
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-673-677 ISSN: 2249-6645

 www.ijmer.com 673 | P a g e

 P.Pedda Sadhu Naik

1
, Dr.T.Venu Gopal

2

1
Faculty of CSE Department, Dr.SGIET, Markapur, India

2
Associate Professor & Placement Officer, Department of CSE, JNT University, Jagityal, India

ABSTRACT
Image segmentation is the division of an image into a number

of contained self consitant regions. Each region must be

homogeneous with respect to a particular property, such as

intensity, colour or texture. In this paper describes a two-level

Region based and edge detection of image integration. Edges

are first detected in the original image using a combination of

operators for intensity gradient and texture discontinuities. To

preserve the spatial coherence of the edges and their

surrounding image regions, the detected edges are vectorized

into connected line segments which serve as the basis for a

constrained Delaunay triangulation. Segmentation is first

performed on the triangulation using graph cuts. Our method

favors segmentations that pass through more vectorized line

segments. Finally, the obtained segmentation on the

triangulation is projected onto the original image and region

boundaries are refined to achieve pixel accuracy.

Keywords-edge detection, image segmentation, normalized

cut, region merging.

1. Introduction
 Image segmentation is a low-level task that

consists on partitioning the image into homogeneous

regions distinct from each other, according to some

criteria. It is a crucial step in computer vision system

involving image processing where the challenge is to

perform image segmentation with some semantic meaning

[1]. Two basic image segmentation approaches are

region-based and edge-based segmentation. Region-based

segmentation offers closed contours automatically while

edge-based methods need an extra propagation step to

obtain complete region contours. Region-based methods

can also be categorized into local region growing and top-

down global region partitioning, such as graph-theoretic

optimal grouping algorithms [2, 3]. Global region

partitioning makes use of global optimality criteria and

can produce more semantically meaningful results, but

typically suffers from poor localization of the region

boundaries. This is because the criteria used are based on

the statistics obtained from all the pixels in an entire

image region. They do not reflect the local characteristics

available at a specific pixel. On the other hand, local

region growing or edge detection offer accurate boundary

localization, but usually do not have sufficient global

knowledge to perform the task well. Researchers have

also been trying to integrate region and edge information

in image segmentation. A complete survey on such

integrations is given in [4]. In this paper, we are interested

in integration between global graph theoretic grouping

algorithms and edge detection. There has been limited

work along this direction except the embedded integration

presented in [5, 6].

 The goal of this paper is to perform image

segmentation with integrated region and edge information

so that both global image statistics and local edge

responses can be utilized. The result we get from this

would still be segmented regions but with accurate

boundary localization at places where edge detection

operators produce reasonably strong responses. The rest

of the region boundaries can also be viewed as a viable

solution to contour completion based on region

information. How can we integrate region and edge

information in image segmentation? A detected edge does

not necessarily belong to a region boundary since an

object can have internal edges besides the edges on its

contour. The decision whether a specific edge should

belong to a region boundary should be made within a

global context, such as the relative positions of all the

edges and the image statistics of the regions surrounding

the edges, rather than a local one. A detected edge

segment is usually made up of multiple connected edge

pixels. These multiple edge pixels should be considered

as a whole instead of a set of uncorrelated edge fragments

because of their spatial proximity (Fig. 1). For the same

reason, the pixels immediately adjacent to the edge should

be considered as connected local regions instead of

uncorrelated pixels. If we imagine a local image region

with an edge passing through its center, the edge splits the

region into two halves. Depending on whether this edge

belongs to a region boundary or not, these two halves may

or may not belong to the same region in the final

segmentation. Nevertheless, pixels in the same half

should belong to the same region. Note that part of the

boundaries of the two halves except for the central edge

are indefinite and need to be determined during

segmentation. This argument leads to the suggestion that

region segmentation should be performed at a coarser

granularity than pixels in order to incorporate edges.

Integration of Region Based and Edge detection of

Two-Level Image Segmentation

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-673-677 ISSN: 2249-6645

 www.ijmer.com 674 | P a g e

__ _______
Fig.1. A connected edge segment divides its neighborhood into two

halves. During segmentation, the multiple pixels on the edge segment as
well as the pixels in each of the half neighborhoods should be

considered as a whole instead of being uncorrelated._____

 The main contribution of this paper is to propose

a two-level approach for image segmentation with

integrated region and edge information. At the lower level

is the original set of pixels upon which edge detection can

be performed. Connected edge pixels are grouped into

edge segments. At the upper level is a triangulation which

is an abstraction of the original image. Each image edge

segment corresponds to an edge in the triangulation.

Segmentation is performed on the triangulation. Once the

segmentation at the upper level is done, those triangle

edges without corresponding edge segments at the lower

level will be refined at the pixel level. Segmentation at a

granularity coarser than pixels in a rich texture region is

also helpful because texture descriptors typically need to

collect information in a local region. One additional

advantage of having a two-level scheme is significantly

improved efficiency.__

2 Two-Level Segmentation
2.1 Edge Detection

 Edge detection is one of the most commonly

used operations in image analysis. An edge is defined by

a discontinuity in gray level values. In other words, an

edge is the boundary between an object and the

background. Edge information is then integrated to verify

and, where necessary, to correct region boundaries. The

shape of edge in images depends on many parameters:

The geometrical and optical properties of the object, the

illumination conditions, and the noise level in the images

[7].

 Our method needs to detect edges first in a

preprocessing step although edge detection is not the

focus of this paper. Since we only consider gray-scale

images, we apply previous approaches for detecting both

intensity and texture edges. Intensity edges are detected

using the first and second derivatives of Gaussian. A

tensor product between a Gaussian and the first derivative

of Gaussian detects step edges. It is very similar to the

numerical solutions of canny detectors [8].A tensor

product between a Gaussian and the second derivative of

Gaussian is used for detecting ridge edges. These filters

based on Gaussian derivatives can produce accurate

locations for intensity edges. But they may produce

extraneous edges in texture regions. The initial set of

texture edges are obtained from the Edge Flow algorithm

[9]. While this algorithm can detect most texture edges, it

also produces extraneous edges.

 To remove extraneous edges, we adopt a

likelihood of texture edges as follows: define a circular

image region centered at the currently considered pixel;

divide the circle into two halves using one of the potential

edge orientations; apply multiscale odd-symmetric and

even-symmetric filters to the two halves[6]; compute both

intensity histograms and histograms of the filter responses

for each of the two half regions [10]; use χ2 test to

calculate the difference between two corresponding

histograms, where the χ2 distance between two

histograms is defined as

Obtain the weighted average of the histogram differences.

The likelihood of a texture edge at the pixel is defined as

the maximum weighted average among all potential

orientations. Six different edge orientations are used in

practice. We eliminate those extraneous edges which lie

in an image region with low likelihood of texture edges.

 Finally, we combine intensity and texture edges.

Actually the EdgeFlow algorithm also produces intensity

edges which are not as accurate as those obtained from

Gaussian derivatives. Therefore, if there is an EdgeFlow

edge in the vicinity of an edge obtained from Gaussian

derivatives, the EdgeFlow edge is eliminated. Our

segmentation algorithm can incorporate any type of edges

including the high quality edges recently obtained from a

learning method [11].

2.2 Upper Level Construction

 We first vectorize the detected edges from

Section 2.1. This process converts every connected edge

into a set of connected line segments by tracing the pixels

on the edge. All the vertices of the line segments lie on

the original edge. To create a new line segment from a

vertex v1, we move along the edge pixel by pixel until the

distance between the current pixel p and v1 reaches a

prescribed threshold or we have reached the end of the

edge. Note that we do not require that the line segments

fit the original edge very well since we still keep the

position of the original edge in the lower level and the

line segments are only an abstraction in the upper level.

The line segments are called hard edges since each of

them is associated with a corresponding edge segment in

the lower level. The hard edges may be quite sparse in the

image plane. Although we need a coarser granularity at

the upper level, it is still undesirable to have a large image

region overly under-represented since there may be weak

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-673-677 ISSN: 2249-6645

 www.ijmer.com 675 | P a g e

boundaries present. Therefore, we generate more line

segments and vertices as follows. Set up a uniform sparse

grid over the image plane with its spacing the same as the

distance threshold used in vectorization. Inside each grid

cell, we find locally strongest edges that were missed

during edge detection when some global thresholds on

filter responses are typically applied. Vectorize these

weak edges, too. Line segments thus generated are also

collected as hard edges. If a grid cell is completely

featureless, an isolated vertex with a randomized location

is generated within the cell. This last step has resemblance

to the sampling step in [12]. Once we have the set of line

segments and isolated vertices, a constrained Delaunay

triangulation (CDT) can be constructed. The vertex set of

the CDT consists solely of the predefined vertices and all

the endpoints of the line segments. It is guaranteed that

the predefined line segments are actually edges in the

triangulation. Under these constraints, the CDT is the

optimal triangulation in the sense that the minimal angle

in the triangulation is maximized. We use the software

package, TRIANGLE [13], to generate the CDT. The

CDT represents the coarse structure we adopt for the

upper level. Note that not all edges in the CDT have

associated edge segments in the lower level. There are a

few reasons why we choose the above CDT as the coarse

structure instead of choosing an over-segmentation of the

original image using a local region-growing scheme.

First, region-growing needs a stopping criterion which is

not trivial to define. Second, region-growing does not

work well for texture images with high contrast local

variations. Third, region-growing may extend a local

region beyond a low contrast gap on a boundary, thus,

connect the neighborhoods on both sides of the boundary.

2.3 Triangulation Segmentation by Normalized Cut

 Our main segmentation is performed on the

coarse structure defined by the obtained CDT. Therefore,

the pixels belonging to the same edge segment or

triangular region are not going to be separated. Obviously,

we would like the final segmentation to pass through as

many hard edges as possible. Once a hard edge is part of a

boundary, its associated edge segment in the original

image immediately provides accurate localization of that

part of the boundary.

 A weighted graph G = (V,E) can be defined on

the CDT. The nodes represent the set of triangles. There is

a graph edge between two nearby triangles. Additional

graph edges connecting distant triangles may also be

defined. The normalized cut algorithm [3] can be applied

to this graph to segment the set of triangles into multiple

groups with each group having coherent attributes.

 We first introduce some details of the normalized

cut algorithm where the weight on an edge measures the

similarity of the attributes at the two nodes. The idea is to

partition the nodes into two subsets, A and B, such that the

following disassociation measure, the normalized cut, is

minimized

where cut(A,B) = uA,,vB w(u, v) is the total connection

from nodes in A to nodes in B; asso(A, V) = sA,tV w(s,

t) is the total connection from nodes in A to all nodes in

the graph; and asso(B, V) is similarly defined. To

compute the optimal partition based on the above measure

is NP-hard. The second eigenvector of the following

generalized Eigen value system yields a real-valued

solution to the normalized cut.

where D is a diagonal matrix with D(i, i) = j w(i, j), W is

the weight matrix with W(i, j) = w(i, j). A suboptimal

partition can be obtained by searching for the best

threshold to partition the real-valued elements of y into

two subgroups. The two resulting sub regions from this

partition can be recursively considered for further

subdivision. To improve efficiency, the complete graph

defined by the data is usually simplified to only have

edges that connect two nearby nodes. In our current

context, the attributes at a graph node are collected from

its corresponding triangle which in turn has a set of

corresponding pixels in the original image. Because the

edge segments in the original image may not be straight,

the set of pixels in the lower level corresponding to a

triangle most likely form a nontriangular region. The

intensity of the node is the average intensity of all the

pixels in that region. Because there are much fewer

triangles than the number of pixels, we can build a much

denser graph over the set of triangles while still

maintaining high efficiency. The weight w(u, v) between

triangles Tu and Tv is the product of a similarity term S(u,

v) and a proximity term P(u, v).

Where ds(u, v) measures the difference of the average

intensities.

The proximity term over an edge (u, v) is used to model

spatial coherence.

Where dist (u, v) is some distance measure and c(u, v) is

the connectivity between the two triangles. We connect

the centroids of the two triangles and check whether this

connection intersects with any hard edges. c(u, v) = 0 if

there are at least one intersections and c(u, v) = 1

otherwise. We found out through experiments that this

binary definition of c(u, v) can better force a segmentation

to go through hard edges than a continuous definition. We

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-673-677 ISSN: 2249-6645

 www.ijmer.com 676 | P a g e

adopt the Euclidean distance between the centroids for

dist(u, v).

 The constrained Delaunay triangulation is

partitioned into multiple groups of triangles after

normalized cut is performed. We take this grouping result

as the final segmentation of the triangulation.

Fig. 2. Boundary refinement at the lower level. A rectangular region

surrounding the edge AB to be refined is marked.

2.4 Lower Level Boundary Refinement

 Once the segmentation at the upper

level is finished, the hard edges on the upper level

boundaries already have corresponding edge segments at

the lower level while the rest of the upper level boundary

edges still need to find out their counterparts at the lower

level. We simply project an upper level boundary onto the

lower level and search for a new boundary with pixel

accuracy in its vicinity. There are potentially many

techniques that can be applied for this purpose, such as

snakes [14] and dynamic programming [15]. In practice,

we choose to adopt the generalized graph minimum s − t

cut [16].

Fig. 3. (a) an original image; (b) final edge detection results; (c) the

constrained Delaunay triangulation; (d) a segmentation of the CDT
(triangles in the same group have the same intensity); (e) final image

segmentation with refined boundaries

If we partition a weighted graph G into two

subgraphs G1 and G2 by enforcing minimum cost on the

cut, it is well known that we can easily obtain unbalanced

results with one of the subgraphs only containing a small

number of nodes. One method to remedy this needs some

prior knowledge of the two resulting subgraphs. It needs

to know a subset of the nodes in G1 as well as a subset in

G2. Assume the unknown desired partition of G = (V, E)

is G1 = (V1, E1) and G2 = (V2, E2) with V = V1V2, and

two subsets of nodes, V1
s
V1 and V2

s
V2, are known.

The problem becomes finding an optimal partition of the

difference set V − V1
s
 − V2

s
. If both V1

s
and V2

s
 have only

one node, this is the standard s-t minimum cut problem

and can be solved using network maximum flow

algorithms [17]. If at least one of V1
s
 and V2

s
 has

multiple nodes, the nodes need to be merged to create a

single new node. Because of the merge, a new graph G =

(V, E) is created based on the original one. In the new

graph, V = (V−V1
s

−

V2

s
) {s}{t} where the node s

replaces V s1 and t replaces V2
s
. If an edge (u, v)  E

with u, v  V1
s
, it is removed. If an edge connects V 2

s
and V − V1

s
, it becomes incident to s. Anything related

to t is also treated similarly. It can be easily proven that

the s-t minimum cut of the transformed graph is actually

the minimum cut of V −V1
s

−

V2

s
 in the original graph

[16].

 Our method to refine a boundary is as follows.

Suppose AB is a boundary edge in the triangulation, and

it is shared by two triangles ABD and ABE (Fig. 2). A

rectangular image region surrounding AB and with one of

its axes parallel to AB is marked as the potential region

containing the accurate boundary. The width of the

rectangle should be comparable to the average height of

the triangles to ensure sufficient coverage of the pixels in

them. A graph can be built for this rectangular region with

the set of covered pixels as its nodes. Each node is

connected to its eight neighbors. For every pair of

adjacent nodes, their edge weight is the similarity

between the intensities. Before minimum cut is

performed, all the pixels on l1 are merged into a single

node s, and those on l2 are merged into t. The minimum s-

t cut (the dashed line in Fig. 2) thus obtained is

guaranteed to enter the region at one of the side borders

and exits at the other.

If multiple consecutive triangle edges need

refinement at the same time, the refined edges should still

be connected. The edges are still processed in a sequential

order. Suppose two triangle edges e1 and e2 join at vertex

v. During the refinement of e1, the new position of v, v, is

going to be determined. When e2 is up for refinement, v

should be fixed. Since v should be close to one of the side

borders, sb, of the surrounding rectangle of e2, this fixed

endpoint can be enforced by merging pixels on the side

border sb into either node s or t depending on the part of

sb they lie on.

3. Results
We have successfully run our algorithm on a

variety of natural images. Figure 3 and 4 shows typical

segmentation results. σs in (3) is set to 25 if there are 256

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-673-677 ISSN: 2249-6645

 www.ijmer.com 677 | P a g e

grey scales for the image intensity, and σp in (4) is set to

50 pixels. In all the cases, the foreground object is cleanly

separated from the background. However, there are over

segmented regions in the background. Color information

has not been used in these examples.

Fig. 4. (a) an original image; (b) final edge detection results; (c) the

constrained Delaunay triangulation; (d) final image segmentation with

refined boundaries.

4. Conclusion
In this paper we have introduced a two-level

approach for image segmentation on region based and

edge integration. It is necessary to point out the true edges

to get the best results from the matching process. Edges

are first detected in the original image. To preserve the

spatial coherence of the edges and their surrounding

image regions, the detected edges are vectorized into

connected line segments which serve as the basis for a

constrained Delaunay triangulation where grouping is

actually carried out. Our method favors segmentations

that pass through more detected edges in the original

image. Experimental results shows that the two-level

approach can achieve accurate edge localization, better

spatial coherence and improved efficiency.

References
1. Vincent Martin, Nicolas Maillot, Monique Thonnat”A

Learning Approach for Adaptive Image Segmentation”,

IEEE International Conference on Computer Vision

Systems (ICVS 2006).

2. Wu, Z., Leahy, R.: An optimal graph theoretic

approach to data clustering: Theory and its application to

image segmentation. IEEE Trans. Pat. Anal. Mach. Intell.

11 (1993) 1101–1113

3. Shi, J., Malik, J.: Normalized cuts and image

segmentation. In: IEEE Conf. on Computer Vision and

Pattern Recognition. (1997) 731–737

4. Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.:

Yet another survey on image segmentation: Region and

boundary information integration. In: European

Conf.Computer Vision. (2002) 408–422

5. Leung, T., Malik, J.: Contour continuity in region

based image segmentation. In: Fifth European Conf. on

Computer Vision. (1998)

6. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and

texture analysis for image segmentation. Int’l Journal of

Computer Vision 43 (2001) 7–27

7. H.Chidiac, D.Ziou, “Classification of Images Edges

“Vision Interface’99, Troise-Riviers, Canada, 1999.pp.17-

24.

8. Canny, J.: A computational approach to edge detection.

IEEE Trans. Pat. Anal. Mach. Intell. 8 (1986) 679–698

9. Ma, W., Manjunath, B.: Edgeflow: a technique for

boundary detection and image segmentation. IEEE

Transactions on Image Processing 9 (2000) 1375–88

10. Heeger, D., Bergen, J.: Pyramid-based texture

analysis/synthesis. In: Proc. Of SIGGRAPH. (1995) 229–

238

11. Martin, D., Fowlkes, C., Malik, J.: Learning to detect

natural image boundaries using brightness and texture. In:

Neural Information Processing Systems (NIPS). (2002)

12. Belongie, S., Fowlkes, C., Chung, F., Malik, J.:

Spectral partitioning with indefinite kernels using the

nystrom extension. In: European Conf. Computer Vision.

(2002) 531–542

13. Shewchuk, J.: Triangle: Engineering a 2d quality

mesh generator and Delaunay triangulator. In: First

Workshop on Applied Computational Geometry. (1996)

124–133

14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active

contour models. Int’l Journal of Computer Vision (1988)

321–331

15. Mortensen, E., Barrett, W.: Intelligent scissors for

image composition. In: SIGGRAPH 95 Proceedings.

(1995) 191–198

16. Xu, N., Ahuja, N: Object contour tracking using graph

cuts based active contours. In: IEEE Conf. on Image

Processing. (2002) 277–280

17. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows.

Prentice Hall, Inc. (1993)

