
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 707 | P a g e

K. Narahari
1
, Dr. M. V. Vijaya Saradhi

2

1
PG Scholar, Department of IT, Aurora Engineering College, Andhra Pradesh, India

2
Professor and Head Of the Department, Department of IT, Engineering College, Andhra Pradesh, India

Abstract:
Now-a-days, most of the web pages are generated by using dynamic web applications which generate

pages during their execution. There are no approaches which can detect the failures in dynamically

generated web applications without executing them for several times. The Developer of the dynamic web

applications has to check for failures only after executing the application in web server. If there are many

failures occur, he has to correct them and again executes the application several times. The present tools

are capable to test either the java code or the validating HTML content of the web page after the web

application executed. There are no tools which can detect failures, execution and HTML failures, at one

time. We are proposing such approach which can detect the execution and HTML failures in dynamic

web applications before they are going to be executed.

Keywords: Dynamic web applications, HTML Errors, Exceptions, Validation

1. INTRODUCTION
With the wide acceptance of Internet, Web applications have become popular vehicles for conducting

transactions, delivering services, and acquiring information. As a result, there is a great demand on sophisticated

and high-quality Web applications. However, Web applications are often developed under a short time-to-

market pressure without following traditional software engineering discipline [7]. The lacks of rigor, systematic

approach, and quality assurance control have raised a concern about the quality and reliability of Web

applications in spite of the testing challenges introduced by Web technologies [6].

Recently, several approaches have been proposed to address Web application testing [1, 2, 4, 5, 6]. Most of the

approaches focus on testing the architectures of Web Applications and they are not applicable for testing

malformed dynamic web pages and web script crashes. These seriously impact the usability of web applications.

There are no approaches which can detect the failures in dynamically generated web applications without

executing them for several times. If there are many failures occur, he has to correct them and again executes the

application several times. The present tools are capable to test either the java code or the validating HTML

content of the web page after the web application executed. Thus, we present an approach which can detect the

execution and HTML failures in dynamic web applications that are developed using JSP pages, a very popular

server-side script language for developing Web applications with Java technology.

JSP pages have been widely used in Java-based Web applications to handle HTTP requests, to interact with Java

components like Java beans, and to generate dynamic pages. It is important to ensure that the JSP pages are

written correctly and their interactions with other components are handled properly. However, JSP pages usually

mix up scripts (i.e., JSP scriptlets) with HTML statements in order to generate dynamic pages. This makes JSP

pages difficult to understand and test.

Our goal is to find two kinds of failures in web applications: execution failures that are manifested as crashes or

warnings during program execution, and HTML failures that occur when the application generates malformed

HTML. As an example, execution failures may occur when a web application calls an undefined function or

reads a nonexistent file. In such cases, the HTML output contains an error message and execution of the

application may be halted, depending on the severity of the failure. HTML failures occur when output is

generated that is not syntactically well-formed HTML (e.g., when an opening tag is not accompanied by a

matching closing tag). Although web browsers are designed to tolerate some degree of malformedness in

HTML, several kinds of problems may occur. First and most serious is that browsers’ attempts to compensate

for malformed web pages may lead to crashes and security vulnerabilities2. Second, standard HTML renders

faster3. Third, malformed HTML is less portable across browsers and is vulnerable to breaking or looking

strange when displayed by browser versions on which it is not tested. Fourth, a browser might succeed in

displaying only part of a malformed webpage, while silently discarding important information. Fifth, search

engines may have trouble indexing malformed pages [5].

Dynamic Web Page Bug Detection

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 708 | P a g e

Web developers widely recognize the importance of creating legal HTML. Many websites are checked using

HTML validators. However, HTML validators can only point out problems in HTML pages, and are by

themselves incapable of finding faults in applications that generate HTML pages. Checking dynamic web

applications (i.e., applications that generate pages during execution) requires checking that the application

creates a valid HTML page on every possible execution path. In practice, even professionally developed and

thoroughly tested applications often contain multiple faults.

This paper presents a technique for finding failures in HTML-generating web applications. In our approach, we

obtain the JSP pages from the path and separate the HTML Content and Java Code from the web application.

Then check for the possible HTML failures by validating HTML content and also check for the possible

execution failures, such as, FileNotFound Exception, ClassNotFound Exception and MethodNotFound

Exceptions etc in java code. Finally we prepare the failure report based upon the generated failures.

Thus, our approach helps the web application developer to identify the errors easily and reduces his testing time

and it also reduces the burden of the web server.

The paper is organized as follows. Section 2 presents an Overview of JSP, introduces our running example, and

discusses a class of failures in JSP based web applications. Section 3 presents the approach and also discusses

the system implementation. Section 4 gives an overview of related work and Section 5 presents the conclusions.

2. OVERVIEW OF JAVA SERVER PAGES

Java Server Pages:

This section briefly reviews the JSP web applications. JSP stands for Java Server Pages. JSP is one of the

most powerful, easy-to-use and fundamental technology for Java web developers. JSP combines HTML, XML,

Java Servlets and JavaBeans technologies into one highly productive technology to allow web developers to

develop reliable, high performance and platform independent web applications and dynamic websites.

Advantages of JSP:

 Separate the business logic and presentation: The logic to generate dynamic elements or content is

implemented and encapsulated by using JavaBeans components. The user interface (UI) is created by using

special JSP tags. This allows developers and web designers to maintain the JSP pages easily.

 Write Once, Run Anywhere: as a part of Java technology, JPS allows developers to developer

JSP pages and deploy them in a variety of platforms, across the web servers without rewriting or changes.

 Dynamic elements or content produced in JSP can be served in different formats: With JSP we can

write web application for web browser serving HTML format. We can even produce WML format to serve

hand-held device browsers. There is no limitation of content format which JSP provides.

 Take advantages of Servlet API: JSP technically is a high-level abstraction of Java Servlets. It is now

easier to get anything we have done with Servlet by using JSP. Beside that we can also reuse all of our

Servlets we have developed so far in the new JSP.

JSP Example:

The code in Figure 1 illustrates the flavour of JSP. The contentType attribute of the page directive in JSP

specifies the type and the character encoding i.e. used for the JSP response. The default MIME type is

"text/html".

The lines 16 to 23 are treated as a scriptlet, where the java code can be written along with HTML content. The

lines 17 and 18 get the values of username and password and the line 19 prints the user name. Line 21 sends the

control to HomePage.jsp page if the values provided are matched with the given values. This example illustrates

how the JSP page can be written.

Failures in JSP:

Our technique targets two types of failures that can be identified from JSP web applications. First, execution

failures may be caused by a missing the included file, an incorrect database connection, or by an uncaught

exception. Such failures are easily identified as the compiler generates an error message and halts execution.

Less serious execution failures, such as those caused by the use of deprecated language constructs, produce

obtrusive error messages but do not halt execution. Second, HTML failures involve situations in which the

generated HTML page is not syntactically correct according to an HTML validator. Section 1 discussed several

negative consequences of malformed HTML.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 709 | P a g e

Figure 1: A Simple JSP Program. This excerpt contains three faults (2 real, 1 seeded)

As an example, the program of Figure 1 contains three faults, which cause the following failures when the

program is executed:

1. Executing the program results in an execution failure: the file HomePage.jsp referenced on line 21 is

missing.

2. The program produces malformed HTML because of an unclosed HTML tag in the output.

3. The program produces malformed HTML when line 19 generates an illegal HTML tag j2.

The first failure is similar to a failure that our tool found in one of the PHP applications we studied. The second

failure is caused by a fault that exists in the original code of the program. The third failure is the result of a fault

that was artificially inserted into the example for illustration.

3. PROPOSED SYSTEM AND ITS IMPLEMENTATION
Our approach is to find the failures of HTML and execution failures at a time before the web application is

going to be executed. The basic idea behind the technique is to separate the HTML content and java content

from JSP page and validate both the contents separately and produce the report.

In our approach, we obtain the JSP pages from the path and separate the HTML Content and Java Code from the

web application. Then check for the possible HTML failures by validating HTML content and also check for the

possible execution failures, such as, FileNotFound Exception, ClassNotFound Exception and MethodNotFound

Exceptions etc in java code. Finally we prepare the failure report based upon the generated failures.

Implementation:
Our technique consists of 2 major components: Failure Detector and Bug Reporter illustrated in figure 2.

This section first provides a high-level overview of the components and then discusses the pragmatics of the

implementation.
The inputs to our product are the program under test and an initial value for the environment. The

environment of a JSP program consists of the database, cookies, and stored session information.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 710 | P a g e

The Failure Detector is responsible for detecting the all JSP pages from the given input and separating the

HTML content and java content from JSP pages and sending them to the respective testing components. It has

two sub components: Execution Failure Detector and HTML Validator.

Figure 2: System Architecture

The Execution Failure Detector is responsible for checking the possible exceptions like

FileNotFoundException, ClassNotFoundException and MethodNotFoundExceptions. These exceptions are the

most common exceptions that raised when we are calling a non existing file or class file or calling non existing

method.

The HTML Validator is responsible for validating the HTML content according to W3C Markup

Validation Service [17]. Though we are using offline W3C validation service, the general validation can be done

by importing and using the HTML packages.

The Bug Reporter is responsible for gathering all the failures that are occurred during testing the JSP pages

and managing the report of failures.

a) Failure Detector:
We developed this module that can read the input directory and checks for the JSP pages. After retrieving all

the pages, the module analyzes the configuration file and understands the project flow. Then it starts from the

starting page and analyzes the code and splits into html and java contents and sends these to two different failure

detectors. The HTML Validator is implemented by using Offline W3C Markup Validation Service[17]. The

HTML content can also be validated by importing HTML validation packages that are provided by the Java

Enterprise Edition API.

The Execution Failure Detector is implemented in order to check for the most common exceptions.

FileNotFound Exception can be traced by finding out the file name that the jsp page is flowing into and compare

with the list of jsp files. If the name is not found the exception is raised. Similarly, after analyzing the web.xml,

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 711 | P a g e

checking for the class names and comparison of these class names with the list of class files that are placed in

/WEB-INF/classes folder can be done. By tracing the class objects, we have analyzed all the possible methods

that are present in source files and taken these names into repository and by observing the flow, we have traced

the MethodNotFound Exception

b) Bug Reporter:
The bug Reporter is in charge of transforming the results of the executed files into bug reports. Below is a

detailed description of the components of the bug reporter.

Bug Report Repository This repository stores the bug reports found in all executions. Each time a failure is

detected, the corresponding bug report (for all failures with the same characteristics) is updated with the path

constraint and the input inducing the failure. A failure is defined by its characteristics, which include: the type of

the failure (execution failure or HTML failure), the corresponding message (JSP error /warning message for

execution failures, and validator message for HTML failures), and the statement generating the problematic

HTML fragments identified by the validator (for HTML failures), or the JSP statement involved in the JSP

Compiler error report (for execution failures). When the exploration is complete, each bug report contains one

failure characteristics, (error message and statement involved in the failure) and the sets of path constraints and

inputs exposing failures with the same characteristics.

4. EVALUATION AND RESULTS
We experimentally measured the effectiveness of our technique by using it to find faults in JSP web

applications. We designed experiments to answer the following research questions:

Q1. How many faults can our technique find, and of what varieties?

Q2. How effective is our technique in terms of the number and severity of discovered faults and the line

coverage achieved?
Q3. What are all the types of Failures that our technique can detect?

SCREENSHOTS:

Figure 3 represents a screen shot of our approach while detecting the failures of a given project. The approach

not only detects the execution failures but also HTML failures in the project. These HTML failures can be

compared by checking the same HTML content with W3C Mark up Validation Service [17].

Figure 3: Screen shot of our approach when detecting failures of a project

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 712 | P a g e

For the evaluation, we selected 3 open-source JSP web applications:

 E-Learn: online training for technical courses.

 Search optimizer: a mash-up for comparing Google and Yahoo search engines.

 Employee management: managing and maintaining the employee details of an organization through

online.
The project details such as files and the JSP lines of code (LOC) is listed in the table 1.

Project
No. Of

Files

JSP Lines Of

Code

Employee Management 13 538

E-Learn 15 672

Search Optimizer 24 1170

Table 1: Subject Projects

The Table 2 presents results for each project separately. The Execution failures and HTML failures columns

list the number of faults in the respective categories. The Total failures columns sums up the number of

discovered faults.

Project
Execution

Failures

HTML

Failures

Total

Failures

Employee Management 17 46 63

E-Learn 22 138 160

Search Optimizer 53 303 356

Table 2: Experimental Results

Table 3 tabulates the categories of HTML faults that are detected by our technique. The most commonly

detected errors are: Missing end tag, Unopened close tag, Element not allowed, Incorrect attribute, Undefined

element etc.

Fault Category Faults Percentage

Element Not Allowed 56 11.5

Missing end tag 157 32.2

No attribute 38 7.8

Unopened close tag 84 17.2

Incorrect attribute 56 11.5

Undefined element 46 9.5

character not allowed 22 4.5

Element declaration finished

prematurely
17 3.5

Incorrect attribute value 11 2.3

Table 3: HTML failures found by our technique

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 713 | P a g e

Table 4 describes about the execution failures that were detected by our approach for the subjected projects.

Fault Category Faults Percentage

File Not Found 29 31.5

Class Not Found 27 29.3

Undefined method 36 39.1

Table 4: Execution failures detected by our approach

LIMITATIONS

We limit our scope of the system as the testing and validating JSP based dynamic web applications is a huge

complex task.

JSP scriptlets: We have tested the scriptlets which contain the simple java statements.

JSP tags and Directives: We exempted the jsp directives such as <jsp:bean>, <jsp:forward> etc. As these tags

are of HTML type but the uses java features.

Limited sources of input parameters: Apollo currently considers as parameters only inputs coming from the

global arrays POST, GET and REQUEST. Supporting other global parameters such as ENV and COOKIE is

straightforward.

5. CONCLUSION AND FUTURE WORK
We have presented a technique for finding failures in JSP based dynamic web applications that is based on

analyzing the content. The work is novel in several respects. The technique not only detects run-time errors but

also uses an HTML validator as an oracle to determine situations where malformed HTML is created. Our

approach is the first one to detect failures of a dynamic web application before execution and also without

deploying it for several times in order to test the web applications. Though we limited our approach due to the

complex nature of Java based dynamic web applications, our technique works fine to find the failures of both

execution and HTML.

In future, we try to work on the limitations and to detect more number of failures in both cases and also improve

the usability of our technique.

REFERENCES
[1] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst., “Finding Bugs in Web applications using

Dynamic Test generation and Explicit State Model Checking”. IEEE Transactions on Software Engineering, July/Aug

2010.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst. Finding bugs in dynamic web applications.

In ISSTA, pages 261–272, 2008.

[3] F. Zoufaly. Web standards and search engine optimization (seo) – does google care about the quality of your

markup?, 2008.

[4] A. Andrews, J. Offutt, R. Alexander, Testing web applications by modeling with FSMs, Software Systems and

Modeling. 4 (3) (2005).

[5] M.Benedict, J. Freire, P. Godefroid, VeriWeb: Automatically Testing Dynamic Web Sites, in: Proceedings of the 11th

International World Wide Web Conference, May 2002, Hawaii, USA.

[6] A. Ginige, S. Murugesan, Web engineering: an introduction, IEEE Multimedia 8 (1) (2001) 14–18.

[7] R.S. Pressman, Can internet-based applications be engineered? IEEE Software (1998) 104–110.

[8] Y. Wu, J. Offutt, Modeling and testing web-based applications, GMU ISE Technical Report, ISE-TR-02-08, 2002.

[9] S. Pynchon and K. Garber, “Sarasota’s Vanished Votes: An Investigation into the Cause of Uncounted Votes in the

2006 Congressional District 13 Race in Sarasota County, Florida,” Florida Fair Elections Center Report, Jan. 2008.

[10] T. Kohno, A. Stubblefield, A. Rubin, and D. Wallach, “Analysis of an Electronic Voting System,” Proc. IEEE Symp.

Security and Privacy, pp. 27-40, 2004.

[11] E. Proebstel, S. Riddle, F. Hsu, J. Cummins, F. Oakley, T. Stanionis, and M. Bishop, “An Analysis of the Hart

Intercivic DAU eSlate,” Proc. USENIX/ACCURATE Electronic Voting Technology Workshop, 2007.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-707-714 ISSN: 2249-6645

 www.ijmer.com 714 | P a g e

[12] A. Yasinsac, D. Wagner, M. Bishop, T. Baker, B. de Medeiros, G. Tyson, M. Shamos, and M. Burmester, “Software

Review and Security Analysis of the ES&S iVotronic 8.0.1.2 Voting Machine Firmware,” technical report, Security

and Assurance in Information Technology Laboratory, Florida State Univ., 2007.

[13] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java programs. Software — Practice and

Experience, 29(7):577–603, June 1999.

[14] P. Godefroid, A. Kie˙zun, and M. Y. Levin. Grammar-based whitebox fuzzing. In PLDI, 2008.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In PLDI, 2005.

[16] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In NDSS, 2008.

[17] http://validator.w3.org
[18] H. Cleve and A. Zeller, “Locating Causes of Program Failures,” Proc. Int’l Conf. Software Eng., pp. 342-351, 2005

[19] Y.Minanide, “Static Approximation of Dynamically Generated Web Pages”, Proc. Int’1 Conf. World Wide Web 2005.

[20] http://htmlhelp.com/tools/validator/offline.

[21] http://www.htmlkit.com.

[22] G.Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z.Su, “ Dynamic Test Input Generation for Web

Applications,” Proc. ACM/SIGSO

[23] K. Sen, D. Marinov, and G. Agha, ―CUTE: A Concolic Unit Testing Engine for C,‖ Proc. ACM SIGSOFT Int’l Symp.

Foundations of Software Eng., pp. 263-272, 2005.

[24] F. Zoufaly. Web standards and search engine optimization (seo) – does google care about the quality of your markup?,

2008.

[25] A. Andrews, J. Offutt, R. Alexander, Testing web applications by modeling with FSMs, Software Systems and

Modeling. 4 (3) (2005).

[26] M.Benedict, J. Freire, P. Godefroid, VeriWeb: Automatically Testing Dynamic Web Sites, in: Proceedings of the 11th

International World Wide Web Conference, May 2002, Hawaii, USA.

[27] A. Ginige, S. Murugesan, Web engineering: an introduction, IEEE Multimedia 8 (1) (2001) 14–18.

[28] R.S. Pressman, Can internet-based applications be engineered? IEEE Software (1998) 104–110.

[29] Y. Wu, J. Offutt, Modeling and testing web-based applications, GMU ISE Technical Report, ISE-TR-02-08, 2002.

About Authors

Mr. K. Narahari received his B-Tech degree from Aurora’s Technological Research Institute, Jawaharlal Nehru

Technological University (JNTU), Hyderabad, Andhra Pradesh, India. He is currently working as a Assistant Professor in

Ramappa Engineering College, Hanamkonda, Andhra Pradesh, India. He also worked as a Junior Research Fellow (JRF) in

Indian Institute of Technology (IIT), Kanpur., India His main research interests are Web Engineering, Software Engineering

and Object Oriented Modules.

Dr. M.V. Vijaya Saradhi received his Ph.D degree from Faculty of Engineering, Osmania University (OU),

Hyderabad, Andhra Pradesh, India. He is Currently Working as Professor in the Department of Information

Technology (IT) at Aurora's Engineering College, Bhongir, Andhra Pradesh, India. His main research

interests are Software Metrics, Distributed Systems, Object-Oriented Modelling, Mobile Environment, Data

Mining, Design Patterns, Object- Oriented Design Measurements and Empirical Software Engineering. He has published

more than 20 Research Papers in the International Reputed Journals. He is a life member of various Professional bodies like

MIETE, MCSI, MIE, and MISTE.

http://validator.w3.org/
http://htmlhelp.com/tools/validator/offline
http://www.htmlkit.com/

