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ABSTRACT 
Image segmentation is the division of an image into a number 

of contained self consitant regions. Each region must be 

homogeneous with respect to a particular property, such as 

intensity, colour or texture. In this paper describes a two-level 

Region based and edge detection of image integration. Edges 

are first detected in the original image using a combination of 

operators for intensity gradient and texture discontinuities. To 

preserve the spatial coherence of the edges and their 

surrounding image regions, the detected edges are vectorized 

into connected line segments which serve as the basis for a 

constrained Delaunay triangulation. Segmentation is first 

performed on the triangulation using graph cuts. Our method 

favors segmentations that pass through more vectorized line 

segments. Finally, the obtained segmentation on the 

triangulation is projected onto the original image and region 

boundaries are refined to achieve pixel accuracy. 

 

Keywords-edge detection, image segmentation, normalized 

cut, region merging. 
 

1. Introduction 
 Image segmentation is a low-level task that 

consists on partitioning the image into homogeneous 

regions distinct from each other, according to some 

criteria. It is a crucial step in computer vision system 

involving image processing where the challenge is to 

perform image segmentation with some semantic meaning 

[1]. Two basic image segmentation approaches are 

region-based and edge-based segmentation. Region-based 

segmentation offers closed contours automatically while 

edge-based methods need an extra propagation step to 

obtain complete region contours. Region-based methods 

can also be categorized into local region growing and top-

down global region partitioning, such as graph-theoretic 

optimal grouping algorithms [2, 3]. Global region 

partitioning makes use of global optimality criteria and 

can produce more semantically meaningful results, but 

typically suffers from poor localization of the region 

boundaries. This is because the criteria used are based on 

the statistics obtained from all the pixels in an entire 

image region. They do not reflect the local characteristics 

available at a specific pixel. On the other hand, local 

region growing or edge detection offer accurate boundary 

localization, but usually do not have sufficient global 

knowledge to perform the task well. Researchers have 

also been trying to integrate region and edge information 

in image segmentation. A complete survey on such 

integrations is given in [4]. In this paper, we are interested  

 

 

in integration between global graph theoretic grouping 

algorithms and edge detection. There has been limited 

work along this direction except the embedded integration 

presented in [5, 6]. 

 The goal of this paper is to perform image 

segmentation with integrated region and edge information 

so that both global image statistics and local edge 

responses can be utilized. The result we get from this 

would still be segmented regions but with accurate 

boundary localization at places where edge detection 

operators produce reasonably strong responses. The rest 

of the region boundaries can also be viewed as a viable 

solution to contour completion based on region 

information. How can we integrate region and edge 

information in image segmentation? A detected edge does 

not necessarily belong to a region boundary since an 

object can have internal edges besides the edges on its 

contour. The decision whether a specific edge should 

belong to a region boundary should be made within a 

global context, such as the relative positions of all the 

edges and the image statistics of the regions surrounding 

the edges, rather than a local one. A detected edge 

segment is usually made up of multiple connected edge 

pixels. These multiple edge pixels should be considered 

as a whole instead of a set of uncorrelated edge fragments 

because of their spatial proximity (Fig. 1). For the same 

reason, the pixels immediately adjacent to the edge should 

be considered as connected local regions instead of 

uncorrelated pixels. If we imagine a local image region 

with an edge passing through its center, the edge splits the 

region into two halves. Depending on whether this edge 

belongs to a region boundary or not, these two halves may 

or may not belong to the same region in the final 

segmentation. Nevertheless, pixels in the same half 

should belong to the same region. Note that part of the 

boundaries of the two halves except for the central edge 

are indefinite and need to be determined during 

segmentation. This argument leads to the suggestion that 

region segmentation should be performed at a coarser 

granularity than pixels in order to incorporate edges. 

Integration of Region Based and Edge detection of 

Two-Level Image Segmentation 
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__ _______ 
Fig.1. A connected edge segment divides its neighborhood into two 

halves. During segmentation, the multiple pixels on the edge segment as 
well as the pixels in each of the half neighborhoods should be 

considered as a whole instead of being uncorrelated._____ 

______ 

 The main contribution of this paper is to propose 

a two-level approach for image segmentation with 

integrated region and edge information. At the lower level 

is the original set of pixels upon which edge detection can 

be performed. Connected edge pixels are grouped into 

edge segments. At the upper level is a triangulation which 

is an abstraction of the original image. Each image edge 

segment corresponds to an edge in the triangulation. 

Segmentation is performed on the triangulation. Once the 

segmentation at the upper level is done, those triangle 

edges without corresponding edge segments at the lower 

level will be refined at the pixel level. Segmentation at a 

granularity coarser than pixels in a rich texture region is 

also helpful because texture descriptors typically need to 

collect information in a local region. One additional 

advantage of having a two-level scheme is significantly 

improved efficiency.__ 

 
2 Two-Level Segmentation 
2.1 Edge Detection 

 Edge detection is one of the most commonly 

used operations in image analysis. An edge is defined by 

a discontinuity in gray level values. In other words, an 

edge is the boundary between an object and the 

background. Edge information is then integrated to verify 

and, where necessary, to correct region boundaries. The 

shape of edge in images depends on many parameters: 

The geometrical and optical properties of the object, the 

illumination conditions, and the noise level in the images 

[7]. 

 Our method needs to detect edges first in a 

preprocessing step although edge detection is not the 

focus of this paper. Since we only consider gray-scale 

images, we apply previous approaches for detecting both 

intensity and texture edges. Intensity edges are detected 

using the first and second derivatives of Gaussian. A 

tensor product between a Gaussian and the first derivative 

of Gaussian detects step edges. It is very similar to the 

numerical solutions of canny detectors [8].A tensor 

product between a Gaussian and the second derivative of 

Gaussian is used for detecting ridge edges. These filters 

based on Gaussian derivatives can produce accurate 

locations for intensity edges. But they may produce 

extraneous edges in texture regions. The initial set of 

texture edges are obtained from the Edge Flow algorithm 

[9]. While this algorithm can detect most texture edges, it 

also produces extraneous edges.  

 To remove extraneous edges, we adopt a 

likelihood of texture edges as follows: define a circular 

image region centered at the currently considered pixel; 

divide the circle into two halves using one of the potential 

edge orientations; apply multiscale odd-symmetric and 

even-symmetric filters to the two halves[6]; compute both 

intensity histograms and histograms of the filter responses 

for each of the two half regions [10]; use χ2 test to 

calculate the difference between two corresponding 

histograms, where the χ2 distance between two 

histograms is defined as  

 

 

 

 

Obtain the weighted average of the histogram differences. 

The likelihood of a texture edge at the pixel is defined as 

the maximum weighted average among all potential 

orientations. Six different edge orientations are used in 

practice. We eliminate those extraneous edges which lie 

in an image region with low likelihood of texture edges. 

 

 Finally, we combine intensity and texture edges. 

Actually the EdgeFlow algorithm also produces intensity 

edges which are not as accurate as those obtained from 

Gaussian derivatives.  Therefore, if there is an EdgeFlow 

edge in the vicinity of an edge obtained from Gaussian 

derivatives, the EdgeFlow edge is eliminated. Our 

segmentation algorithm can incorporate any type of edges 

including the high quality edges recently obtained from a 

learning method [11]. 

 

2.2 Upper Level Construction 

 We first vectorize the detected edges from 

Section 2.1. This process converts every connected edge 

into a set of connected line segments by tracing the pixels 

on the edge. All the vertices of the line segments lie on 

the original edge. To create a new line segment from a 

vertex v1, we move along the edge pixel by pixel until the 

distance between the current pixel p and v1 reaches a 

prescribed threshold or we have reached the end of the 

edge. Note that we do not require that the line segments 

fit the original edge very well since we still keep the 

position of the original edge in the lower level and the 

line segments are only an abstraction in the upper level. 

The line segments are called hard edges since each of 

them is associated with a corresponding edge segment in 

the lower level. The hard edges may be quite sparse in the 

image plane. Although we need a coarser granularity at 

the upper level, it is still undesirable to have a large image 

region overly under-represented since there may be weak 
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boundaries present. Therefore, we generate more line 

segments and vertices as follows. Set up a uniform sparse 

grid over the image plane with its spacing the same as the 

distance threshold used in vectorization. Inside each grid 

cell, we find locally strongest edges that were missed 

during edge detection when some global thresholds on 

filter responses are typically applied. Vectorize these 

weak edges, too. Line segments thus generated are also 

collected as hard edges. If a grid cell is completely 

featureless, an isolated vertex with a randomized location 

is generated within the cell. This last step has resemblance 

to the sampling step in [12]. Once we have the set of line 

segments and isolated vertices, a constrained Delaunay 

triangulation (CDT) can be constructed. The vertex set of 

the CDT consists solely of the predefined vertices and all 

the endpoints of the line segments. It is guaranteed that 

the predefined line segments are actually edges in the 

triangulation. Under these constraints, the CDT is the 

optimal triangulation in the sense that the minimal angle 

in the triangulation is maximized. We use the software 

package, TRIANGLE [13], to generate the CDT. The 

CDT represents the coarse structure we adopt for the 

upper level. Note that not all edges in the CDT have 

associated edge segments in the lower level. There are a 

few reasons why we choose the above CDT as the coarse 

structure instead of choosing an over-segmentation of the 

original image using a local region-growing scheme. 

First, region-growing needs a stopping criterion which is 

not trivial to define. Second, region-growing does not 

work well for texture images with high contrast local 

variations. Third, region-growing may extend a local 

region beyond a low contrast gap on a boundary, thus, 

connect the neighborhoods on both sides of the boundary. 

 

2.3 Triangulation Segmentation by Normalized Cut 

 Our main segmentation is performed on the 

coarse structure defined by the obtained CDT. Therefore, 

the pixels belonging to the same edge segment or 

triangular region are not going to be separated. Obviously, 

we would like the final segmentation to pass through as 

many hard edges as possible. Once a hard edge is part of a 

boundary, its associated edge segment in the original 

image immediately provides accurate localization of that 

part of the boundary.  

 A weighted graph G = (V,E) can be defined on 

the CDT. The nodes represent the set of triangles. There is 

a graph edge between two nearby triangles. Additional 

graph edges connecting distant triangles may also be 

defined. The normalized cut algorithm [3] can be applied 

to this graph to segment the set of triangles into multiple 

groups with each group having coherent attributes.  

 We first introduce some details of the normalized 

cut algorithm where the weight on an edge measures the 

similarity of the attributes at the two nodes. The idea is to 

partition the nodes into two subsets, A and B, such that the 

following disassociation measure, the normalized cut, is 

minimized 

 

where cut(A,B) = uA,,vB w(u, v) is the total connection 

from nodes in A to nodes in B; asso(A, V ) = sA,tV w(s, 

t) is the total connection from nodes in A to all nodes in 

the graph; and asso(B, V ) is similarly defined. To 

compute the optimal partition based on the above measure 

is NP-hard. The second eigenvector of the following 

generalized Eigen value system yields a real-valued 

solution to the normalized cut.  

 

 

 

where D is a diagonal matrix with D(i, i) = j w(i, j), W is 

the weight matrix with W(i, j) = w(i, j). A suboptimal 

partition can be obtained by searching for the best 

threshold to partition the real-valued elements of y into 

two subgroups. The two resulting sub regions from this 

partition can be recursively considered for further 

subdivision. To improve efficiency, the complete graph 

defined by the data is usually simplified to only have 

edges that connect two nearby nodes. In our current 

context, the attributes at a graph node are collected from 

its corresponding triangle which in turn has a set of 

corresponding pixels in the original image. Because the 

edge segments in the original image may not be straight, 

the set of pixels in the lower level corresponding to a 

triangle most likely form a nontriangular region. The 

intensity of the node is the average intensity of all the 

pixels in that region. Because there are much fewer 

triangles than the number of pixels, we can build a much 

denser graph over the set of triangles while still 

maintaining high efficiency. The weight w(u, v) between 

triangles Tu and Tv is the product of a similarity term S(u, 

v) and a proximity term P(u, v).  

 

Where ds(u, v) measures the difference of the average 

intensities.  

The proximity term over an edge (u, v) is used to model 

spatial coherence. 

 

 

 

Where dist (u, v) is some distance measure and c(u, v) is 

the connectivity between the two triangles. We connect 

the centroids of the two triangles and check whether this 

connection intersects with any hard edges. c(u, v) = 0 if 

there are at least one intersections and c(u, v) = 1 

otherwise. We found out through experiments that this 

binary definition of c(u, v) can better force a segmentation 

to go through hard edges than a continuous definition. We 
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adopt the Euclidean distance between the centroids for 

dist(u, v).  

 The constrained Delaunay triangulation is 

partitioned into multiple groups of triangles after 

normalized cut is performed. We take this grouping result 

as the final segmentation of the triangulation. 

 

 
 
Fig. 2. Boundary refinement at the lower level. A rectangular region 

surrounding the edge AB to be refined is marked. 

 
2.4 Lower Level Boundary Refinement 

  Once the segmentation at the upper 

level is finished, the hard edges on the upper level 

boundaries already have corresponding edge segments at 

the lower level while the rest of the upper level boundary 

edges still need to find out their counterparts at the lower 

level. We simply project an upper level boundary onto the 

lower level and search for a new boundary with pixel 

accuracy in its vicinity. There are potentially many 

techniques that can be applied for this purpose, such as 

snakes [14] and dynamic programming [15]. In practice, 

we choose to adopt the generalized graph minimum s − t 

cut [16]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) an original image; (b) final edge detection results; (c) the 

constrained Delaunay triangulation; (d) a segmentation of the CDT 
(triangles in the same group have the same intensity); (e) final image 

segmentation with refined boundaries 

 

If we partition a weighted graph G into two 

subgraphs G1 and G2 by enforcing minimum cost on the 

cut, it is well known that we can easily obtain unbalanced 

results with one of the subgraphs only containing a small 

number of nodes. One method to remedy this needs some 

prior knowledge of the two resulting subgraphs. It needs 

to know a subset of the nodes in G1 as well as a subset in 

G2. Assume the unknown desired partition of G = (V, E) 

is G1 = (V1, E1) and G2 = (V2, E2) with V = V1V2, and 

two subsets of nodes, V1
s
V1 and V2

s
V2, are known. 

The problem becomes finding an optimal partition of the 

difference set V − V1
s
 − V2

s
. If both V1 

s
and V2 

s
 have only 

one node, this is the standard s-t minimum cut problem 

and can be solved using network maximum flow 

algorithms [17]. If at least one of V1 
s
 and V2 

s
 has 

multiple nodes, the nodes need to be merged to create a 

single new node. Because of the merge, a new graph G = 

(V, E) is created based on the original one. In the new 

graph, V = (V−V1
s 

−
 
V2

s
) {s}{t} where the node s 

replaces V s1 and t replaces V2
s
. If an edge (u, v)  E 

with u, v  V1 
s
, it is removed. If an edge connects V 2 

s
and V − V1 

s
, it becomes incident to s. Anything related 

to t is also treated similarly. It can be easily proven that 

the s-t minimum cut of the transformed graph is actually 

the minimum cut of V −V1
s 

−
 
V2

s
  in the original graph 

[16]. 

 Our method to refine a boundary is as follows. 

Suppose AB is a boundary edge in the triangulation, and 

it is shared by two triangles ABD and ABE (Fig. 2). A 

rectangular image region surrounding AB and with one of 

its axes parallel to AB is marked as the potential region 

containing the accurate boundary. The width of the 

rectangle should be comparable to the average height of 

the triangles to ensure sufficient coverage of the pixels in 

them. A graph can be built for this rectangular region with 

the set of covered pixels as its nodes. Each node is 

connected to its eight neighbors. For every pair of 

adjacent nodes, their edge weight is the similarity 

between the intensities. Before minimum cut is 

performed, all the pixels on l1 are merged into a single 

node s, and those on l2 are merged into t. The minimum s-

t cut (the dashed line in Fig. 2) thus obtained is 

guaranteed to enter the region at one of the side borders 

and exits at the other. 

If multiple consecutive triangle edges need 

refinement at the same time, the refined edges should still 

be connected. The edges are still processed in a sequential 

order. Suppose two triangle edges e1 and e2 join at vertex 

v. During the refinement of e1, the new position of v, v, is 

going to be determined. When e2 is up for refinement, v 

should be fixed. Since v should be close to one of the side 

borders, sb, of the surrounding rectangle of e2, this fixed 

endpoint can be enforced by merging pixels on the side 

border sb into either node s or t depending on the part of 

sb they lie on. 

 

3. Results 
We have successfully run our algorithm on a 

variety of natural images. Figure 3 and 4 shows typical 

segmentation results. σs in (3) is set to 25 if there are 256 
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grey scales for the image intensity, and σp in (4) is set to 

50 pixels. In all the cases, the foreground object is cleanly 

separated from the background. However, there are over 

segmented regions in the background. Color information 

has not been used in these examples.  

Fig. 4. (a) an original image; (b) final edge detection  results; (c) the 

constrained Delaunay triangulation; (d) final image segmentation with 

refined boundaries. 

 

4. Conclusion 
In this paper we have introduced a two-level 

approach for image segmentation on region based and 

edge integration. It is necessary to point out the true edges 

to get the best results from the matching process. Edges 

are first detected in the original image. To preserve the 

spatial coherence of the edges and their surrounding 

image regions, the detected edges are vectorized into 

connected line segments which serve as the basis for a 

constrained Delaunay triangulation where grouping is 

actually carried out. Our method favors segmentations 

that pass through more detected edges in the original 

image. Experimental results shows that the two-level 

approach can achieve accurate edge localization, better 

spatial coherence and improved efficiency. 
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