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ABSTRACT  

 It is pragmatic that for many natural signals and images, 

the wavelet transform is a more effective and powerful 

signal processing tool that provide an alternative to 

conventional signal transforms such as the Fourier 

transform. The wavelet transform provides a multi 

resolution representation using a set of analyzing functions 

that are dilation and translations of a few functions. 

Although the standard DWT is powerful tool, it has three 

major limitations (Shift Sensitivity, Poor Directionality, 

and Absence of Phase information) that undermines its 

application for certain signal and image processing tasks. 

The initial motivation behind the work to use Dual-tree 

complex-valued DWT which will overcome the  limitations 

of standard DWT. This paper,  proposes a new simple non 

Gaussian bivariate probability distribution function to 

model statistics of wavelet coefficients of images. The 

model captures the dependence between a wavelet 

coefficient and its parent. The new bivariate shrinkage 

function outperforms the method proposed by the previous 

authors for image de-noising and also give significant 

improvement in the value of PSNR over RMSE as given by 

the other classical methods.    
 

KEYWORDS- Bivariate Shrinkage Function. Complex 

DWT, De-noising, 1-D DWT, 2-D DWT. 

 

1. INTRODUCTION 
Many scientific experiments results in a datasets corrupted 

with noise, either because of the inadequate data acquisition 

process, or because of environmental effects. A first 

preprocessing step in analyzing such datasets is de-noising, 

that is, removing the unknown signal of interest from the 

available noisy images. There are several approaches to de-

noise images. Despite similar visual effects, there are subtle 

differences between de-noising, de-blurring, smoothing and 

restoration.  

 Generally smoothing removes high frequency and 

retain low frequency(with blurring), de-blurring increases the 

sharpness signal features by boosting the high frequencies, 

whereas de-noising tries to remove whatever noise is present 

regardless of the spectral content of a noisy image. Restoration 

is kind of de-noising that tries to retrieve the original image 

with optimal balancing of de-blurring and smoothing. 

Traditional smoothing filters such as Mean, Median and  

 

 

Gaussian filters are linear operators normally employed in 

spatial domain, which smooth the signals with blurring effects. 

 For many natural images, the wavelet transform is 

more efficient and effective tool because it is based on perfect 

reconstruction two-channel (analysis/synthesis) filter banks. 

The DWT consists of recursively applying a 2-channel filter 

banks, the successive decomposition is performed only on the 

low-pass output. The wavelet transform comes in several 

forms. The critically sampled form of the wavelet transform 

provides the most compact representation, however, it has 

several limitations. For example, it lacks the shift-invariance 

property, and in multiple dimensions it does a poor job of 

distinguishing orientations, which is important in image 

processing. For these reasons, it turns out that for some 

applications improvements can be obtained by using an 

expansive wavelet transform in place of critically-sampled 

one. An expensive transform is one that converts an N-point 

signal into M coefficient with M > N. There are several kinds 

of expansive DWTs; here we describe and provide an 

implementation of the dual-tree complex DWT. 

 This paper presents the concept of complex dual tree 

DWT[5] to de-noise the digital images by using soft 

thresholding algorithm with new shrinkage function.  This 

transform is shift invariant and is oriented in 2D. The 2D dual 

tree wavelet transform produces six sub bands at each scale, 

each of which is strongly oriented at distinct angles. The paper 

is organize as follows: Section 2 involves Separable DWT. 

The Complex Dual Tree DWT is discussed in Section 3 & 

Section 4 deals with bivariate shrinkage functions. Section 5 

gives the general method involves in image de-noising. 

Section 6 deals with results & discussions & the conclusion 

are given in Section 7. 

 

2. Separable DWT 

2.1  1-D Discrete Wavelet Transform 

The analysis filter bank decomposes the input signal x(n) into 

two sub band signals, c(n) and d(n). The signal c(n) represents 

the low frequency part of x(n), while the signal d(n) represents 

the high frequency part of x(n). We denote the low pass filter 

by af1(analysis filter 1) and the high pass filter by 

af2(synthesis filter 2). As depicted in figure(1), the output of 

each filter is then down sampled by 2 to obtain the two sub 

band signals c(n) & d(n). 

 

 

A Practical Approach of Complex Dual Tree DWT for Image Quality 

Improvement and De-noising 
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Fig.1: Separable DWT(Analysis) & (Synthesis) Filter Bank 

 

The Synthesis filter bank combines the two sub band signals 

c(n) & d(n) to obtain a single signal y(n). The synthesis filter  

bank up-samples each of the two sub band signals. The signals 

are then filtered using a low pass and high pass filter. We 

denote the low pass filter by sf1(synthesis filter 1) and the 

high pass filter by sf2(synthesis filter 2). The signals are then 

added together to obtain the signal y(n). If the four filters are 

designed so as to guarantee that the output signal y(n) equals 

the input signal x(n), then the filters are said to satisfy the 

perfect reconstruction condition. 

 

2.2 2-D Discrete Wavelet Transform   
image-processing applications requires two-dimensional 

implementation of wavelet transform. Implementation of 2-D 

DWT is also referred to as „multidimensional‟ wavelet 

transform in literature. In the 2D case, the 1D analysis filter 

bank is first applied to the columns of the image and then 

applied to the rows. If the image has N1 rows and N2 

columns, then after applying the 1D analysis filter bank to 

each column we have two sub band images, each having N1/2 

rows and N2 columns; after applying the 1D analysis filter 

bank to each row of both of the two sub band images, four sub 

band images are obtained, each having N1/2 rows & N2/2 

columns. This is depicted in figure (2) given below. The 2D 

synthesis filter bank combines the four sub band images to 

obtain the original image of size N1 by N2 [4][5]. 
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x(n) 

                                                                                       dHL 

                                                                         

    

 
Fig.(2): One stage in multi-resolution wavelet 

decomposition of an image x(n) 

The 2D analysis filter bank is implemented with the Matlab 

function afb.m. This function calls a sub-function, 

afb2D_A.m, which applies the 1D analysis filter bank along 

one dimension only either along the columns or along the 

rows. The function afb2D.m returns two variables: „lo‟ is the 

low-pass sub band image; „hi‟ is a cell array containing the 3 

other sub band images. The 2D synthesis filter bank is  

 

similarly implemented with the commands sfb2D.m and 

sfb2D_A.m. The 2D DWT  of a signal x(n) is implemented by 

iterating the 2D analysis filter bank on the low-pass sub band 

image. In this case, at each scale there are three sub bands 
instead on one. The function, dwt2D.m, computes the J-scale 

2D DWT w of an image x(n) by repeatedly calling afb2D.m. 

Again, w is a Matlab cell array; for j = 1..j, d = 1..3, w{j}{d} 

is one of the three sub band images produced images produced 

at stage j. w{j+1} is the low-pass sub band image produced at 

the last stage. The function idwt2D.m computes the inverse 

2D DWT. 

 

3.  Complex 2D Dual –Tree DWT: 
 To preserve the phase information of image for some 

applications DWT fails, this limitation of discrete wavelet 

transform can be overcome by using an expensive wavelet 

transform rather than a critically sampled one. There are 

several kinds of expensive DWT‟s;  here the dual tree CDWT 

is described. The dual tree complex DWT[1][2] of a signal 

x(n) is implemented using two critically sampled DWT‟s in 

parallel on the same data, as depicted in the figure(3). 
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                         Fig.(3): Dual Tree Complex DWT  
 

The transform is 2-times expansive because for an N-point 

signal it gives 2N DWT coefficients. To overcome the 

limitations of DWT, here filters are designed is a specific way. 

The complex 2D dual tree DWT gives rise to wavelets in six 

distinct directions, however, in this case there are two 

wavelets in each direction as shown in the above figure (3). In 

each direction, one of the two wavelets can be interpreted as 

the real part of a complex-valued 2D wavelet, while the other 

wavelet can be interpreted as the imaginary part of a complex-

valued 2D wavelet. Because the complex version has twice as 

many wavelets as the real version of the transform, the 

complex version is 4-times expansive. The complex 2D dual-

af

1 

af

2 

sf

1 

sf

2 

ho(n) 

h1(n) 

ho(n) 

h1(n) 

go(n) 

g1(n) 

go(n) 

g1(n) 

go(n) 

g1(n) 

ho(n) 

h1(n) 

dHH 

af1 

af1 

af2 

af2 

af1 

af2 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                        Vol.1, Issue.2, pp-632-                   ISSN: 2249-6645 

                 www.ijmer.com 634 | P a g e  

 

tree is implemented as four critically-sampled separable 2D 

DWTs operating in parallel. However, different filter sets are 

used along the rows and columns. As in the real case, the sum 

and difference of sub band images is performed to obtain the 

oriented wavelets. The complex 2D dual-tree DWT of an 

image x(n) is computed by the Matlab function, cplxdual.m. 

The wavelet coefficients w are stored as a cell array. For j = 

1..J, p = 1..2, k = 1..2,, d = 1..3, w{j}{p}{k}{d} are the 

wavelet coefficients produced at scale j and orientation (k,d). 

With p = 1 we get the real part, with p = 2 we get the 

imaginary part. The image x(n) is recovered from w using the 

inverse transform, implemented by icplxdual2D.m  

 The filter banks in dual-tree complex DWTs 

discussed above used for image de-noising is nearly shift 

invariant, in contrast with the critically sampled DWT. The 

dual-tree complex DWT can be used to implement 2D wavelet 

transform where each wavelet is oriented, which is especially 

useful for image processing. The dual-tree complex DWT 

outperforms the separable DWT for applications like image 

de-noising.    

 

4. Bivariate Shrinkage Function 
To model the statistics of wavelet coefficients of images, a 

new simple non-Gaussian bivariate probability distribution 

function[3][6-9] is proposed in this paper. The model captures 

the dependence between a wavelet coefficient and its parent. 

Using Bayesian estimation Theory, this model is derived, 

which generalizes the soft thresholding approach. The new 

shrinkage function, which depends on both the coefficient and 

its parent, yields improved results for wavelet based image de-

noising.    

 Let w2 represents the parent of w1(w2 is the wavelet 

coefficient at the same spatial position as w1, but at the next 

coarser scale). Then,  

 

y = w + n ------------------ (1) 

 When w = (w1,w2), y = (y1,y2) and (n1,n2). The noise values 

n1, n2 are zero mean Gaussian. Based on the empirical 

histograms, the non-Gaussian Bivariate PDF is given by, 

    3                  √3       

pw(w) =          . exp   -        √w1
2
+w2

2     
------------(2) 

              2πσ
2                       σ 

 

With this PDF , w1 and w2 are uncorrelated, but not 

independent. The MAP estimator of w1 yields the following 

bivariate shrinkage function: 

 

 
^                                     

w    =                                          

 

 

 

 

 

For this bivariate shrinkage function, the smaller the parent 

value, the greater the shrinkage. This is consistent with other 

models, but here is derived using a Bayesian estimation 

approach beginning with the new bivariate non-Gaussian 

model. 

 

4.1 De-noising Algorithm 
The implementation of the de-noising algorithm is similar to 

the separable DWT case. Except that there are slight 

modifications since we apply the bivariate shrinkage rule to 

the magnitudes of the complex coefficients. They are nearly 

shift invariant, i.e. small signal shift do not affect the 

magnitudes, however, they do affect the real and imaginary 

parts. Therefore magnitude information is more reliable than 

either real or imaginary parts. The algorithm does not affect 

the angle, i.e. we keep it as it is. The function main_dtdwt.m 

loads the noisy image, calls the de-noising routine and 

calculate the PSNR value of de-noised image. 

 After loading the input image by the “main_dtdwt.m” 

function, the calculations for the local adaptive image de-

noising are done by a Matlab function denoising_dtdwt.m. 

This function calls several sub-functions. The implementation 

can be summarized as: 

 

1. Set the window size. The signal variance of a coefficient 

will be estimated using neighboring coefficients in a 

rectangular region with this window size. 

2. Set how many stages will be used for the wavelet 

transform. 

3. Extend the noisy image. The noisy image will be 

extended using symmetric extension in order to improve 

the boundary problem with the function symextend.m. 

4. Calculate the forward dual-tree DWT using 

cplxdual2D.m. 

5. Estimate the noise variance. The noise variance will be 

calculated using the robust median estimator. 

6. Process each sub band separately in a loop. First the real 

and imaginary parts of the coefficients and the 

corresponding parent matrices are prepared for each sub 

band, and the matrices corresponding to the real and 

imaginary parts of the parent matrix are expanded using 

function expand.m in order to make the matrix size the 

same as the coefficient matrix. 

7. Estimate the signal variance and the threshold value: The 

signal variance for each coefficient is estimated using the 

window size and the threshold value for each coefficient 

will be calculated and stored in a matrix with the same 

size as the coefficient matrix. 

8. Estimate the magnitude of the complex coefficients. The 

coefficient will be estimated using the magnitudes of the 

complex coefficient, its parent and the threshold value 

with matlab function bishrink.m. 

9. Calculate the inverse wavelet transform using matlab 

function icplxdual2D.m. 

10. Extract the image. The necessary part of the final image is 

extracted in order to reverse the symmetrical extension. 
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5. General Method for Image De-noising 

The classical methods used by the previous authors for image 

de-noising employs soft thresholding image. The new local 

adaptive de-noising algorithm via bishrinkage function are as 

follows:  

 

5.1 Soft Thresholding 

One techniques for de-noising is wavelet thresholding. When 

we decompose data using the wavelet transform, we use filters 

that act as averaging filters, and others that produce details. 

Some of the resulting coefficients correspond to details in the 

data set (high frequency sub-bands). If the details are small, 

they might be omitted without substantially affecting the main 

features of the data set. The idea of thresholding is to set all 

high frequency sub bands coefficients that are less than a 

particular threshold to zero. These coefficients are used in an 

inverse transformation to reconstruct the data set. 

 The Matlab program for soft thresholding has two 

parameters, one for noise signal and the other for threshold 

point. A sample noise signal with dimension 512 x 512 is 

taken. We first take the forward DWT over 4 scales (J = 4). 

Then a de-noising method called soft thresholding is applied 

to wavelet coefficients through all scales and sub bands. 

Function soft sets coefficients with values less than the 

threshold (T) to 0, then subtracts T from the non-zero 

coefficients. After soft thresholding, we take inverse wavelet 

transform. 

  

5.2  Peak Signal to Noise Ratio (PSNR) 
 Peak Signal-to-Noise Ratio is given by the following 

expression: 

 

                                  255 

  PSNR =  10 log10   

                                 RMSE        
Where,  

  RMSE – Root Mean Square Error 

 

5.3 Proposed Method: Bivariate Shrinkage Function 

+ Local Adaptive de-noising Algorithm 

The proposed method which uses both bivariate Shrinkage 

Function together with Local adaptive de-noising algorithm is 

described here. The algorithm of the proposed method is 

summarized as follows: 

 

1. Take the natural image as input and denote it as x(n). 

2. Add  noise into the x(n). Let the noisy image be 

x1(n). 

 

3. Take the Forward dual-tree complex DWT on noisy 

image x1(n). Use analysis filter bank. 

 

4. Compute Bivariate Shrinkage Function. 

5. Compute Local Adaptive De-noising algorithm. 

6. Compute Inverse dual-tree complex DWT. Use 

synthesis filter bank. 

7. Get the de-noised image. 

 

6. Results and Discussion 
From the resulting images, it is clear that the Complex 2D 

dual-tree method removes more noise signal than separable 

2D method does. The 2D dual-tree method outperforms 

separable method. This can be proved by the RMSE Vs PSNR 

points. 
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         Fig.(4):  RMS Error Vs Peak Signal-to- Noise    

                     Ratio 

 

6.1 Results via Soft Thresholding 

 
         Original Image     Noisy Image 

      
Separable DWT           Complex Dual-Tree DWT 

 

Fig.(5): Output Results via Soft Thresholding 
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6.2 Results via Bivariate Shrinkage Function 

 
 

     Separable DWT         Complex Dual-Tree DWT       

 

Fig.(6): Output Results via Bivariate Shrinkage Function 

 

The de-noised image obtained using soft thresholding has a 

PSNR of 33.27 dB. The de-noised image obtained using 

bivariate shrinkage function has a PSNR of 35.03 dB. Thus 

the local adaptive thresholding algorithm via bivariate 

function gives better performance over the classical method. 

The values are tabulated as follows: 

 

 

 

Types of 

Method 

 

 

RMSE 

Soft 

Thresholding 

in dB 

Bivariate 

Shrinkage in 

Db 

PSNR[dB] PSNR[dB] 

Separable 

DWT 

0.1204 28.48 33.27 

Complex 

dual-tree 

DWT 

0.0804 31.49 35.03 

 

Table1:  Root Mean Square Error (RMSE) & Peak 

Signal-to-Noise Ratio (PSNR) Values 

 
 

7. Conclusion and Future Scope 

In this paper, a new bivariate PDF is proposed for wavelet 

coefficients from which a new bivariate shrinkage function is 

derived. The proposed PDF is a Laplacian bivariate PDF. This 

new rule maintains the simplicity, efficiency and classical soft 

thresholding approach. The result is simulated on Matlab 7.0.1 

environment. The Simulation results of Aishwarya Rai for 

classical Separable DWT and Complex Dual-Tree DWT are 

shown in above figures(5) and (6). With these results it is clear 

that the proposed method gives significant improvement in 

terms of image quality and preserve the useful information 

from the original image. These properties are important for 

many applications in image processing. In future, this work 

can be extended by using different types of wavelets for 

different values of noise variance also.  
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