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ABSTRACT

Thermal sprayed surface coatings are extensively
used for a wide range of industrial applications. In
the plasma spray process used in thermal
spraying, the temperature of substrate and
conduction of heat along the thicknes of ceramic
oxide coatings (TCOC) play an important role in
the bond strength and microstructure of the
coatings, which decides its performance and
quality. In this study, using AnsysCFX, a 3D
numerical model is developed to study heat
exchange between lpsma jet and substrate and
along the TCOC to predict life of the coating. The
plasma jet temperature, velocity distribution and
heat exchange to the substrate surface and
coatings have been thoroughly analyzed for the
effects of various spray parameters §P) such as
gas composition, standoff distances (sod), velocity
and temperature of a jet. It is found that 3D
modeling has shown promising results on
substrate heating. The effect of spray parameters
could also be assessed and validated by comparing
with experimental results.

Keywords- Computational Fluid Dynamics, heat
flux, spray process Numerical modeling, Partially
Stabilized Zirconia, Temperature and velocity
distribution Zirconia Toughened Alumina.

1.INTRODUCTION

In ceramic oxide coatings, an atspheric plasma
spraying process (APS) is widely useBlasma
spraying has been extensively used in various

industrial components for producing different kinds
of coatings, such as wear, corrosion, pitting and
thermal resistance coatings ],[1[3-4]. In this
technique, plasma gas which is a high temperature
ionized gas. When a strong electric arc is struck
between tungsten electrode (cathode) and a nozzle
(anode) in the presence of Argon and nitrogen/
hydrogen mixture in the chamber, the gas gets
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ionized which called plasma is the
temperature of the order of 14,0Q0t0

20,000C. Injected particles of coating materials are
heated inside the plasma jet and molten droplets are
projected on the substrate with high velocities to
form the coating.

The properties of the resulting layers are strongly
depend on how | arge
and melting degree are at the moment of impinging
on the substrate[35],[7]. Therefore, the
manufacturing process requires the adjustingaof
large number of parameters to get a good quality of
coating (to suit our functional requirement) and for
life and quality prediction of coating. Some of the
parameters are

reaching

1. Flow rate, Gas composition, velocity and
temperature of the plasmaybstrate heatm type of
coatings standoff distancedistance between nozzle
and substra)e size of the powder particles.

2. Conduction of heat in different types of coatings.

It is impossible in practice to determine the
respective influence of all thesingle factors, on the
resulting thermal barrier coating. Thus an accurate
modeling of the whole plasma spraying process
provides us with a powerful tool to understand better,
the process and to determine the optimal conditions
for the TBC production.

Much work has been done to study the effect of
above parameters in the plasma jet without
considering the presence of coating surface with
substrate condition, using two and thrBmensional
analysis [2],[7], [9]& [1518]. It is found that the
presene of coated substrate has major effect on these
parameters. In order to ascertain its effect, the present
study, based on numerical modeling analysis, has
been done and the effect of various parameters have
been discussed from the point of view of goodliy
coating.
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Three different commercially available ceramic
coatings powders namely, Partially Stabilized
Zirconia (PSZ), Zirconia toughened alumina (ZTA
consist of 80% alumina and 20% PSZ) and Super
alloy (20% alumina and 80% PSZ) were used ffier t
coatings [1] [3] and[19].

1.1 Modeling approach

To simulate the plasma jet, it is assumed that
plasma is in steady state, in local therdymamical
equilibrium, optically thin, Incompressible, turbulent
and mass diffusivity is equal to thermdiffusivity
[15-17]. The plasma jet is impinged on pre heated
substrate (between %7 to 208C) in an open
atmosphere and plasma gas used is a mixture of
argon and nitrogen. To increase the enthalpy and
thermal conductivity of the plasma jet, usually a
smdl amount of nitrogen is added to argon-1p
&[12]. Twelve different computational geometries
are created for this study. Figutga), (b), (c),
(d),(e), () respectively, shows computational
domains for torch to substrate distances, 0.08, 0.1,
0.11, 014 and 0.15n. These geometries are created
using Ansys ICEM CFD10.0. The mesh is refined at
core region of the jet to treat the large temperature
and velocity gradients both in axial and in radial
directions [7] & [9]. The nozzle exit diameter is
0.007m. The AnsysCFX 11.0 has been used for
preprocessing, solving and post processing of results.

nozzle

Open Boundary

side \I

Wall
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Figure 1.Computational geometry simulates the
plasma jet withsubstrate at a standoff distance of
0.08m.

Figure 2.Computational geometry simulates the
plasmajet with substrate at a standoff distance of
0.1m.
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Figure 3.Computational geometry simulates the
plasma jet withsubstrate at a standoff distance of

0.11m

Figure 4.Computational geometry simulates the
plasma jet with substratg a standoftlistance of

0.14m.
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Figure 5.Computational geometry simulates the
plasma jet with substrate at a standoff distance of
0.15m.

2. Results and Discussion
Analysis carried out for 1BW plasma spray torch
chosen to simulate the nozzle exit tempame and
velocity profiles have been used to prepare different
kinds of coatings such as Partial stabilized zirconia
(PSZ), SupeZ and Zirconia Toughened Alumina
(ZTA).

It is clear from this result that effect of nitrogen
content in the plasma gas derch power and
efficiency is stronger than that of the argon gas flow
rate. Hence, temperature and velocity of the plasma
jet decrease with increasing argon gas flow rate. The
similar effect has been seen for other stafid
distances.

The gas flowrates of both argon and nitrogen are
fixed at three different values percentages of Ar90%,
N,10%, Ar 75%, N 25% and Ar50%, B50%
respectively. The total heat flux to the substrate
increases with increasing flow rate. The similar effect
has been obserdeat stanebff distances of 0.1 and
0.125m.
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Fig.7.c. Enthalpy on substrate in radial direction at
110m/sec and sod = 110mm.
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Fig.8.b. Enthalpy along coating thickness at
250m/sec and sod = 80mm.

Fig.8.c. Enthalpy along coating thitess at 450m/sec
and sod = 80mm.

Fig.8.d. Enthalpy along coating thickness at
110m/seandsod=100mm.

434|Page



