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ABSTRACT 
As wireless sensor networks continue to grow, so 

does the need for effective security mechanisms. 

Because sensor networks may interact with sensitive 

data and/or operate in hostile unattended 

environments, it is imperative that these security 

concerns be addressed from the beginning of the 

system design. Their low cost provides a means to 

deploy large sensor arrays in a variety of conditions 

capable of performing both military and civilian tasks. 

Wireless sensor networks are a new type of networked 

systems, characterized by severely constrained 

computational and energy resources, and an ad hoc 

operational environment. 

The paper first introduces sensor networks, and then 

presents its related security problems, threats, risks 

and characteristics. Sensor networks refer to a 

heterogeneous system combining tiny sensors and 

actuators with general-purpose computing elements. 

Due to limited computation, power, and storage 

resources available on sensor nodes asymmetric 

cryptographic algorithms cannot provide security on 

wireless sensor networks. An adversary may launch a 

wide range of attacks including eavesdropping, 

message forgery, packet dropping, and noise 

injection. The unreliable communication channel and 

unattended operation make the security defences even  

harder. Additionally, the paper gives a brief 

introduction to proposed protocols for sensor network 

security applications. 

 

Keywords: Wireless sensor networks, software 

engineering, security engineering 

1. INTRODUCTION 

Wireless sensor networks are quickly gaining 

popularity due to the fact that they are potentially low 

cost solutions to a variety of real-world challenges [1, 

2]. Their low cost provides a means to deploy large 

sensor arrays in a variety of conditions capable of 

performing both military and civilian tasks. But 

sensor networks also introduce severe resource 

constraints due to their lack of data storage and 

power. Both of these represent major obstacles to the 

implementation of traditional computer security  

 

 

techniques in a wireless sensor network. The 

unreliable communication channel and unattended 

operation make the security defences even harder. 

Indeed, as pointed out in [3], wireless sensors often 

have the processing characteristics of machines that 

are decades old (or longer), and the industrial trend is 

to reduce the cost of wireless sensors while 

maintaining similar computing power. With that in 

mind, many researchers have begun to address the 

challenges of maximizing the processing capabilities 

and energy reserves of wireless sensor nodes while 

also securing them against attackers. All aspects of 

the wireless sensor network are being examined 

including secure and efficient routing [4, 7], data 

aggregation [8, 13], group formation [14, 16], and so 

on. In addition to those traditional security issues, we 

observe that many general-purpose sensor network 

techniques (particularly the early research) assumed 

that all nodes are cooperative and trustworthy. This is 

not the case for most, or much of, real-world wireless 

sensor networking applications, which require a 

certain amount of trust in the application in order to 

maintain proper network functionality. Researchers 

therefore began focusing on building a sensor trust 

model to solve the problems beyond the capability of 

cryptographic security [17, 24]. In addition, there are 

many attacks designed to exploit the unreliable 

communication channels and unattended operation of 

wireless sensor networks. Furthermore, due to the 

inherent unattended feature of wireless sensor 

networks, we argue that physical attacks to sensors 

play an important role in the operation of wireless 

sensor networks. Thus, we include a detailed 

discussion of the physical attacks and their 

corresponding defences [25, 34], topics typically 

ignored in most of the current research on sensor 

security. We classify the main aspects of wireless 

sensor network security into four major categories: 

characteristics, related security problems and threats 

& risks. The unreliable communication channel and 

unattended operation make the security defences even 

harder. Exploiting such weaknesses an adversary may 

launch a wide range of attacks including 

eavesdropping, message forgery, packet dropping, and 

noise injection. The paper gives a brief introduction to 
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some previously proposed protocols for sensor 

network security applications that somehow attempt 

to cover and control some of these to an extent. 

 

2. CHARACTERISTICS  
A wireless sensor network is a characteristic network 

which has many constraints compared to a traditional 

computer network. Due to these constraints it is 

difficult to directly employ the existing security 

approaches to the area of wireless sensor networks. 

Therefore, to develop useful security mechanisms 

while borrowing the ideas from the current security 

techniques, it is necessary to know and understand 

these constraints first [35]. 

 

2.1 Very Limited Resources 

All security approaches require a certain amount of 

resources for the implementation, including data 

memory, code space, and energy to power the sensor. 

However, currently these resources are very limited in 

a tiny wireless sensor. 

• Limited Memory and Storage Space A sensor is a 

tiny device with only a small amount of memory and 

storage space for the code. In order to build an 

effective security mechanism, it is necessary to limit 

the code size of the security algorithm. For example, 

one common sensor type (TelosB) has an 16-bit, 8 

MHz RISC CPU with only 10K RAM, 48K program 

memory, and 1024K flash storage [36]. With such a 

limitation, the software built for the sensor must also 

be quite small. The total code space of TinyOS, the 

de-facto standard operating system for wireless 

sensors, is approximately 4K [37], and the core 

scheduler occupies only 178 bytes. Therefore, the 

code size for the all security related code must also be 

small. 

• Power Limitation Energy is the biggest constraint to 

wireless sensor capabilities. We assume that once 

sensor nodes are deployed in a sensor network, they 

cannot be easily replaced (high operating cost) or 

recharged (high cost of sensors). Therefore, the 

battery charge taken with them to the field must be 

conserved to extend the life of the individual sensor 

node and the entire sensor network. When 

implementing a cryptographic function or protocol 

within a sensor node, the energy impact of the added 

security code must be considered. When adding 

security to a sensor node, we are interested in the 

impact that security has on the lifespan of a sensor 

(i.e., its battery life). The extra power consumed by 

sensor nodes due to security is related to the 

processing required for security functions (e.g., 

encryption, decryption, signing data, verifying 

signatures), the energy required to transmit the 

security related data or overhead (e.g., initialization 

vectors needed for encryption/decryption), and the 

energy required to store security parameters in a 

secure manner (e.g., cryptographic key storage).  

 

2.2 Unreliable Communication 

Certainly, unreliable communication is another threat 

to sensor security. The security of the network relies 

heavily on a defined protocol, which in turn depends 

on communication. 

• Unreliable Transfer Normally the packet-based 

routing of the sensor network is connectionless and 

thus inherently unreliable. Packets may get damaged 

due to channel errors or dropped at highly congested 

nodes. The result is lost or missing packets. 

Furthermore, the unreliable wireless communication 

channel also results in damaged packets. Higher 

channel error rate also forces the software developer 

to devote resources to error handling. More 

importantly, if the protocol lacks the appropriate error 

handling it is possible to lose critical security packets. 

This may include, for example, a cryptographic key. 

• Conflicts Even if the channel is reliable, the 

communication may still be unreliable. This is due to 

the broadcast nature of the wireless sensor network. If 

packets meet in the middle of transfer, conflicts will 

occur and the transfer itself will fail. In a crowded 

(high density) sensor network, this can be a major 

problem. More details about the effect of wireless 

communication can be found at [2]. 

• Latency The multi-hop routing, network congestion, 

and node processing can lead to greater latency in the 

network, thus making it difficult to achieve 

synchronization among sensor nodes. The 

synchronization issues can be critical to sensor 

security where the security mechanism relies on 

critical event reports and cryptographic key 

distribution. Interested readers please refer to [38] on 

real-time communications 

in wireless sensor networks. 

 

2.3 Unattended Operation 

Depending on the function of the particular sensor 

network, the sensor nodes may be left unattended for 

long periods of time. There are three main caveats to 

unattended sensor nodes: 

• Exposure to Physical Attacks The sensor may be 

deployed in an environment open to adversaries, bad 

weather, and so on. The likelihood that a sensor 

suffers a physical attack in such an environment is 

therefore much higher than the typical PCs, which is 
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located in a secure place and mainly faces attacks 

from a network. 

• Managed Remotely Remote management of a sensor 

network makes it virtually impossible to detect 

physical tampering (i.e., through tamperproof seals) 

and physical maintenance issues (e.g., battery 

replacement). Perhaps the most extreme example of 

this is a sensor node used for remote reconnaissance 

missions behind enemy lines. In such a case, the node 

may not have any physical contact with friendly 

forces once deployed. 

• No Central Management Point A sensor network 

should be a distributed network without a central 

management point. This will increase the vitality of 

the sensor network. However, if designed incorrectly, 

it will make the network organization difficult, 

inefficient, and fragile. Perhaps most importantly, the 

longer that a sensor is left unattended the more likely 

that an adversary has compromised the node. 

 

3. SECURITY & CHALLENGES 
In this section, we formalize the security properties 

[39] required by sensor networks, and show how they 

are directly applicable in a typical sensor network. 

 

3.1. Data Confidentiality 

Confidentiality means keeping information secret 

from unauthorized parties. A sensor network should 

not leak sensor readings to neighbouring networks. In 

many applications (e.g. key distribution) nodes 

communicate highly sensitive data. The standard 

approach for keeping sensitive data secret is to 

encrypt the data with a secret key that only intended 

receivers possess, hence achieving confidentiality. 

Since public-key cryptography is too expensive to be 

used in the resource constrained sensor networks, 

most of the proposed protocols use symmetric key 

encryption methods. The creators of TinySec [40] 

argue that cipher block chaining (CBC) is the most 

appropriate encryption scheme for sensor networks. 

They found RC5 and 

Skipjack to be most appropriate for software 

implementation on embedded microcontrollers. The 

default block cipher in TinySec is Skipjack. SPINS 

uses RC6 as its cipher. 

 

3.2. Data Authenticity 

In a sensor network, an adversary can easily inject 

messages, so the receiver needs to make sure that the 

data used in any decision-making process originates 

from the correct source. Data authentication prevents 

unauthorized parties from participating in the network 

and legitimate nodes should be able to detect 

messages from unauthorized nodes and reject them. In 

the two-party communication case, data 

authentication can be achieved through a purely 

symmetric mechanism: The sender and the receiver 

share a secret key to compute a message 

authentication code (MAC) of all communicated data. 

When a message with a correct MAC arrives, the 

receiver knows that it must have been sent by the 

sender. However, authentication for broadcast 

messages requires stronger trust assumptions on the 

network nodes. The creators of SPINS [40] contend 

that if one sender wants to send authentic data to 

mutually untrusted receivers, using a symmetric MAC 

is insecure since any one of the receivers know the 

MAC key, and hence could impersonate the sender 

and forge messages to other receivers. SPINS 

constructs authenticated broadcast from symmetric 

primitives, but introduces asymmetry with delayed 

key disclosure and one-way function key chains. 

LEAP [12] uses a globally shared symmetric key for 

broadcast messages to the whole group. However, 

since the group key is shared among all the nodes in 

the network, an efficient rekeying mechanism is 

defined for updating this key after a compromised 

node is revoked. This means that LEAP has also 

defined an efficient mechanism to verify whether a 

node has been compromised. 

 

3.3. Data Integrity 

Data integrity ensures the receiver that the received 

data is not altered in transit by an adversary. It is to be 

noted that Data Authentication can provide Data 

Integrity also. 

 

3.4. Data Freshness 

Data freshness implies that the data is recent, and it 

ensures that an adversary has not replayed old 

messages. A common defense (used by SNEP [22]) is 

to include a monotonically increasing counter with 

every message and reject messages with old counter 

values. With this policy, every recipient must 

maintain a table of the last value from every sender it 

receives. However, for RAM constrained sensor 

nodes, this defense becomes problematic for even 

modestly sized networks. Assuming nodes devote 

only a small fraction of their RAM for this neighbour 

table, an adversary replaying broadcast messages 

from many different senders can fill up the table. At 

this point, the recipient has one of two options: ignore 

any messages from senders not in its neighbor table, 

or purge entries from the table. Neither is acceptable; 

the first creates a DoS attack and the second permits 

replay attacks. In [21], the authors contend that 
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protection against the replay of data packets should be 

provided at the application layer and not by a secure 

routing protocol as only the application can fully and 

accurately detect the replay of data packets (as 

opposed to retransmissions, for example). In [40], the 

authors reason that by using information about the 

network's topology and communication patterns, the 

application and routing layers can properly and 

efficiently manage a limited amount of memory 

devoted to replay detection. In [31], the authors have 

identified two types of freshness: weak freshness, 

which provides partial message ordering, but carries 

no delay information, and strong freshness, which 

provides a total order on a request-response pair, and 

allows for delay estimation. Weak freshness is 

required by sensor measurements, while strong 

freshness is useful for time synchronization within the 

network.  

 

3.5. Robustness and Survivability 

The sensor network should be robust against various 

security attacks, and if an attack succeeds, its impact 

should be minimized. The compromise of a single 

node should not break the security of the entire 

network. 

 

4. THREATS AND RISKS 
Wireless networks are vulnerable to security attacks 

due to the broadcast nature of the transmission 

medium. Furthermore, wireless sensor networks have 

an additional vulnerability because nodes are often 

placed in a hostile or dangerous environment where 

they are not physically protected. 

 

4.1. Passive Information Gathering 

An intruder with an appropriately powerful receiver 

and well designed antenna can easily pick off the data 

stream. Interception of the messages containing the 

physical locations of sensor nodes allows an attacker 

to locate the nodes and destroy them. Besides the 

locations of sensor nodes, an adversary can observe 

the application specific content of messages including 

message IDs, timestamps and other fields. To 

minimize the threats of passive information gathering, 

strong encryption techniques needs to be used.  

 

4.2. Subversion of a Node 

A particular sensor might be captured, and 

information stored on it (such as the key) might be 

obtained by an adversary. If a node has been 

compromised then how to exclude that node, and that 

node only, from the sensor network is at issue (LEAP 

[36] defines an efficient way to do so). 

4.3. False Node and malicious data 

An intruder might add a node to the system that feeds 

false data or prevents the passage of true data. Such 

messages also consume the scarce energy resources of 

the nodes. This type of attack is called “sleep 

deprivation torture” in [34]. Insertion of malicious 

code is one of the most dangerous attacks that can 

occur. Malicious code injected in the network could 

spread to all nodes, potentially destroying the whole 

network, or even worse, taking over the network on 

behalf of an adversary. A seized sensor network can 

either send false observations about the environment 

to a legitimate user or send observations about the 

monitored area to a malicious user. By spoofing, 

altering, or replaying routing information, adversaries 

may be able to create routing loops, attract or repel 

network traffic, extend or shorten source routes, 

generate false error messages, partition the network, 

increase end-to-end latency, etc. 

Strong authentication techniques can prevent an 

adversary from impersonating as a valid node in the 

sensor network. 

 

4.4. The Sybil attack 

In a Sybil attack [35], a single node presents multiple 

identities to other nodes in the network. They pose a 

significant threat to geographic routing protocols, 

where location aware routing requires nodes to 

exchange coordinate information with their 

neighbours to efficiently route geographically 

addressed packets. Authentication and encryption 

techniques can prevent an outsider to launch a Sybil 

attack on the sensor network. However, an insider 

cannot be prevented from participating in the network, 

but (s) he should only be able to do so using the 

identities of the nodes (s)he has compromised. Using 

globally shared keys allows an insider to masquerade 

as any (possibly even nonexistent) node. Public key 

cryptography can prevent such an insider attack, but it 

is too expensive to be used in the resource constrained 

sensor networks. One solution is to have every node 

share a unique symmetric key with a trusted base 

station. Two nodes can then use a Needham-

Schroeder like protocol to verify each other’s identity 

and establish a shared key. A pair of neighbouring 

nodes can use the resulting key to implement an 

authenticated, encrypted link between them. An 

example of a protocol which uses such a scheme is 

LEAP [23], which supports the establishment of four 

types of keys. 
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4.5. Sinkhole attacks 

In a sinkhole attack, the adversary’s goal is to lure 

nearly all the traffic from a particular area through a 

compromised node, creating a metaphorical sinkhole 

with the adversary at the center. Sinkhole attacks 

typically work by making a compromised node look 

especially attractive to surrounding nodes with respect 

to the routing algorithm. For instance, an adversary 

could spoof or replay an advertisement for an 

extremely high quality route to a base station. Due to 

either the real or imagined high quality route through 

the compromised node, it is likely each neighbouring 

node of the adversary will forward packets destined 

for a base station through the adversary, and also 

propagate the attractiveness of the route to its 

neighbours. Effectively, the adversary creates a large 

“sphere of influence” [23], attracting all traffic 

destined for a base station from nodes several hops 

away from the compromised node. 

 

4.6. Wormholes 

In the wormhole attack [16], an adversary tunnels 

messages received in one part of the network over a 

low latency link and replays them in a different part. 

The simplest instance of this attack is a single node 

situated between two other nodes forwarding 

messages between the two of them. However, 

wormhole attacks more commonly involve two distant 

malicious nodes colluding to understate their distance 

from each other by relaying packets along an out-of-

bound channel available only to the attacker. 

 

5. EXISTING SECURITY PROTOCOLS 
In previous sections we have out listed the 

characteristics that make sensor networks highly 

vulnerable and also the security challenges. This 

section gives an insight in to the existing security 

protocols in the area. 

 

5.1. SPINS Security Building Blocks[37] 

To achieve the security requirements we established 

in Section 4 we have designed and implemented two 

security building blocks: SNEP and _TESLA. SNEP 

provides data confidentiality, two-party data 

authentication, integrity, and freshness. _TESLA 

provides authentication for data broadcast. We 

bootstrap the security for both mechanisms with a 

shared secret key between each node and the base 

station (see Section 2). We demonstrate in Section 8 

how we can extend the trust to node-to-node 

interactions from the node-to base-station trust. 

 

5.1.1. SNEP: Data Confidentiality, Authentication, 

Integrity, and Freshness 

SNEP provides a number of unique advantages. First, 

it has low communication overhead since it only adds 

8 bytes per message. Second, like many cryptographic 

protocols it uses a counter, but we avoid transmitting 

the counter value by keeping state at both end points. 

Third, SNEP achieves even semantic security, a 

strong security property which prevents 

eavesdroppers from inferring the message content 

from the encrypted message. Finally, the same simple 

and efficient protocol also gives us data 

authentication, replay protection, and weak message 

freshness. 

SNEP offers the following nice properties:  

 Semantic security: Since the counter value is 

incremented after each message, the same 

message is encrypted differently each time. 

The counter value is long enough that it 

never repeats within the lifetime of the node. 

 Data authentication: If theMAC verifies 

correctly, a receiver can be assured that the 

message originated from the claimed sender. 

 Replay protection: The counter value in the 

MAC prevents replaying old messages. Note 

that if the counter were not present in the 

MAC, an adversary could easily replay 

messages. 

 Weak freshness: If the message verified 

correctly, a receiver knows that the message 

must have been sent after the previous 

message it received correctly (that had a 

lower counter value). This enforces a 

message ordering and yields weak freshness. 

 Low communication overhead: The counter 

state is kept at each end point and does not 

need to be sent in each message. 

5.1.2. TESLA: Authenticated Broadcast 

Current proposals for authenticated broadcast are 

impractical for sensor networks. First, most proposals 

rely on asymmetric digital signatures for the 

authentication, which are impractical for multiple 

reasons. They require long signatures with high 

communication overhead of 50-1000 bytes per packet, 

very high overhead to create and verify the signature. 

Even previously proposed one-time signature schemes 

that are based on symmetric cryptography (one-way 

functions without trapdoors) have a high overhead. 

The recently proposed TESLA protocol provides 

efficient authenticated broadcast [30, 34]. However, 

TESLA is not designed for such limited computing 

environments as we encounter in sensor networks for 

three reasons. First, TESLA authenticates the initial 
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packet with a digital signature. Clearly, digital 

signatures are too expensive to compute on our sensor 

nodes, since even fitting the code into the memory is a 

major challenge. For the same reason as we mention 

above, onetime signatures are a challenge to use on 

our nodes. Standard TESLA has an overhead of 

approximately 24 bytes per packet. For networks 

connecting workstations this is usually not significant. 

Sensor nodes, however, send very small messages that 

are around 30 bytes long. It is simply impractical to 

disclose the TESLA key for the previous intervals 

with every packet: with bit keys and MACs, the 

TESLA-related part of the packet would constitute 

over 50% of the packet. Finally, the one-way key 

chain does not fit into the memory of our sensor node. 

So, pure TESLA is not practical for a node to 

broadcast authenticated data. 

 

5.2. TinySec: A Link Layer Security Architecture for 

Wireless Sensor Networks [40] 

TinySec is a lightweight, generic security package 

that can be integrated into sensor network 

applications. It is incorporated into the official 

TinyOS release. In [40], the authors reason why Link 

Layer security is ideal for sensor networks. Sensor 

networks use in network processing such as 

aggregation and duplicate elimination [38-39] to 

reduce traffic and save energy. Since in-network 

processing requires the intermediate nodes to access, 

modify, and suppress the contents of messages, end-

to-end security mechanisms between each sensor node 

and the base station cannot be used to guarantee the 

authenticity, integrity, and confidentiality of 

messages. End-to-end security mechanisms are also 

vulnerable to certain denial of service attacks. If 

message integrity is only checked at the final 

destination, the network may route packets injected by 

an adversary many hops before they are detected. This 

kind of attack will waste energy and bandwidth. Link-

layer security architecture can detect unauthorized 

packets when they are first injected into the network. 

TinySec provides the basic security properties of 

message authentication and integrity (using MAC), 

message confidentiality (through encryption), 

semantic security (through an Initialization Vector) 

and replay protection. TinySec supports two different 

security options: authenticated encryption (TinySec- 

AE) and authentication only (TinySec-Auth). With 

authenticated encryption, TinySec encrypts the data 

payload and authenticates the packet with a MAC. 

The MAC is computed over the encrypted data and 

the packet header. In authentication only mode, 

TinySec authenticates the entire packet with a MAC, 

but the data payload is not encrypted.  

 

5.2.1. Encryption 

TinySec uses an 8 byte IV and cipher block chaining 

(CBC) [32]. The structure of the IV is 

dst||AM||l||src||ctr, where dst is the destination address 

of the receiver, AM is the active message (AM) 

handler type, l is the length of the data payload, src is 

the source address of the sender, and ctr is a 16 bit 

counter. The counter starts at 0 and the sender 

increases it by 1 after each message sent. A stream 

cipher uses a key K and IV as a seed and stretches it 

into a large pseudorandom key stream GK(IV). The 

key stream is then xored against the message: C = 

(IV, GK(IV) xor P). The fastest stream ciphers are 

faster than the fastest block ciphers, which might 

make them look tempting in a resource constrained 

environment. However, stream ciphers have a failure 

mode: if the same IV is ever used to encrypt two 

different packets, then it is often possible to recover 

both plaintexts. Guaranteeing that IVs are never 

reused requires IVs to be fairly long, say, at least 8 

bytes. Since an 8-byte overhead in a 30-byte packet is 

unacceptable in the resource constrained sensor 

network, TinySec uses block cipher. Using a block 

cipher for encryption has an additional advantage. 

Since the most efficient message authentication code 

(MAC) algorithms use a block cipher, the nodes will 

need to implement a block cipher in any event. Using 

this block cipher for encryption as well conserves 

code space. The advantage of using CBC is that it 

degrades gracefully in the presence of repeated IVs. If 

we encrypt two plaintexts P1 and P2 with the same IV 

under CBC mode, then the cipher texts will leak the 

length (in blocks) of the longest shared prefix of P1 

and P2, and nothing more. For instance, if the first 

block of P1 is different from the first block of P2, as 

will typically be the case, then the cryptanalyst learns 

nothing apart from this fact. CBC mode is provably 

secure when IVs do not repeat. However, CBC mode 

was designed to be used with a random IV, and has a 

separate leakage issue when used with a counter as 

the IV (note that the TinySec IV has a 16 bit counter). 

To fix this issue, TinySec pre-encrypts the IV. The 

creators of TinySec give reasons behind their choice 

of cipher in [40]. Initially they found AES and Triple-

DES to be slow for sensor networks. They found RC5 

and Skipjack to be most appropriate for software 

implementation on embedded microcontrollers. 

Although RC5 was slightly faster, it is patented. Also, 

for good performance, RC5 requires the key schedule 

to be pre-computed, which uses 104 extra bytes of 
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RAM per key. Because of these drawbacks, the 

default block cipher in TinySec is Skipjack. 

 

5.2.2. Message integrity 

TinySec always authenticates messages, but 

encryption is optional. TinySec uses a cipher block 

chaining construction, CBC-MAC for computing and 

verifying MACs. CBC-MAC is efficient and fast, and 

the fact that it relies on a block cipher as well 

minimizes the number of cryptographic primitives we 

must implement in the limited memory available. 

However the standard CBC-MAC construction is not 

secure for variably sized messages. Adversaries can 

forge a MAC for certain messages. Bellare, Kilian, 

and Rogaway suggest three alternatives for generating 

MACs for variable sized messages [33]. The variant 

used in TinySec XORs the encryption of the message 

length with the first plaintext block. 

 

5.2.3. Keying Mechanism 

The simplest keying mechanism is to use a single 

network-wide TinySec key among the authorized 

nodes. However, this cannot protect against node 

capture attacks. If an adversary compromises a single 

node or learns the secret key, (s) he can eavesdrop on 

traffic and inject messages anywhere in the network. 

Hence, TinySec uses a separate key for each pair of 

nodes who might wish to communicate. This provides 

better resilience against node capture attacks: a 

compromised node can only decrypt traffic addressed 

to it and can only inject traffic to its immediate 

neighbours. But Per-link keying limits passive 

participation and local broadcast. A less restrictive 

approach is for groups of neighbouring nodes to share 

a TinySec key rather than each pair. Group keying 

provides an intermediate level of resilience to node 

capture attacks: a compromised node can decrypt all 

messages from nodes in its group, but cannot violate 

the confidentiality of other groups' messages and 

cannot inject messages to other groups. For further 

information about the implementation and 

performance results of TinySec, refer to [40]. 

 

5.3. LEAP (Localized Encryption and 

Authentication Protocol) [42] 

LEAP is a key management protocol for sensor 

networks that is designed to support in network 

processing, while at the same time restricting the 

security impact of a node compromise to the 

immediate network neighbourhood of the 

compromised node. The design of the protocol is 

motivated by the observation that different types of 

messages exchanged between sensor nodes have 

different security requirements, and that a single 

keying mechanism is not suitable for meeting these 

different security requirements. Hence, LEAP 

supports the establishment of four types of keys for 

each sensor node – an individual key shared with the 

base station, a pairwise key shared with another 

sensor node, a cluster key shared with multiple 

neighbouring nodes, and a group key that is shared by 

all the nodes in the network. The protocol used for 

establishing and updating these keys is 

communication and energy efficient, and minimizes 

the involvement of the base station. LEAP also 

includes an efficient protocol for inter-node traffic 

authentication based on the use of one-way key 

chains. A salient feature of the authentication protocol 

is that it supports source authentication without 

precluding in-network processing and passive 

participation.  

 

5.3.1. Individual Key 

Every node has a unique key that it shares pairwise 

with the base station. This key is used for secure 

communication between a node and the base station. 

For example, a node may send an alert to the base 

station if it observes any abnormal or unexpected 

behaviour by a neighbouring node. Similarly, the base 

station can use this key to encrypt any sensitive 

information, e.g. keying material or special instruction 

that it sends to an individual node.  

 

5.3.2. Group Key 

This is a globally shared key that is used by the base 

station for encrypting messages that are broadcast to 

the whole group. For example, the base station issues 

missions, sends queries and interests. Note that from 

the confidentiality point of view there is no advantage 

to separately encrypting a broadcast message using 

the individual key of each node. However, since the 

group key is shared among all the nodes in the 

network, an efficient rekeying mechanism is 

necessary for updating this key after a compromised 

node is revoked. 

 

5.3.3. Cluster Key 

A cluster key is a key shared by a node and all its 

neighbours, and it is mainly used for securing locally 

broadcast messages, e.g., routing control information, 

or securing sensor messages which can benefit from 

passive participation. For passive participation to be 

feasible, neighbouring nodes should be able to decrypt 

and authenticate some classes of messages, e.g., 

sensor readings, transmitted by their neighbours. This 

means that such messages should be encrypted or 
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authenticated by a locally shared key. Therefore, in 

LEAP each node possesses a unique cluster key that it 

uses for securing its messages, while its immediate 

neighbours use the same key for decryption or 

authentication of its messages.  

 

5.3.4. Pairwise Shared Key 

Every node shares a pairwise key with each of its 

immediate neighbors. In LEAP, pairwise keys are 

used for securing communications that require privacy 

or source authentication. For example, a node can use 

its pairwise keys to secure the distribution of its 

cluster key to its neighbors, or to secure the 

transmissions of its sensor readings to an aggregation 

node. Note that the use of pairwise keys precludes 

passive participation. In [40], the creators of LEAP 

have described the schemes provided by LEAP for 

sensor nodes to establish and update individual keys, 

pairwise shared keys, cluster keys, and group keys for 

each node. Revocation of a compromised node and 

the subsequent rekeying mechanism is also described. 

 

6.CONCLUSION 

The purpose of this research paper is  to survey the 

current state of art on this topic identify issues for 

further study. An attempt is made to cover general 

security issues of WSN research and present 

achievement in security engineering with regards to 

earlier survey work along with the security 

capabilities of major implementation platforms to 

highlight essential available and required mechanism 

for the software engineers. 
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