
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-162-165 ISSN: 2249-6645

162 | P a g e

Monika Sharma
 1

, Prashant Soni
2

* (Faculty, AIIT, Amity University, India)

*(Student, Amity University, India)

Abstract

As a java programmer one might face network-

ing using socket programming. A network-based

system consists of a server, client, and a media

for communication and for such communication

we use “Sockets”.

Sockets are interfaces that can "plug into" each

other over a network. Once so "plugged in", the

programs so connected communicate. A socket

is one end-point of a two-way communication

link between two programs running on the net-

work. Socket classes are used to represent the

connection between a client program and a

server program. Such programming is called

socket programming.

The java.net package of “JAVA” provides two

classes—Socket and ServerSocket, that imple-

ment the client side of the connection and the

server side of the connection, respectively.

Keywords –Client, Java.net, Sockets, Socket

Programming, Socket (Class), Server and

ServerSocket (Class).

1. Introduction

There are many codes developed for socket pro-
gramming which were previously being imple-

mented but some drawbacks like slow speed of

execution, they were not user friendly, uneven flow

of data, etc hindered their best possible use and I

have tried to patch them.

As far as security is concerned, the „class‟ file of

java plays its role and thus provide much security

for code on being copied to any other operating

system.

1.1 Java TCP Programming

The programming model of TCP communication in

Java, rely completely on the sockets and ports. Be-

cause TCP is a stream protocol, it allows to send

arbitrary amount of data rather rely on class to en-

capsulate data within TCP packets.

1.2 Sockets

Java programs communicate through a program-

ming abstraction called socket. A socket is one

end-point of a two-way communication link be-

tween two computers (or programs) running on a

network. A socket is bound to a port number so that
the TCP layer can identify the application that data

is destined to be sent. Mostly, applications do not

care how data is actually transmitted in the net-

work. Applications identify the address of the peer

entity and then use sockets interface to read and

write data from and to the peer.

Sockets include the implementation of network and

transport layer protocols providing applications
with a simple read/write interface. Because sockets

are just programming abstractions for network pro-

tocols, the other side of the connection does not

have to use them. Sockets don‟t use any additional

communication mechanism other than that pro-

vided by the encapsulated protocol [1].

1.3 Ports

The mechanism, commonly used by network pro-

tocols, and particularly by the Internet transport

layer protocols, is port addressing [2]. For example,

tcp:23 port number is assigned for FTP, tcp:80 for

HTTP, etc.

Communication Enhancement Using Socket Pro-

gramming

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-162-165 ISSN: 2249-6645

163 | P a g e

Typically, integer numbers are used to identify dif-
ferent ports. In order to contact a network service,

it is therefore necessary to provide both the IP ad-

dress of its host, as well as port number it is using.

1.4 Connection Establishment

TCP uses a 3 way handshake. A Server makes a

passive open by call bind(). The Client initiates an

active open by calling connect(). For the connec-

tion to be established, the client sends a SYN

packet to the server. The Server replies with

SYN/ACK packet and finally the client replies

with ACK packet [3].

1.5 Connection Termination

1.5.1 This figure illustrates how can client and

server interact with each other

TCP uses a 4 way handshake to close the connec-

tion. When an endpoint wants to close, it sends out

a FIN packet, the other side then replies with an

ACK packet
[3]

.

A connection is “half-open” when one side has

close the connection. The other side is still free to
send. A situation can occur where one side closes

the connection and then reopens it immediately, so

any lost packets that now arrive will not belong to

this “new” connection and thus TCP we need to

insure these packets do not get mixed in with the

new packets. So the “TIME WAIT” state allows a

connection to remain open long enough for such

packets to be removed from the network. This state

usually lasts for about 2 times the “round-trip”,

some implementation hardcode the default value to

be anywhere from 30 to 120 seconds. We can use
the netstat utility to see TCP/IP states.

1.6 Package java.net

The Java language supports TCP programming

through the java.net.Socket and
java.net.ServerSocket classes. Java clients con-

nect to TCP servers by creating instances of the

java.net.Socket class. Similarly, Java servers listen

for java clients by creating java.net.ServerSocket

class [3]. Connections are configured through the

methods of these two classes. Actual network

communications, however, are performed using the

java.io
[4]

 package streaming classes.

1.5.2 This figure illustrates how a three way and

a four way handshake takes place.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-162-165 ISSN: 2249-6645

164 | P a g e

1.6.1 The figure illustrates the main operations

of the Java streaming socket classes.

The Java TCP server, on the right, accepts TCP

connections by creating a java.net.ServerSocket

instance bound to a particular port.

When a ServerSocket establishes a connection with
a TCP client, it creates a java.net.Socket instance

encapsulating that connection and returns it to the

server program. The java.net.Socket object re-

turned is bound to an ephemeral ports number that

is different from the one the ServerSocket is listen-

ing to. The server retrieves the socket‟s input and

output streams and effects communication by im-

plementing some protocol.

On the client side, TCP connections are established

through instances of java.net.Socket associated

with a TCP server on the given host and port. Once

the client Socket has established a TCP connection,

retrieves the socket‟s input and output stream, ef-

fects communication.

2 Interpretation and Implementation

2.1 Sending Data Through A Socket

Once an application program has established a
socket, it can use the socket to transmit data.

While sending the data we check that whether the

data is null or not. If the data is not null then we

may proceed to send data to stream through socket

at receiver‟s end [5].

2.2 Receiving Data through a Socket

For receiving the data also we shall use socket and

in same way as data was sent to stream, we will

receive it. The data received through socket is read

and printed on output screen.

2.3 Client-Side TCP Programming

The java.net.Socket of a java.net package imple-

ments client side of a two-way connection between

Java program and another program on the network.

By using this class instead of relying on native

code, Java program can communicate over network

in platform independent fashion [6].

2.3.1 Creating a Socket

In order to establish a connection with a network

server one must have the address of the server‟s

host, and port number to which the server is bound.

The java.net.Socket class provides a constructor,

which takes an IP address and port number and

attempts to establish a connection. The signature of

this constructor is as follows –

Socket(InetAddress, int port) throws IOException;

The constructor returns only after the connection

has been established, that is, once the TCP three-

way handshake has been completed.

2.4 Server-side TCP Programming

In order to accept network connections a Java pro-

gram must create an instance of

java.net.ServerSocket. Server sockets are not di-
rectly used to perform any network communica-

tion. Instead, they act as factories that create a

java.net.Socket object for every incoming TCP

communication request. Programs create the server

socket, bind to a specific port on one or more inter-

faces, and then invoke the blocking accept()

method [7].

2.4.1 Creating ServerSocket

The basic ServerSocket constructor takes a single

argument, the TCP port number used in binding. If

the constructor returns without throwing an excep-

tion then the server socket has successfully bound

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-162-165 ISSN: 2249-6645

165 | P a g e

to the requested TCP port. The constructor may fail
due to an I/O error, or due to a security error. The

signature of the constructor is –

ServerSocket(int port) throws IOExcep-

tion,SecurityException;

2.4.2 Accepting Sockets

The main task of server socket is to receive incom-

ing connection requests and generate a

java.net.Socket object that encapsulates each re-

quest. Incoming connections are queued until the

program retrieves them one at a time by invoking

the accept() method. The accept() method takes no

arguments, and returns the next connection in the

queue.

2.5 Terminating Server Socket

A server socket may be terminated simply by in-

voking the no – argument close() method.

Closing the server socket will not affect connec-

tions that have already been returned by accept ()

invocation. If the accept () method is invoked on a

closed socket then a java.net.Socket exception will

be thrown with a message indicating that the socket

has been closed. The signature is as follows –

void close() throws IO Exception;

3 Conclusion

Developing network applications is made possible

in Java by using sockets, threads, RMI, clustering,

and Web services. These technologies allow for the

creation of portable, efficient, and maintainable

large and complex Internet applications. The

java.net package provides a powerful and flexible

set of classes for implementing network applica-

tions.

Typically, programs running on client machines

make requests to programs on a server machine.

These involve networking services provided by the

transport layer. The most widely used transport

protocols on the Internet are TCP (Transmission

control Protocol) and UDP (User Datagram Proto-

col). TCP is a connection-oriented protocol provid-

ing a reliable flow of data between two computers.

It is used by applications such as the World Wide

Web, e-mail, IP, and secure shell.

Sockets provide an interface for programming net-

works at the transport layer. Using sockets, net-

work communication is very much similar to per-

forming fi le I/O. A socket is an endpoint of a two-
way communication link between two programs

running on the network. The source and destination

IP address, and the port numbers constitute a net-

work socket.

Two key classes from java.net package used in

creation of server and client programs are Server-

Socket, which represents a server socket, and
Socket, an instantiation of which performs the ac-

tual communication with the client.

4 Future Work

In future, for further optimization, I am trying to

implement security constraints on my code like

„Cryptography‟ for enhanced two way communica-

tion.

References

 Articles:

[1] http://www.buyya.com/java/Chapter13.pdf

[2] http://www.scribd.com/doc/29858538/Jav

a-TCP-Programming

[3] http://www.pcvr.nl/tcpip/tcp_conn.htm

[4] http://download.oracle.com/javase/1,5.0/d

ocs/api/ (Java API(Application Program-

ming Interface) 5.0)

[5] http://edn.embarcadero.com/article/31995

Books:

[6] Herb Schildt, Java 2 The Complete Refer-
ence (4th edition, Osborne/MacGraw-

Hill,2001)

[7] Kathy Sierra & Bert Bates, Head First

Java (2nd edition, O‟Reilly Media, 2005)

http://www.buyya.com/java/Chapter13.pdf
http://www.scribd.com/doc/29858538/Java-TCP-Programming
http://www.scribd.com/doc/29858538/Java-TCP-Programming
http://www.pcvr.nl/tcpip/tcp_conn.htm
http://download.oracle.com/javase/1,5.0/docs/api/
http://download.oracle.com/javase/1,5.0/docs/api/
http://edn.embarcadero.com/article/31995

