (𝑝 − 2) terms of this expansion correspond to the sub vector 𝑋𝑝−2
∖

= (𝑋1. 𝑋2. … . 𝑋𝑝−2) ; i.e., 

𝑇(𝑋1.𝑋2.….𝑋𝑝−2)
2 = 𝑇1

2 + 𝑇2.1
2 + 𝑇3.1.2

2 + … + 𝑇𝑝−2.1.2.….𝑝−3
2  . 

continuing in this fashion, they compute the 𝑇2 values for all sub vectors of the original vector 𝑋. The last sub 

vector, consisting of the first component 𝑋(1) = (𝑋1)    is used to compute the unconditional 𝑇2 term given in 

(41) ; i.e.,𝑇𝑋1
2 = 𝑇1

2. 

All the 𝑇2values, 𝑇(𝑋1.𝑋2.….𝑋𝑝)
2  .  𝑇(𝑋1.𝑋2.….𝑋𝑝−1) 

2 .  𝑇(𝑋1)
2 , are computed using the general formula 

𝑇(𝑋1.𝑋2.….𝑋𝑗)
2 = (𝑋(𝑗) − 𝑋

(𝑗)
)

∖

𝑆𝑗𝑗
−1(𝑋(𝑗) − 𝑋

(𝑗)
),                                            (42) 

where 𝑋(𝑗) represents the appropriate sub vector. 𝑋
(𝑗)

 is the corresponding sub vector mean and 𝑆𝑗𝑗  denotes the 

corresponding covariance sub matrix obtained from the overall 𝑆 matrix given in (36) by deleting all unused 

rows and columns. The terms of the MYT decomposition can be computed as follows  

𝑇𝑝.1.2.….𝑝−1
2 = 𝑇(𝑋1.𝑋2.….𝑋𝑝)

2 − 𝑇(𝑋1.𝑋2.….𝑋𝑝−1) 
2  
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𝑇𝑝−1.1.2.….𝑝−2
2 = 𝑇(𝑋1.𝑋2.….𝑋𝑝−1)

2 − 𝑇(𝑋1.𝑋2.….𝑋𝑝−2) 
2  

... ... 

... ... 

... ... 

𝑇2.1
2 = 𝑇(𝑋1.𝑋2)

2 − 𝑇1 
2 

𝑇1
2 =

(𝑋1−𝑋1)2

𝑆1
2  .                                                                         (43) 

Properties of the MYT Decomposition: 

Many properties are associated with the MYT decomposition. Consider they dimensional vector defined as 

𝑋∖ = (𝑋1. 𝑋2. … . 𝑋𝑝) they interchange the first two components to form another vector (𝑋2. 𝑋1. … . 𝑋𝑝)  so that 

the only difference between the two vectors is the two vectors such that the first two components have been 

permuted the 𝑇2value of the two vectors is the same; i.e.    𝑇(𝑋1.𝑋2.….𝑋𝑝)
2 = 𝑇(𝑋2.𝑋1.….𝑋𝑝)

2 . 

This occurs because 𝑇2 values cannot be changed by permuting the components of the observation vector. This 

invariance property of permuting the 𝑇2 components that each ordering of an observation vector will produce 

the same overall 𝑇2 value. Since there are  𝑝!  =  (𝑝)(𝑝 − 1)(𝑝 − 2). . . (2)(1) permutations of the components 

of the vector (𝑋1. 𝑋2. … . 𝑋𝑝), this implies that we can partition a 𝑇2 value in 𝑝! different ways. To illustrate his 

result, suppose 𝑝 = 3. There are 3!  =  (3)(2)(1)  =  6  decompositions of the 𝑇2 value for an individual 

observation vector. These are listed below: 

𝑇2 = 𝑇1
2 + 𝑇2.1

2 + 𝑇3.1.2
2  

       = 𝑇1
2 + 𝑇3.1

2 + 𝑇2.1.3
2  

       = 𝑇2
2 + 𝑇3.2

2 + 𝑇1.2.3
2  

       = 𝑇2
2 + 𝑇1.2

2 + 𝑇3.1.2
2  

       = 𝑇3
2 + 𝑇1.3

2 + 𝑇2.1.3
2  

= 𝑇3
2 + 𝑇2.3

2 + 𝑇1.2.3
2  .                                                              (44)  

Each row of (44) corresponds to a different permutation of the components of the observation vector. For 

example, the first row corresponds to the vector written in its original form as (𝑋1. 𝑋2. 𝑋3), whereas the last row 

represents (𝑋3. 𝑋2. 𝑋1). Note that all six possible permutations of the original vector components are included.  

The importance of this result is that it allows one to examine the 𝑇2 statistic from many different perspectives. 

The 𝑝 terms in any particular decomposition are independent of one another, although the terms across the 

decompositions are not necessarily independent. With 𝑝 partition and 𝑝! partitions, there are 𝑝 ×  𝑝! possible 

terms to evaluate in a total MYT decomposition of a particular partition, as certain terms occur more than once. 

In general, there are  𝑝 × 2(𝑝−1)  distinct terms among the possible decompositions. These unique terms are the 

ones that need to be examined for possible contribution to a 𝑇2 signal, when p is large. Computing all these 

terms can be cumbersome. 

They considered the MYT decomposition given in (40) and suppose 𝑇1
2 dominates the overall value of the 𝑇2 

statistic. This indicates that the observation on the variable 𝑋1 is contributing to the signal. However, to 

determine if the remaining variables in this observation contribute to the signal, we must examine the 𝑇2 value 

associated with the sub vector    (𝑋2. 𝑋3. … . 𝑋𝑝) which excludes the 𝑋1 component. Small values of the  

𝑇2statistic for this sub vector imply that no signal is present. They also indicate that one need not examine any 

term of the total decomposition involving these (𝑝 − 2) variables. 

They considered another important property of𝑇2statistic is the fact that the 𝑝(2(𝑝−1) − 1) unique conditional 

terms of a MYT decomposition contain the residuals from all possible linear regressions of each variable on all 

subsets of the other variables. This property of the 𝑇2 statistic provides a procedure for increasing the sensitivity 

of the 𝑇2 sensitivity of the 𝑇2 statistic to process shifts.  

 

Locating Signaling Variables: 

They seek to relate a 𝑇2 signal and its interpretation to the components of the MYT decomposition. 

They consider signaling observation vector 𝑋∖ = (𝑋1. 𝑋2. … . 𝑋𝑝)  such that𝑇(𝑋1.𝑋2.….𝑋𝑝)
2 > UCL . 

They proposed two methods one for locating the variables contributing to the signal is to develop a forward 

iterative Scheme. This was accomplished by finding the subset of variables that do not contribute to signal from 

(37) and (39) such that a 𝑇2 statistic can be constructed on any subset of the variables 𝑋1. 𝑋2. … . 𝑋𝑝. Construct 

the  𝑇2statistic for each individual variable  𝑋𝑗 .   𝑗 = 1.2. … . 𝑝 ,  so that  

𝑇𝑗
2 =

(𝑋𝑗 − 𝑋𝑗)
2

𝑆𝑗
2  . 

where 𝑋𝑗 and 𝑆𝑗
2 are the corresponding mean and variance estimates as determined from the HDS. Compare 

these individual 𝑇𝑗
2 values to their UCL where 



A Comparison of MEWMA and Hotelling's  𝑇2Control Charts Procedures with Industrial Application 

| IJMER | ISSN: 2249–6645 |                                   www.ijmer.com                   | Vol. 8 | Iss. 5 | May 2018 | 32 | 

UCL(𝑋𝑗)
= {

𝑝(𝑛 + 1)(𝑛 − 1)

𝑛(𝑛 − 𝑝)
} 𝐹(𝛼.𝑝.𝑛−𝑝) 

= {
𝑛+1

𝑛
} 𝐹(𝛼.1.𝑛−1),                                                                         (45) 

is computed for an appropriate 𝛼 level and for a value of 𝑝 = 1. Exclude from the original set of variables all 

𝑋𝑗for which 

𝑇𝑗
2 > UCL(𝑋𝑗)

. 

since observations on this subset of variables are definitely contributing to the signal. 

From the set of variables not contributing to the signal. Compute the 𝑇2 statistic for all possible pairs of 

variables. For example, for all (𝑋𝑖 . 𝑋𝑗) with 𝑖 ≠ 𝑗 compute𝑇(𝑋𝑖.𝑋𝑗)
2 ,and compare these values to the upper control 

limit,  

UCL(𝑋𝑖. 𝑋𝑗)
= {

2(𝑛 + 1)(𝑛 − 1)

𝑛(𝑛 − 2)
}𝐹(𝛼.2.𝑛−2). 

Exclude from this group all pairs of variable for which  𝑇(𝑋𝑖.𝑋𝑗)
2 > UCL(𝑋𝑖. 𝑋𝑗)

  . 

The excluded pairs of variables in addition to exceeded single variable comprise the group of variables 

contributing to the overall signal continue to iterate in this fashion so as to exclude from the remaining group all 

variables of signaling groups of three variables four variables etc. The procedure produces a set of variables that 

contribute to the signal. And another method of locating the vector components contributing to a sing al is to 

examine the individual terms of the MYT decomposition of a signaling observation vector and to determine 

which are large in value.  This method was accomplished by comparing each term to its corresponding critical 

value. 

 

Mason, Tracy, and Young (1995) proposed that the distribution governing the components of the MYT 

decomposition for the situation where there are no signals is 𝐹 distribution. For the case of p variables, these are 

given by 

𝑇𝑗
2 ∼ {

𝑛+1

𝑛
} 𝐹(1.𝑛−1),                                                                  (46) 

for unconditional terms, and by 

𝑇𝑗.1.2.….𝑗−1
2 ∼ {

(𝑛+1)(𝑛−1)

𝑛(𝑛−𝑘−1)
} 𝐹(1.𝑛−𝑘−1),                                                    (47) 

for conditional terms, where 𝑘 equals the number of conditioned variables. For 𝑘 = 0, the distribution in (47) 

reduces to the distribution in (46). Using these distributions, critical values (CVS), for a specified 𝛼 level and 

HDS sample of size 𝑛 for both conditional and unconditional terms are obtained as follows: 

 unconditional terms: CV = {
𝑛+1

𝑛
} 𝐹(𝛼.1.𝑛−1),                                    

              conditional terms:     CV = {
(𝑛+1)(𝑛−1)

𝑛(𝑛−𝑘−1)
} 𝐹(𝛼.1.𝑛−𝑘).                                                                                (48) 

They add that we can compare each individual term of the decomposition to its critical value and make the 

appropriate decision. 

 

Interpretation of a Signal on a 𝑻𝟐 Component: 

They Mason, Tracy, and Young (2002) considered one of the 𝑝 possible unconditional, terms resulting from the 

decomposition of the  𝑇2statistic associated with a signaling observation. As stated earlier, the term𝑇𝑗
2 =

(𝑋𝑗−𝑋𝑗)
2

𝑆𝑗
2 ,  𝑗 = 1.2. … . 𝑝 is square of a univariate 𝑡 statistic for the observed value of the 𝑗𝑡ℎ variable of an 

observation vector 𝑋. For control to be maintained, this component must be less than its critical value i.e.,𝑇𝑗
2 <

{
𝑛+1

𝑛
} 𝐹(𝛼.1.𝑛−1), 

 

since𝑡(
𝛼

2
.  𝑛−1) = √𝐹(𝛼.1.𝑛−1)  they re-expressed this condition as 𝑇𝑗 being in the following interval: 

−√(
𝑛+1

𝑛
)𝑡

(
𝛼

2
.  𝑛−1)

< 𝑇𝑗 < √(
𝑛+1

𝑛
)𝑡

(
𝛼

2
.  𝑛−1)

,                                                 (49) 

or as 

𝑋 − √(
𝑛+1

𝑛
)𝑡

(
𝛼

2
.  𝑛−1)

< 𝑋𝑗 < 𝑋 + √(
𝑛+1

𝑛
)𝑡

(
𝛼

2
.  𝑛−1)

,                                          (50) 

where𝑡(
𝛼

2
.  𝑛−1) is, the appropriate value from a 𝑡-distribution with 𝑛 − 1 degrees of freedom. This is equivalent 

to using a univariate Shewhart control chart for the 𝑗𝑡ℎ variable. And they considered the form of a general 

conditional term given as  



A Comparison of MEWMA and Hotelling's  𝑇2Control Charts Procedures with Industrial Application 

| IJMER | ISSN: 2249–6645 |                                   www.ijmer.com                   | Vol. 8 | Iss. 5 | May 2018 | 33 | 

𝑇𝑗.1.2.….𝑗−1
2 =

(𝑋𝑗−𝑋𝑗.1.2.….𝑗−1)2

𝑆𝑗.1.2.….𝑗−1
2 ,                                                            (51) 

if the value in (51) is to be less than its control limit,  

𝑇𝑗.1.2.….𝑗−1
2 < {

(𝑛+1)(𝑛−1)

𝑛(𝑛−𝑘−1)
} 𝐹(𝛼.1.𝑛−𝑘−1). 

Its numerator must be small, as the denominator of these terms is fixed by the historical data this implies that 

component 𝑋𝑗 from the observation vector𝑋∖ = (𝑋1. 𝑋2. … . 𝑋𝑗 . … . 𝑋𝑝) is contained in the conditional distribution 

of 𝑋𝑗 given 𝑋1. 𝑋2. … . 𝑋𝑗−1 and falls in the elliptical control region.  

A signal occurs on the term in (51) when 𝑋𝑗 is not contained in conditional distribution of 𝑋𝑗 given 𝑋1. 𝑋2. … . 𝑋𝑗  

i.e. when   𝑇𝑗.1.2.….𝑗−1
2 > {

(𝑛+1)(𝑛−1)

𝑛(𝑛−𝑘−1)
} 𝐹(𝛼.1.𝑛−𝑘−1). 

 

Regression perspective: 

Mason, Tracy and young (1995,1999) proposed that, in general, 𝑇𝑗.1.2.….𝑗−1
2  is a standardized observation on the 

jth variable adjusted by the estimated of the mean and variance form the conditional distribution associated with 

(𝑋𝑗| 𝑋1. 𝑋2. … . 𝑋𝑗−1). The general from of this term was given in (51). They considered the estimated mean of 𝑋𝑗 

adjusted for 𝑋1. 𝑋2. … . 𝑋𝑗−1, and estimated this mean by using the prediction equation. 

𝑋𝑗.1.2.….𝑗−1 = 𝑋𝑗 + 𝐵∖
𝑗 (𝑋(𝑗−1) − 𝑋

(𝑗−1)
),                                                (52) 

where 𝑋𝑗 is the sample mean of 𝑋𝑗 obtained from the historical data. The sub vector𝑋(𝑗−1) is composed of the 

observation on (𝑋1. 𝑋2. … . 𝑋𝑗−1) and 𝑋
(𝑗−1)

 is the corresponding estimated mean vector, Sjj, is the covariance 

matrix of the first j components of the vector X. To obtain Sjj partition S as follows: 

 















))((

\

)(

)(

jpjpjpj

jpjjj

SS

SS
S  

Further, partition the matrix Sjj as  















2\

)1(

)1()1)(1(

jjj

jjjj

jj SS

SS
S  

Then  

)1(

1

1)-(j )1( 




 jjjj SB s  

since the left-hand side of (52) contains𝑋𝑗.1.2.….𝑗−1, which is the predicted value of Xj, the numerator of (51) is a 

regression residual represented by 

𝑟𝑗.1.2.….𝑗−1 = (𝑋𝑗 − 𝑋𝑗.1.2.….𝑗−1) , 

 

rewriting the conditional variance as 

𝑆𝑗.1.2.….𝑗−1
2 = 𝑆𝑗

2(1 − 𝑅𝑗.1.2.….𝑗−1
2 ) 

(See, e.g, Rencher (1993)) and substituting 𝑟𝑗.1.2.….𝑗−1for(𝑋𝑗 − 𝑋𝑗.1.2.….𝑗−1), they expressed   

 

𝑇𝑗.1.2.….𝑗−1
2 =

(𝑟𝑗.1.2.….𝑗−1)2

𝑆𝑗
2(1−𝑅𝑗.1.2.….𝑗−1

2 )
                                                             (53) 

The above results indicate a 𝑇2 signal may occur if something goes astray with the relationships between 

subsets of various variables. This situation can be determined by examination of the conditional 𝑇2 terms. A 

signaling value indicates that a contradiction with historical relationship between the variables has occurred 

either (I) due to a standardized component value that is significantly larger or smaller than that predicted by a 

subset of the remaining variables or (II) due to a standardized component value that is marginally smaller or 

larger than that predicted by a subset of the remaining variables when there is a very severe collinearity (i.e., a 

large R2 value) among the variables. Thus, a signal results when an observation on a particular variable or set of 

variables, is out of control and/or when observations on a set of variables are counter to the relationship 

established by the historical data. 

 

Improving the Sensitivity of the 𝑻𝟐Statistic: 

Mason, Tracy and young (1999 - 2002) used the decomposition for improving the sensitivity of the 𝑇2 

in signal detection. They showed that the 𝑇2 statistic to be a function of all possible regressions existing among 
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a set of process variables. Furthermore, they showed that the residuals of the estimated regression models are 

contained in the conditional terms of the MYT decomposition. Large residuals produce large 𝑇2 components for 

the conditional terms and are interpreted as indicators of counter relationships among the variables. However, a 

large residual also could imply an incorrectly specified model. This result suggests that it may be possible to 

improve the performance of the 𝑇2 statistic by more carefully describing the functional relationships existing 

among the process variables. Minimizing the effects of model misspecification on the signaling ability of the 𝑇2 

should improve its performance in detecting abrupt process shifts. They showed when compared to other 

multivariate control procedures, the 𝑇2 Lacks the sensitivity of detecting small process shifts. They showed that 

this problem can be overcome by monitoring the error residuals of the regressions contained in the conditional 

terms of the MYT decomposition of 𝑇2 statistic. Furthermore, they showed that such monitoring can be helpful 

in certain types of on-line experimentation within a processing unit. 

 

They proposed an alternative form of condition terms, they considered the conditional term of the MYT 

decomposition in (51) This is the squares of the jth variable of the observation vector which adjusted by the 

estimates of the mean and variance of the conditional distribution of 𝑋𝑗 given 𝑋1. 𝑋2. … . 𝑋𝑗−1. They showed that 

(51) could be written as 

𝑇𝑗.1.2.….𝑗−1
2 = (

𝑟𝑗.1.2.….𝑗−1

𝑆𝑗.1.2.….𝑗−1
)2                                                                (54) 

this was achieved by noting that 𝑋𝑗.1.2.….𝑗−1can be obtained from the regression of 𝑋𝑗on𝑋1. 𝑋2. … . 𝑋𝑗−1: i.e., 

𝑋𝑗.1.2.….𝑗−1 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑗−1𝑋𝑗−1                                            (55) 

where bj are the estimated regression coefficients. Since 𝑋𝑗.1.2.….𝑗−1 is the predicted value of 𝑋𝑗. The numerator 

of (51) is the raw regression residual, 

𝑟𝑗.1.2.….𝑗−1 = (𝑋𝑗 − 𝑋𝑗.1.2.….𝑗−1)                                                            (56) 

      

given in (54) . 

 

Another form of the conditional term in (51) is obtained by substituting the following quantity for the 

conditional variance contained in (54) i.e., by substituting  

𝑆𝑗.1.2.….𝑗−1
2 = 𝑆𝑗

2(1 − 𝑅𝑗.1.2.….𝑗−1
2 ) , 

 

where 𝑅𝑗.1.2.….𝑗−1
2 is the squared multiple correlation between 𝑋𝑗 and 𝑋1. 𝑋2. … . 𝑋𝑗−1 this yields: 

𝑇𝑗.1.2.….𝑗−1
2 =

𝑟𝑗.1.2.….𝑗−1
2

𝑆𝑗
2(1−𝑅𝑗.1.2.….𝑗−1

2 )
                                                               (57) 

 Much information is contained in the conditional terms of the MYT decomposition. Since these terms 

are, in fact, squared residuals from regression equations they can be helpful in improving the sensitivity of the 

𝑇2 statistic in detecting both abrupt process changes and gradual shifts in the process. 

 

They considered the better the fit of a model, the more sensitive the 𝑇2 control procedure will be to departures 

from the model. This suggests that more effort should be taken in phase 1 operations, during construction of the 

historical database, to insure proper functional forms are chosen for the process variables and useful models are 

created. 

 

Principal Components Procedure: 

Jakson (1980, 1991) recommended to use the principal components procedure to aid in the 

interpretation of an out-of-control signal. The principal component analysis (PCA) technique decomposes the 

𝑇2 statistic into a sum of p independent principal components, which are linear combinations of the original 

variables, and using these components to help for solving this identification problem. The PCA used to reduce to 

dimensionality of a data set which consists of a large number of interrelated variables. While retaining as much 

as possible of the variation present in the data set. This goal is achieved by transforming the original variables to 

a new set of uncorrelated variables, which are called the principal components. This transformation is a 

principal axis rotation of the variance and covariance matrix of the data set, and the elements of the 

characteristic vectors or the eigenvectors of the covariance matrix are direction cosines of the new axes related 

to the old.  

The transformed new uncorrected variable or the principal components are normally numbered in 

descending order according to the amount at the variation. The use of the method of PCA in the field of 

multivariate quality control was first introduced by Jackson and Morris (1957). They identified a large number 

(p) of correlated variables that account for the quality of the process.  
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They notice that the use of Hotelling’s 𝑇2 may involve computational problems since the determinant of the 

variance and covariance matrix is near zero. The solution is to transform the original p variables to lesser k 

principal components. 

Jackson (1980) proposed using PCA to interpretation an out-of- control single by decomposing 𝑇2 into 

independent component. Jackson proposed that the starting point of the statistical application of the method of 

principal components is the sample covariance matrix S. for a p-variate problem in (13). 

 

If the covariances are not equal to zero, it indicates a relationship existing between those two variables, the 

strength of that relationship (if it is linear) being represented by the correlation  𝑟𝑖𝑗 =
𝑆𝑖𝑗

(𝑆𝑖𝑆𝑗)
. 

 

A principal axis transformation will transform p correlated variables 𝑋1. 𝑋2. … . 𝑋𝑝 into p new uncorrelated 

variables 𝑍1. 𝑍2. … . 𝑋𝑝 the coordinate axes of these new variables being described by the vectors ui which make 

up the matrix U of direction cosines used in the following transformation: 

 

𝑍 = 𝑈∖(𝑋 − 𝑋)                                                                    (58) 

the transformed variables are called the principal components of 𝑋. The jth principal component would be 

𝑧𝑖 = 𝑢𝑖
∖(𝑋 − 𝑋)                                                                   (59)  

If one wishes to transform a set of variables 𝑋 by a linear transformation 𝑍 = 𝑈∖(𝑋 − 𝑋), whether U is 

orthogonal or not, the covariance matrix of the new variables 𝑆𝑧 can be determined directly from the covariance 

matrix of the original variables S by the relationship:   

𝑆𝑧 = 𝑈∖ 𝑆 𝑈                                                                (60)  

However, the fact that U is orthonormal is not a sufficient condition for the new variables to be independent. 

Only a transformation such as the principal axis transformation will produce the diagonal element 𝑆𝑧 of the 

matrix L where 
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The fact that 𝑆𝑧 is diagonal elements of L means that principal components are uncorrected. He added that we 

can also determine the correlation of each principal component with each of the original variables; this is useful 

for diagnostic purposes. The correlation of the ith principal component 𝑆𝑧 and jth original variable 𝑋𝑗 can be 

determined as 

𝑟𝑧𝑖𝑋𝑗
=

𝑢𝑖𝑗√𝐿𝑖

𝑆𝑗
                                                                     (61) 

 Another interesting property of principal components is the fact that the equation (58) can be inverted 

to 

𝑋 = 𝑋 + 𝑈𝑧                                                             (62) 

by virtue of the fact that U is orthonormal so that𝑈−1 = 𝑈∖. This means that if we know the values of the 

principal components, we can determine what the original data were. 

 

Principal Component Form of 𝑻𝟐: 

Jackson (1991) proposed that the 𝑇2 can be expressed as a function of the principal components of the estimated 

covariance matrix. He gives an alternative form of the 𝑇2 statistic as: 

𝑇2 = (𝑋 − 𝑋)
∖
𝑆−1(𝑋 − 𝑋) = ∑

𝑧𝑖
2

𝜆𝑖

𝑝
𝑖=1                                                     (63) 

where𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 are the eigenvalues of the estimated covariance matrix S and the 𝑧𝑖, 𝑖 = 1. 2. … . 𝑝, are 

the corresponding principal components. 

Each of these component is obtained by multiplying the vector quantity (𝑋 − 𝑋) by the transpose of the 

normalized eigenvector Ui of S corresponding to𝜆𝑖: i.e.,𝑧𝑖 = 𝑈𝑖
∖(𝑋 − 𝑋) 

Each 𝑧𝑖 is a scalar quantity and the 𝑇2 statistic is expressed in terms of these values.  

The representation in (63) is derived from the fact that the estimated covariance matrix S is a positive definite 

symmetric matrix. Thus, its singular value decomposition is given as𝑆 = 𝑈𝐴𝑈∖, where U is a p×p orthogonal 
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matrix whose columns are the normalized eigenvectors Ui of S, and A is a diagonal matrix whose elements are 

the corresponding eigenvalues.  

),...,,( 21 pUUUU    and   
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\11 UUAS                                                                       (64) 

Substituting this quantity into the 𝑇2 statistic of (63) we have  
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                                                                 (65) 

where 𝑧𝑖 = 𝑈𝑖
∖(𝑋 − 𝑋) and 𝑍∖ = 𝑧1. 𝑧2. … . 𝑧𝑝. 

A Hotelling’s 𝑇2 statistic for a single observation also can be written as  

𝑇2 = (𝑋 − 𝑋)
∖
𝑆−1(𝑋 − 𝑋) = 𝑌∖𝑅−1 𝑌, 

where R is the estimated correlation matrix and Y is the standardized observation vector of x, i.e.,  
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where 𝑟𝑖𝑗 = 𝑐𝑜𝑟𝑟(𝑋1. 𝑋𝑗)and 

[
(𝑋1−𝑋)

𝑆1
.
(𝑋2−𝑋)

𝑆2
. … .

(𝑋𝑝−𝑋)

𝑆𝑝
] = [𝑦1. 𝑦2. … . 𝑦𝑝]   

The matrix R (obtained from S) is a positive definite symmetric matrix and can be represented in terms of its 

eigenvalues and eigenvectors. Using a transformation similar to (64). the above 𝑇2 can be written as 


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p
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iw
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1

2

2


                                                                         (66) 

where p  ...21  are the eigenvalues of the correlation matrix R, and 𝑤1. 𝑤2. … . 𝑤𝑝 are the 

corresponding principal components of the matrix R. 𝑤𝑖  canbe determined by the following transformation𝑤𝑖 =

𝑣𝑖
∖(𝑋 − 𝑋),   i=1,2, ..., p , where the𝑣1.𝑣2. … . 𝑣𝑝  are the corresponding normalized eigenvectors of R Equation 

(66) is not to be confused with (63). The first equation is written in terms of the eigenvalues and eigenvectors of 

the covariance matrix, and the second is in terms of the eigenvalues and eigenvectors of the estimated 

correlation matrix. These are two different forms of the same Hotelling’s 𝑇2 as the mathematical 

transformations are not equivalent.  

The principal component representation of the 𝑇2 plays a number of roles in multivariate statistical process 

control (SPC). The control region can be defined by the UCL. The observations contained in the 𝑇2 values less 

than the UCL. i.e., for each 𝑋𝑖, 

𝑇𝑖
2 < 𝑈𝐶𝐿 

Thus, by (66)  
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The control region is defined by the equality.  
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Which is the equation of a hyper ellipsoid in a p-dimensional space provided the eigenvalues 

p  ...21  are all positive. The fact that the estimated correlation matrix R is a positive definite matrix 

guarantees that all the si '  are positive.  

Note that in special case of the principal component space of the estimated correlation matrix. 𝑇2can be reduced 

to  

UCL
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

ww
T       (67) 

which gives the equation of the control ellipse. The length of the major axis of the ellipse in (67) is given by 1  

and the length of the minor axis is given by 2 . The axes of this space are the principal components, 1w  and 

2w . The absence of a product term in this representation indicates the independency between 1w  and 2w .This 

is a characteristic of principal components, since they are transformed to be independent.  

Assuming that the estimated correlation r is positive it can be shown that )1(1 r  and )1(2 r . For 

negative correlations, the i  values are reversed. One can also show that the principal components can be 

expressed as 2)( 211 yyw  , 2)( 122 yyw  . From these equations, one can obtain the principal 

components as functions of the original variables. 

 

IV. THE APPLICATION 

 Delta Fertilizers and Chemical Industries is considered one of the leading companies in the field of 

fertilizers production in Egypt. About 4500 employees are working for it, on the various managerial levels. Urea 

production is one of the major products of the company. The production of urea occurs through three stages, 

summarized as follows: 

 

A. High pressure stage 

 In this stage, urea is produced through two reactions; the first reaction occurs by condensation of 

Ammonia Gas and Carbon dioxide under high pressure and temperature for the sake of the production of 

intermediate material, known as Carbamate. The second reaction happens by separating the water from the 

Carbamate in order to a chive urea. In this, stage the condensation of urea approximately 56%. 

It contains 16 variables, these are: 

 

1 X1     E-201Outlet Temperature 

2 X2        Outlet cold NH3 from E- 201 

3 X3        CO2 to Train 

4 X4        CO2 pressure to synthesis 

5 X5        CO2 after E-22 

6 X6        R-201 

7 X7        Temperature in reactor R-201 

8 X8        Temperature in reactor R-201 

9 X9        Temperature in reactor R-201 

10 X10      Temperature in reactor R-201 

11 X11      Stripper level 

12 X12      Liquid leaving the Stripper 

13 X13      Stream from E-204 to j-201 

14 X14      Conditioned water to scrubber E-204 

15 X15      Conditioned water from scrubber E-204 

16 X16      Stream from j-203 

 

Table analysis of laboratory in this stage: 

 

1 t1.1 NH3 Reactor outlet 
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2 t1.2 CO2 Reactor outlet 

3 t1.3 UR Reactor outlet 

4 t1.4 B1 Reactor outlet 

5 t1.5 H2O Reactor outlet 

6 t2.1 NH3 Stripper outlet 

7 t2.2 CO2 Stripper outlet 

8 t2.3 UR Stripper outlet 

9 t2.4 B1 Stripper outlet 

10 t2.5 H2O Stripper outlet 

B. Low pressure stage 

In this stage, the condensation of urea liquid rises from 56% to 71%. This happens through the decomposition of 

the remaining Carbamate and the elimination of water under low pressure. 

 

  It contains seven variables, these are: 

 

1 y1            Urea solution from stripper E-202 

2 y2            Steam to E-205 

3 y3               Urea carbonate solution from stripper T-201 to E-205 

4 y4            Gas leaving T-201 

5 y5              Level in TK-201 

6 y6            P-203 

7 y7            Urea solution in TK-201 

Table analysis of laboratory in this stage: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Evaporation and prilling stage 

This stage occurs by two stages: 

(i) Evaporation stage 

 In this stage, the condensation of urea rises from 71% to 98.7% approximately and the urea liquid trams 

forms to urea melt. This happens under high pressure and temperature. 

 

(ii) Prilling stage 

In this stage, the urea melt is through formed into prilling in the prilling tower. 

  

 It contains four variables, these are: 

 

1 Z1 Urea solution from D-204 to E-209 

2 Z2   D- 205 Vacuum 

3 Z3 Urea to prilling tower X-202 

1 t3.1 NH3 D 202 Outlet 

2 t3.2 CO2 D 202 Outlet 

3 t3.3 UR D 202 Outlet 

4 t3.4 B1 D 202 Outlet 

5 t3.5 H2O                 D 202 Outlet 

6 t4.1 NH3 In TK 201 

7 t4.2 CO2 In TK 201 

8 t4.3 UR In TK 201 

9 t4.4 B1 In TK 201 

10 t4.5 H2O In TK 201 

11 t5.1 NH3 In PI  302 

12 t5.2 CO2 In PI  302 

13 t5.3 UR In PI  302 
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4 Z4 E- 211 Vacuum 

  

Table analysis of laboratory in this stage: 

 

1 t6.1 B1 

2 t6.2 H2O 

3 t6.3 Pills > 3.35 

4 t6.4 Pills 3.35: 2.4 

5 t6.5 Pills 2.4: 1.4 

6 t6.6 Pills 1.4: 1.0 

7 t6.7 Pills < 1.0 

8 t6.8 UR 

 

Data Description: 

For the application of multivariate quality control, chart data originate from urea production process, 

which consists of the three stages and the analysis of laboratory, which discussed above. 

The number of the sample is 732 observations taken per hour. 

The advantages of this sample that, it has several variables and several stages of the production. This advantage 

of the production is the basic reason for choosing this production to allow us to study the multivariate quality 

control charts. 

 

In this application, we shall introduce the most common using technique of multivariate quality control charts; 

MEWMA control chart &Hotelling's 𝑻𝟐 control chart. 

 

4.1 MEWMA Control Chart 

          A MEWMA control chart consists of: 

▪ Plotted points, each of which represents the multivariate statistic for each observation. 

▪ Upper control limits (red), which provide a visual means for assessing whether the process is in-control. 

MINITAB marks points outside of the control limits with a red symbol 

We select combination of r and ARL for plotting several MEWMA charts for each stage of the production study. 

Note that the default value of r = 0.3 and the default value of ARL= 200. 

 

4.1.1 MEWMA control chart of X1, ..., X16 and t1.1, …, t2.5 

Test Results for MEWMA Chart of X1, ..., X16 and t1.1, …, t2.5 

TEST. One point beyond control limits. 

Test Failed at points: 

1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 

111 112 113 177 178 179 180 181 182 183 184 185 186 187 188 

189 190 191 192 193 194 195 196 197 198 199 200 201 202 208 

209 211 212 213 216 218 219 220 222 225 226 227 228 229 230 

231 232 234 235 237 238 240 241 243 244 245 246 247 248 249 

250 252 253 254 255 258 259 261 262 263 264 265 267 268 269 

271 272 274 275 276 277 278 279 280 281 282 283 284 286 287 

288 292 293 294 295 296 297 298 299 300 301 302 303 304 305 

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 

336 337 338 339 340 341 342 343 344 345 346 347 348 359 360 

366 367 368 383 391 392 400 401 402 403 404 405 406 407 408 

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 

424 429 430 430 432 433 434 435 436 437 438 439 440 441 442 

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 
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488 489 496 498 499 500 502 504 506 508 510 512 514 515 516 

517 518 520 524 525 526 527 528 529 530 531 532 533 534 535 

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 

566 567 568 569 570 571 572 573 636 637 647 648 657 658 659 

660 661 663 664 665 666 672 674 675 676 677 678 679 680 681 

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 

727 728 729 730 731 732          

 
Figure1. MEWMA chart of X1, ..., X16 and t1.1, …, t2.5. 

 

The MEWMA chart of X1, ..., X16 and t1.1, …, t2.5 can be summarized as follows: 

• The upper control limit is 40.5. Therefore, we expect the MEWMA statistics to fall below 40.5. 

• Test results indicate that 491 points beyond the control limits. 

• Test results indicate that the process is in- control for 241 points and out –of control for 491 points. Then the 

out-of-control rate 67.08% and the in-control rate 32.92%.  

 

4.1.2 MEWMA control chart of y1, …, y7 and t3.1, …, t4.5 

Test Results for MEWMA Chart of y1, …, y7 and t3.1, …, t4.5 

TEST. One point beyond control limits. 

Test Failed at points: 

6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 

24 28 29 30 31 32 33 35 37 51 53 55 56 57 58 

59 61 62 63 65 67 75 77 82 87 89 91 92 93 94 

95 96 99 107 108 110 111 114 115 116 130 131 132 148 149 

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 

165 166 167 168 169 170 171 172 173 174 181 182 183 184 185 

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

201 202 203 206 207 208 209 229 230 247 250 251 252 253 254 

256 258 263 264 265 267 268 269 271 272 274 275 276 278 279 

280 281 282 283 284 285 286 287 288 289 292 293 294 295 296 

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 

312 313 314 315 316 317 318 352 353 354 355 356 357 358 359 

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 

386 454 457 458 460 463 464 465 466 467 468 469 470 471 472 

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 

488 489 517 551 552 553 554 555 703 704 705 706 714 715 716 

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 
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732               

 

 
Figure2.MEWMAchart of y1, …, y7 and t3.1, …, t4.5. 

 

The MEWMA chart of y1, …, y7 and t3.1, …, t4.5 can be summarized as follows: 

• The upper control limit is 30.9. Therefore, we expect the MEWMA statistics to fall below 30.9. 

• Test results indicate that 256 points beyond the control limits. 

• Test results indicate that the process is in- control for 476 points and out –of control for 256 points. Then the 

out-of-control rate 34.97% and the in-control rate 65.03%. 

 

4.1.3 MEWMA control chart of Z1, …, Z4 and t6.1, …, t6.8 

Test Results for MEWMA Chart of Z1, …, Z4 and t6.1, …, t6.8 

TEST. One point beyond control limits. 

Test Failed at points: 

11 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

44 47 49 51 53 55 57 58 59 60 61 62 63 64 65 

66 70 72 74 75 76 77 78 79 80 81 82 83 84 85 

86 87 88 89 90 92 93 94 95 96 97 98  99 101 102 

103 104 105 106 107 108 109 110 111 115 119 124 127 129 132 

134 135 139 140 141 142 143 144 148 152 157 160 162 165 167 

168 172 173 174 175 176 177 181 185 190 193 195 198 200 201 

208 213 219 222 226 227 228 229 230 231 232 234 235 237 238 

239 240 241 242 243 244 245 246 248 249 250 251 252 253 254 

255 256 258 259 260 261 262 263 265 266 269 270 272 273 274 

276 277 278 280 281 282 284 285 286 303 310 336 349 353 354 

355 374 385 386 387 414 471 475 476 487 488 491 493 495 496 

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 

512 513 514 515 516 517 518 519 520 521 523 525 527 529 530 

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 

546 547 548 549 550 551 552 556 557 558 559 560 561 562 563 

564 565 566 567 568 569 570 571 572 573 574 575 577 578 579 

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 

626 627 628 629 630 631 632 633 634 635 636 647 651 652 657 

658 659 660 663 664 665 666 667 668 669 670 671 672 673 674 

675 677 678 679 680 681 682 683 684 685 686 687 688 689 690 

691 692 693 694 695 696 697 698 699 700 703 704 705 706 707 
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708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 

723 724 725 726 727 728 729 730 731 732      

 

 
Figure3.MEWMA chart of Z1, …, Z4 and t6.1, …, t6.8. 

 

The MEWMA chart of Z1, …, Z4 and t6.1, …, t6.8 can be summarized as follows: 

• The upper control limit is 18.05 Therefore, we expect the MEWMA statistics to fall below 18.05. 

• Test results indicate 401 points through beyond the control limits. 

• Test results indicate that the process is in- control for 331 points and out –of control for 401 points. Then the 

out-of- control rate 54.78% and the in-control rate 45.22%. 

 

4.2 Hotelling 𝑻𝟐 chart 

A Hotelling 𝑇2 chart consists of: 

 

▪ Plotted points, each of which represents 𝑇2 statistic for each observation. 

▪ A center line (green), which is the median of the theoretical distribution of 𝑇2 statistic. 

▪ Control limits (red), which provide a visual means for assessing whether the process is in-control. The 

control limits represent the expected variation.  

 

MINITAB marks points outside of the control limits with a red symbol. 

 

MINITAB indicates which points is out-of-control by using decomposition of 𝑇2 statistic, along with the P-

value for each significant variable. 

 

4.2.1 T squared chart of X1, …, X16 and t1.1, …, t2.5 

Test results for T squared chart of X1, …, X16 and t1.1, …, t2.5 

TEST. One point beyond control limits. 

Test Failed at points: (Less Than LCL) 

 

114 118 123 128 133 134 138 140 143 147 

151 156 161 166 167 171 173 349 352 353 

354 361 373 374 378 384 385 386 576 578 

582 586 590 594 598 600 604 608 612 616 

620 624 626 630 634 638 642 646 650 652 

656 660         

 

Test Failed at points: (Greater Than UCL) 

 

13 20 30 40 43 45 48 50 52 56 

60 66 80 100 245 247 250 252 254 259 

261 265 276 448 458 483 636 647 657 658 
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663 664 703 714 715 718 721 724 727 730 

 

 
Figure 4. 𝑻𝟐 chart of X1, …, X16 and t1.1, …, t2.5. 

 

 

The Hotelling𝑇2 chart of X1, …, X16 and t1.1, …, t2.5 can be summarized as follows: 

• The lower and upper control limits are 9.7 and   52, respectively.  Therefore, we expect the 𝑇2 Statistics to 

fall between 9.7 and 52. The center line or median, is 25.3. 

• Test results indicate that 52 points less than LCL, for example, point 114 exceeds the lower control limit. 

• Test results indicate that 40 points greater than UCL, for example, the test results indicate that point13 

exceeds the upper control limit. 

• Test results indicate 92 Point through beyond the control limits. Then the out-of-control rate 12.6% and the 

in-control rate 87.4%. 

 

4.2.2 T squared chart of y1, …, y7 and t3.1, …, t4.5 

 Test results for T squared chart of y1, …, y7 and t3.1, …, t4.5 

TEST. One point beyond control limits. 

Test Failed at points: (Greater Than UCL) 

 

28 91 114 130 150 200 250 256 264 268 

551 703 714 715 718 721 724 727 730  
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Figure 5. 𝑻𝟐 chart of y1, …, y7 and t3.1, …, t4.5. 

The Hotelling𝑇2 chart of y1, …, y7 and t3.1, …, t4.5 can be summarized as follows:  

 

• The lower and upper control limits are 0.2 and 43.6, respectively. Therefore, we expect the 𝑇2statistics to 

fall between 0.2 and 43.6. The center line, or median, is 19.3. 

• Test results indicate that 19 Point greater than UCL, for example test results indicate that Point 91 exceeds 

the upper control limit. 

• Test results indicate 19 Point that are beyond the control limit. Then the out of control rate 2.59% and the 

in-control rate 97.41%. 

 

4.2.3 T squared chart of Z1, …, Z4 and t6.1, …, t6.8 

 Test results for T squared chart of Z1, …, Z4 and t6.1, …, t6.8 

 TEST. One point beyond control limits. 

Test Failed at points: (Greater Than UCL) 

 

245 248 250 252 254 259 261 265 269 272 276 

280 284 489 491 493 495 497 515 517 519  

 

 
Figure 6. 𝑻𝟐 chart of Z1, …, Z4 and t6.1, …, t6.8 

 

 

The Hotelling𝑇2 chart of Z1, …, Z4 and t6.1, …, t6.8 can be Summarized as follows: 

 

• The lower and upper control limits are 2.37 and 31.63, respectively. Therefore, we expect the 𝑇2statistics to 

fall between 2.37 and 31.63. The center line, or median, is 11.35. 

• Test results indicate that 21 Point greater than UCL, for example test results indicate that Point 245 exceeds 

the upper control limit. 

• Test results indicate 21 Point that are beyond the control limit. Then the out of control rate 2.87% and the 

in-control rate 97.13%. 

 

V. COMPARISON RESULTS OF APPLICATION 

The application is shown that in High process stage, test results of MEWMA chart indicate that the out-

of-control percentage 67.08% and the in-control percentage 32.92%, and it shown that in Low process stage, test 

results of MEWMA chart indicate that the out-of-control percentage 34.97% and the in-control percentage 

65.03%. It is shown that in the Evaporation and Prilling stage, test results of MEWMA chart indicates that the 

out-of-control percentage 54.78% and the in-control percentage 45.22%.While the application is shown that in 

Hotelling𝑇2 chart, in the High process stage, test results indicate that the out-of-control percentage 87.4%and 

the in-control percentage 12.6%, while in the Low process stage, the out-of-control percentage2.59% and the in-

control percentage97.41% and in the Evaporation and Prilling stage, the out-of-control percentage 2.87% and 

the in-control percentage 97.13%.  
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VI. CONCLUSIONS 

The results allow us to determine whether the joint process variability is in-control or out-of-control. It 

is shown that the out-of-control and in-control percentage changes by using difference values of r. It was shown 

that there is a relationship between the value of r and the out-of-control percentage, the out-of-control 

percentage increased by increasing the value of rand ARL. The results are shown that in the design of MEWMA 

control charts, small values of r are more efficient in detecting small process mean shifts and large values of r are 

more efficient in detecting large process mean shifts. Hotelling's 𝑇2 charts used to determine whether or not the 

process mean vector (A vector of the process means that accounts for the mean of each charted variable) for two 

or more variables is in-control. An in-control process exhibits only random variation with the control limits. An 

out-of-control process exhibits unusually variation, which may be due to the process of assignable causes 

(unusual occurrences that are not normally part of the process).𝑇2 charts allow us to simultaneously monitor 

whether two or more related variables are in control. 

 

Finally, 

▪ On using the MEWMA chart to determine whether or not the process in control, the company should 

choose small values of r to detect small process mean shifts and choose large values of r to detect large 

process mean shifts. 

▪ The company should use multivariate Hotelling's 𝑇2 quality control chart to monitor the quality of the urea 

production. Too, the company should use the Hotelling's 𝑇2 chart to determine variables which causes the 

out-of-control signals.  
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