
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 733 | P a g e

Tushar Agarwal
1
, Dr. Raj Kumar

2
, Shashiraj Teotia

3
, Dr. Sohan Garg

4

1. Department of MCA, IIMT Meerut U.P. (INDIA)

2. Department of MCA, GKV Haridwar (UK) (INDIA)

3. Department of CS, SV Subharati University, Meerut U.P. (INDIA)

4. Department of MCA, RKGIT, Ghaziabad U.P. (India)

ABSTRACT
As wireless sensor networks continue to grow, so

does the need for effective security mechanisms.

Because sensor networks may interact with sensitive

data and/or operate in hostile unattended

environments, it is imperative that these security

concerns be addressed from the beginning of the

system design. Their low cost provides a means to

deploy large sensor arrays in a variety of conditions

capable of performing both military and civilian tasks.

Wireless sensor networks are a new type of networked

systems, characterized by severely constrained

computational and energy resources, and an ad hoc

operational environment.

The paper first introduces sensor networks, and then

presents its related security problems, threats, risks

and characteristics. Sensor networks refer to a

heterogeneous system combining tiny sensors and

actuators with general-purpose computing elements.

Due to limited computation, power, and storage

resources available on sensor nodes asymmetric

cryptographic algorithms cannot provide security on

wireless sensor networks. An adversary may launch a

wide range of attacks including eavesdropping,

message forgery, packet dropping, and noise

injection. The unreliable communication channel and

unattended operation make the security defences even

harder. Additionally, the paper gives a brief

introduction to proposed protocols for sensor network

security applications.

Keywords: Wireless sensor networks, software

engineering, security engineering

1. INTRODUCTION

Wireless sensor networks are quickly gaining

popularity due to the fact that they are potentially low

cost solutions to a variety of real-world challenges [1,

2]. Their low cost provides a means to deploy large

sensor arrays in a variety of conditions capable of

performing both military and civilian tasks. But

sensor networks also introduce severe resource

constraints due to their lack of data storage and

power. Both of these represent major obstacles to the

implementation of traditional computer security

techniques in a wireless sensor network. The

unreliable communication channel and unattended

operation make the security defences even harder.

Indeed, as pointed out in [3], wireless sensors often

have the processing characteristics of machines that

are decades old (or longer), and the industrial trend is

to reduce the cost of wireless sensors while

maintaining similar computing power. With that in

mind, many researchers have begun to address the

challenges of maximizing the processing capabilities

and energy reserves of wireless sensor nodes while

also securing them against attackers. All aspects of

the wireless sensor network are being examined

including secure and efficient routing [4, 7], data

aggregation [8, 13], group formation [14, 16], and so

on. In addition to those traditional security issues, we

observe that many general-purpose sensor network

techniques (particularly the early research) assumed

that all nodes are cooperative and trustworthy. This is

not the case for most, or much of, real-world wireless

sensor networking applications, which require a

certain amount of trust in the application in order to

maintain proper network functionality. Researchers

therefore began focusing on building a sensor trust

model to solve the problems beyond the capability of

cryptographic security [17, 24]. In addition, there are

many attacks designed to exploit the unreliable

communication channels and unattended operation of

wireless sensor networks. Furthermore, due to the

inherent unattended feature of wireless sensor

networks, we argue that physical attacks to sensors

play an important role in the operation of wireless

sensor networks. Thus, we include a detailed

discussion of the physical attacks and their

corresponding defences [25, 34], topics typically

ignored in most of the current research on sensor

security. We classify the main aspects of wireless

sensor network security into four major categories:

characteristics, related security problems and threats

& risks. The unreliable communication channel and

unattended operation make the security defences even

harder. Exploiting such weaknesses an adversary may

launch a wide range of attacks including

eavesdropping, message forgery, packet dropping, and

noise injection. The paper gives a brief introduction to

An Engineering Approach for Secure Wireless Sensor Networks

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 734 | P a g e

some previously proposed protocols for sensor

network security applications that somehow attempt

to cover and control some of these to an extent.

2. CHARACTERISTICS
A wireless sensor network is a characteristic network

which has many constraints compared to a traditional

computer network. Due to these constraints it is

difficult to directly employ the existing security

approaches to the area of wireless sensor networks.

Therefore, to develop useful security mechanisms

while borrowing the ideas from the current security

techniques, it is necessary to know and understand

these constraints first [35].

2.1 Very Limited Resources

All security approaches require a certain amount of

resources for the implementation, including data

memory, code space, and energy to power the sensor.

However, currently these resources are very limited in

a tiny wireless sensor.

• Limited Memory and Storage Space A sensor is a

tiny device with only a small amount of memory and

storage space for the code. In order to build an

effective security mechanism, it is necessary to limit

the code size of the security algorithm. For example,

one common sensor type (TelosB) has an 16-bit, 8

MHz RISC CPU with only 10K RAM, 48K program

memory, and 1024K flash storage [36]. With such a

limitation, the software built for the sensor must also

be quite small. The total code space of TinyOS, the

de-facto standard operating system for wireless

sensors, is approximately 4K [37], and the core

scheduler occupies only 178 bytes. Therefore, the

code size for the all security related code must also be

small.

• Power Limitation Energy is the biggest constraint to

wireless sensor capabilities. We assume that once

sensor nodes are deployed in a sensor network, they

cannot be easily replaced (high operating cost) or

recharged (high cost of sensors). Therefore, the

battery charge taken with them to the field must be

conserved to extend the life of the individual sensor

node and the entire sensor network. When

implementing a cryptographic function or protocol

within a sensor node, the energy impact of the added

security code must be considered. When adding

security to a sensor node, we are interested in the

impact that security has on the lifespan of a sensor

(i.e., its battery life). The extra power consumed by

sensor nodes due to security is related to the

processing required for security functions (e.g.,

encryption, decryption, signing data, verifying

signatures), the energy required to transmit the

security related data or overhead (e.g., initialization

vectors needed for encryption/decryption), and the

energy required to store security parameters in a

secure manner (e.g., cryptographic key storage).

2.2 Unreliable Communication

Certainly, unreliable communication is another threat

to sensor security. The security of the network relies

heavily on a defined protocol, which in turn depends

on communication.

• Unreliable Transfer Normally the packet-based

routing of the sensor network is connectionless and

thus inherently unreliable. Packets may get damaged

due to channel errors or dropped at highly congested

nodes. The result is lost or missing packets.

Furthermore, the unreliable wireless communication

channel also results in damaged packets. Higher

channel error rate also forces the software developer

to devote resources to error handling. More

importantly, if the protocol lacks the appropriate error

handling it is possible to lose critical security packets.

This may include, for example, a cryptographic key.

• Conflicts Even if the channel is reliable, the

communication may still be unreliable. This is due to

the broadcast nature of the wireless sensor network. If

packets meet in the middle of transfer, conflicts will

occur and the transfer itself will fail. In a crowded

(high density) sensor network, this can be a major

problem. More details about the effect of wireless

communication can be found at [2].

• Latency The multi-hop routing, network congestion,

and node processing can lead to greater latency in the

network, thus making it difficult to achieve

synchronization among sensor nodes. The

synchronization issues can be critical to sensor

security where the security mechanism relies on

critical event reports and cryptographic key

distribution. Interested readers please refer to [38] on

real-time communications

in wireless sensor networks.

2.3 Unattended Operation

Depending on the function of the particular sensor

network, the sensor nodes may be left unattended for

long periods of time. There are three main caveats to

unattended sensor nodes:

• Exposure to Physical Attacks The sensor may be

deployed in an environment open to adversaries, bad

weather, and so on. The likelihood that a sensor

suffers a physical attack in such an environment is

therefore much higher than the typical PCs, which is

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 735 | P a g e

located in a secure place and mainly faces attacks

from a network.

• Managed Remotely Remote management of a sensor

network makes it virtually impossible to detect

physical tampering (i.e., through tamperproof seals)

and physical maintenance issues (e.g., battery

replacement). Perhaps the most extreme example of

this is a sensor node used for remote reconnaissance

missions behind enemy lines. In such a case, the node

may not have any physical contact with friendly

forces once deployed.

• No Central Management Point A sensor network

should be a distributed network without a central

management point. This will increase the vitality of

the sensor network. However, if designed incorrectly,

it will make the network organization difficult,

inefficient, and fragile. Perhaps most importantly, the

longer that a sensor is left unattended the more likely

that an adversary has compromised the node.

3. SECURITY & CHALLENGES
In this section, we formalize the security properties

[39] required by sensor networks, and show how they

are directly applicable in a typical sensor network.

3.1. Data Confidentiality

Confidentiality means keeping information secret

from unauthorized parties. A sensor network should

not leak sensor readings to neighbouring networks. In

many applications (e.g. key distribution) nodes

communicate highly sensitive data. The standard

approach for keeping sensitive data secret is to

encrypt the data with a secret key that only intended

receivers possess, hence achieving confidentiality.

Since public-key cryptography is too expensive to be

used in the resource constrained sensor networks,

most of the proposed protocols use symmetric key

encryption methods. The creators of TinySec [40]

argue that cipher block chaining (CBC) is the most

appropriate encryption scheme for sensor networks.

They found RC5 and

Skipjack to be most appropriate for software

implementation on embedded microcontrollers. The

default block cipher in TinySec is Skipjack. SPINS

uses RC6 as its cipher.

3.2. Data Authenticity

In a sensor network, an adversary can easily inject

messages, so the receiver needs to make sure that the

data used in any decision-making process originates

from the correct source. Data authentication prevents

unauthorized parties from participating in the network

and legitimate nodes should be able to detect

messages from unauthorized nodes and reject them. In

the two-party communication case, data

authentication can be achieved through a purely

symmetric mechanism: The sender and the receiver

share a secret key to compute a message

authentication code (MAC) of all communicated data.

When a message with a correct MAC arrives, the

receiver knows that it must have been sent by the

sender. However, authentication for broadcast

messages requires stronger trust assumptions on the

network nodes. The creators of SPINS [40] contend

that if one sender wants to send authentic data to

mutually untrusted receivers, using a symmetric MAC

is insecure since any one of the receivers know the

MAC key, and hence could impersonate the sender

and forge messages to other receivers. SPINS

constructs authenticated broadcast from symmetric

primitives, but introduces asymmetry with delayed

key disclosure and one-way function key chains.

LEAP [12] uses a globally shared symmetric key for

broadcast messages to the whole group. However,

since the group key is shared among all the nodes in

the network, an efficient rekeying mechanism is

defined for updating this key after a compromised

node is revoked. This means that LEAP has also

defined an efficient mechanism to verify whether a

node has been compromised.

3.3. Data Integrity

Data integrity ensures the receiver that the received

data is not altered in transit by an adversary. It is to be

noted that Data Authentication can provide Data

Integrity also.

3.4. Data Freshness

Data freshness implies that the data is recent, and it

ensures that an adversary has not replayed old

messages. A common defense (used by SNEP [22]) is

to include a monotonically increasing counter with

every message and reject messages with old counter

values. With this policy, every recipient must

maintain a table of the last value from every sender it

receives. However, for RAM constrained sensor

nodes, this defense becomes problematic for even

modestly sized networks. Assuming nodes devote

only a small fraction of their RAM for this neighbour

table, an adversary replaying broadcast messages

from many different senders can fill up the table. At

this point, the recipient has one of two options: ignore

any messages from senders not in its neighbor table,

or purge entries from the table. Neither is acceptable;

the first creates a DoS attack and the second permits

replay attacks. In [21], the authors contend that

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 736 | P a g e

protection against the replay of data packets should be

provided at the application layer and not by a secure

routing protocol as only the application can fully and

accurately detect the replay of data packets (as

opposed to retransmissions, for example). In [40], the

authors reason that by using information about the

network's topology and communication patterns, the

application and routing layers can properly and

efficiently manage a limited amount of memory

devoted to replay detection. In [31], the authors have

identified two types of freshness: weak freshness,

which provides partial message ordering, but carries

no delay information, and strong freshness, which

provides a total order on a request-response pair, and

allows for delay estimation. Weak freshness is

required by sensor measurements, while strong

freshness is useful for time synchronization within the

network.

3.5. Robustness and Survivability

The sensor network should be robust against various

security attacks, and if an attack succeeds, its impact

should be minimized. The compromise of a single

node should not break the security of the entire

network.

4. THREATS AND RISKS
Wireless networks are vulnerable to security attacks

due to the broadcast nature of the transmission

medium. Furthermore, wireless sensor networks have

an additional vulnerability because nodes are often

placed in a hostile or dangerous environment where

they are not physically protected.

4.1. Passive Information Gathering

An intruder with an appropriately powerful receiver

and well designed antenna can easily pick off the data

stream. Interception of the messages containing the

physical locations of sensor nodes allows an attacker

to locate the nodes and destroy them. Besides the

locations of sensor nodes, an adversary can observe

the application specific content of messages including

message IDs, timestamps and other fields. To

minimize the threats of passive information gathering,

strong encryption techniques needs to be used.

4.2. Subversion of a Node

A particular sensor might be captured, and

information stored on it (such as the key) might be

obtained by an adversary. If a node has been

compromised then how to exclude that node, and that

node only, from the sensor network is at issue (LEAP

[36] defines an efficient way to do so).

4.3. False Node and malicious data

An intruder might add a node to the system that feeds

false data or prevents the passage of true data. Such

messages also consume the scarce energy resources of

the nodes. This type of attack is called “sleep

deprivation torture” in [34]. Insertion of malicious

code is one of the most dangerous attacks that can

occur. Malicious code injected in the network could

spread to all nodes, potentially destroying the whole

network, or even worse, taking over the network on

behalf of an adversary. A seized sensor network can

either send false observations about the environment

to a legitimate user or send observations about the

monitored area to a malicious user. By spoofing,

altering, or replaying routing information, adversaries

may be able to create routing loops, attract or repel

network traffic, extend or shorten source routes,

generate false error messages, partition the network,

increase end-to-end latency, etc.

Strong authentication techniques can prevent an

adversary from impersonating as a valid node in the

sensor network.

4.4. The Sybil attack

In a Sybil attack [35], a single node presents multiple

identities to other nodes in the network. They pose a

significant threat to geographic routing protocols,

where location aware routing requires nodes to

exchange coordinate information with their

neighbours to efficiently route geographically

addressed packets. Authentication and encryption

techniques can prevent an outsider to launch a Sybil

attack on the sensor network. However, an insider

cannot be prevented from participating in the network,

but (s) he should only be able to do so using the

identities of the nodes (s)he has compromised. Using

globally shared keys allows an insider to masquerade

as any (possibly even nonexistent) node. Public key

cryptography can prevent such an insider attack, but it

is too expensive to be used in the resource constrained

sensor networks. One solution is to have every node

share a unique symmetric key with a trusted base

station. Two nodes can then use a Needham-

Schroeder like protocol to verify each other’s identity

and establish a shared key. A pair of neighbouring

nodes can use the resulting key to implement an

authenticated, encrypted link between them. An

example of a protocol which uses such a scheme is

LEAP [23], which supports the establishment of four

types of keys.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 737 | P a g e

4.5. Sinkhole attacks

In a sinkhole attack, the adversary’s goal is to lure

nearly all the traffic from a particular area through a

compromised node, creating a metaphorical sinkhole

with the adversary at the center. Sinkhole attacks

typically work by making a compromised node look

especially attractive to surrounding nodes with respect

to the routing algorithm. For instance, an adversary

could spoof or replay an advertisement for an

extremely high quality route to a base station. Due to

either the real or imagined high quality route through

the compromised node, it is likely each neighbouring

node of the adversary will forward packets destined

for a base station through the adversary, and also

propagate the attractiveness of the route to its

neighbours. Effectively, the adversary creates a large

“sphere of influence” [23], attracting all traffic

destined for a base station from nodes several hops

away from the compromised node.

4.6. Wormholes

In the wormhole attack [16], an adversary tunnels

messages received in one part of the network over a

low latency link and replays them in a different part.

The simplest instance of this attack is a single node

situated between two other nodes forwarding

messages between the two of them. However,

wormhole attacks more commonly involve two distant

malicious nodes colluding to understate their distance

from each other by relaying packets along an out-of-

bound channel available only to the attacker.

5. EXISTING SECURITY PROTOCOLS
In previous sections we have out listed the

characteristics that make sensor networks highly

vulnerable and also the security challenges. This

section gives an insight in to the existing security

protocols in the area.

5.1. SPINS Security Building Blocks[37]

To achieve the security requirements we established

in Section 4 we have designed and implemented two

security building blocks: SNEP and _TESLA. SNEP

provides data confidentiality, two-party data

authentication, integrity, and freshness. _TESLA

provides authentication for data broadcast. We

bootstrap the security for both mechanisms with a

shared secret key between each node and the base

station (see Section 2). We demonstrate in Section 8

how we can extend the trust to node-to-node

interactions from the node-to base-station trust.

5.1.1. SNEP: Data Confidentiality, Authentication,

Integrity, and Freshness

SNEP provides a number of unique advantages. First,

it has low communication overhead since it only adds

8 bytes per message. Second, like many cryptographic

protocols it uses a counter, but we avoid transmitting

the counter value by keeping state at both end points.

Third, SNEP achieves even semantic security, a

strong security property which prevents

eavesdroppers from inferring the message content

from the encrypted message. Finally, the same simple

and efficient protocol also gives us data

authentication, replay protection, and weak message

freshness.

SNEP offers the following nice properties:

 Semantic security: Since the counter value is

incremented after each message, the same

message is encrypted differently each time.

The counter value is long enough that it

never repeats within the lifetime of the node.

 Data authentication: If theMAC verifies

correctly, a receiver can be assured that the

message originated from the claimed sender.

 Replay protection: The counter value in the

MAC prevents replaying old messages. Note

that if the counter were not present in the

MAC, an adversary could easily replay

messages.

 Weak freshness: If the message verified

correctly, a receiver knows that the message

must have been sent after the previous

message it received correctly (that had a

lower counter value). This enforces a

message ordering and yields weak freshness.

 Low communication overhead: The counter

state is kept at each end point and does not

need to be sent in each message.

5.1.2. TESLA: Authenticated Broadcast

Current proposals for authenticated broadcast are

impractical for sensor networks. First, most proposals

rely on asymmetric digital signatures for the

authentication, which are impractical for multiple

reasons. They require long signatures with high

communication overhead of 50-1000 bytes per packet,

very high overhead to create and verify the signature.

Even previously proposed one-time signature schemes

that are based on symmetric cryptography (one-way

functions without trapdoors) have a high overhead.

The recently proposed TESLA protocol provides

efficient authenticated broadcast [30, 34]. However,

TESLA is not designed for such limited computing

environments as we encounter in sensor networks for

three reasons. First, TESLA authenticates the initial

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 738 | P a g e

packet with a digital signature. Clearly, digital

signatures are too expensive to compute on our sensor

nodes, since even fitting the code into the memory is a

major challenge. For the same reason as we mention

above, onetime signatures are a challenge to use on

our nodes. Standard TESLA has an overhead of

approximately 24 bytes per packet. For networks

connecting workstations this is usually not significant.

Sensor nodes, however, send very small messages that

are around 30 bytes long. It is simply impractical to

disclose the TESLA key for the previous intervals

with every packet: with bit keys and MACs, the

TESLA-related part of the packet would constitute

over 50% of the packet. Finally, the one-way key

chain does not fit into the memory of our sensor node.

So, pure TESLA is not practical for a node to

broadcast authenticated data.

5.2. TinySec: A Link Layer Security Architecture for

Wireless Sensor Networks [40]

TinySec is a lightweight, generic security package

that can be integrated into sensor network

applications. It is incorporated into the official

TinyOS release. In [40], the authors reason why Link

Layer security is ideal for sensor networks. Sensor

networks use in network processing such as

aggregation and duplicate elimination [38-39] to

reduce traffic and save energy. Since in-network

processing requires the intermediate nodes to access,

modify, and suppress the contents of messages, end-

to-end security mechanisms between each sensor node

and the base station cannot be used to guarantee the

authenticity, integrity, and confidentiality of

messages. End-to-end security mechanisms are also

vulnerable to certain denial of service attacks. If

message integrity is only checked at the final

destination, the network may route packets injected by

an adversary many hops before they are detected. This

kind of attack will waste energy and bandwidth. Link-

layer security architecture can detect unauthorized

packets when they are first injected into the network.

TinySec provides the basic security properties of

message authentication and integrity (using MAC),

message confidentiality (through encryption),

semantic security (through an Initialization Vector)

and replay protection. TinySec supports two different

security options: authenticated encryption (TinySec-

AE) and authentication only (TinySec-Auth). With

authenticated encryption, TinySec encrypts the data

payload and authenticates the packet with a MAC.

The MAC is computed over the encrypted data and

the packet header. In authentication only mode,

TinySec authenticates the entire packet with a MAC,

but the data payload is not encrypted.

5.2.1. Encryption

TinySec uses an 8 byte IV and cipher block chaining

(CBC) [32]. The structure of the IV is

dst||AM||l||src||ctr, where dst is the destination address

of the receiver, AM is the active message (AM)

handler type, l is the length of the data payload, src is

the source address of the sender, and ctr is a 16 bit

counter. The counter starts at 0 and the sender

increases it by 1 after each message sent. A stream

cipher uses a key K and IV as a seed and stretches it

into a large pseudorandom key stream GK(IV). The

key stream is then xored against the message: C =

(IV, GK(IV) xor P). The fastest stream ciphers are

faster than the fastest block ciphers, which might

make them look tempting in a resource constrained

environment. However, stream ciphers have a failure

mode: if the same IV is ever used to encrypt two

different packets, then it is often possible to recover

both plaintexts. Guaranteeing that IVs are never

reused requires IVs to be fairly long, say, at least 8

bytes. Since an 8-byte overhead in a 30-byte packet is

unacceptable in the resource constrained sensor

network, TinySec uses block cipher. Using a block

cipher for encryption has an additional advantage.

Since the most efficient message authentication code

(MAC) algorithms use a block cipher, the nodes will

need to implement a block cipher in any event. Using

this block cipher for encryption as well conserves

code space. The advantage of using CBC is that it

degrades gracefully in the presence of repeated IVs. If

we encrypt two plaintexts P1 and P2 with the same IV

under CBC mode, then the cipher texts will leak the

length (in blocks) of the longest shared prefix of P1

and P2, and nothing more. For instance, if the first

block of P1 is different from the first block of P2, as

will typically be the case, then the cryptanalyst learns

nothing apart from this fact. CBC mode is provably

secure when IVs do not repeat. However, CBC mode

was designed to be used with a random IV, and has a

separate leakage issue when used with a counter as

the IV (note that the TinySec IV has a 16 bit counter).

To fix this issue, TinySec pre-encrypts the IV. The

creators of TinySec give reasons behind their choice

of cipher in [40]. Initially they found AES and Triple-

DES to be slow for sensor networks. They found RC5

and Skipjack to be most appropriate for software

implementation on embedded microcontrollers.

Although RC5 was slightly faster, it is patented. Also,

for good performance, RC5 requires the key schedule

to be pre-computed, which uses 104 extra bytes of

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 739 | P a g e

RAM per key. Because of these drawbacks, the

default block cipher in TinySec is Skipjack.

5.2.2. Message integrity

TinySec always authenticates messages, but

encryption is optional. TinySec uses a cipher block

chaining construction, CBC-MAC for computing and

verifying MACs. CBC-MAC is efficient and fast, and

the fact that it relies on a block cipher as well

minimizes the number of cryptographic primitives we

must implement in the limited memory available.

However the standard CBC-MAC construction is not

secure for variably sized messages. Adversaries can

forge a MAC for certain messages. Bellare, Kilian,

and Rogaway suggest three alternatives for generating

MACs for variable sized messages [33]. The variant

used in TinySec XORs the encryption of the message

length with the first plaintext block.

5.2.3. Keying Mechanism

The simplest keying mechanism is to use a single

network-wide TinySec key among the authorized

nodes. However, this cannot protect against node

capture attacks. If an adversary compromises a single

node or learns the secret key, (s) he can eavesdrop on

traffic and inject messages anywhere in the network.

Hence, TinySec uses a separate key for each pair of

nodes who might wish to communicate. This provides

better resilience against node capture attacks: a

compromised node can only decrypt traffic addressed

to it and can only inject traffic to its immediate

neighbours. But Per-link keying limits passive

participation and local broadcast. A less restrictive

approach is for groups of neighbouring nodes to share

a TinySec key rather than each pair. Group keying

provides an intermediate level of resilience to node

capture attacks: a compromised node can decrypt all

messages from nodes in its group, but cannot violate

the confidentiality of other groups' messages and

cannot inject messages to other groups. For further

information about the implementation and

performance results of TinySec, refer to [40].

5.3. LEAP (Localized Encryption and

Authentication Protocol) [42]

LEAP is a key management protocol for sensor

networks that is designed to support in network

processing, while at the same time restricting the

security impact of a node compromise to the

immediate network neighbourhood of the

compromised node. The design of the protocol is

motivated by the observation that different types of

messages exchanged between sensor nodes have

different security requirements, and that a single

keying mechanism is not suitable for meeting these

different security requirements. Hence, LEAP

supports the establishment of four types of keys for

each sensor node – an individual key shared with the

base station, a pairwise key shared with another

sensor node, a cluster key shared with multiple

neighbouring nodes, and a group key that is shared by

all the nodes in the network. The protocol used for

establishing and updating these keys is

communication and energy efficient, and minimizes

the involvement of the base station. LEAP also

includes an efficient protocol for inter-node traffic

authentication based on the use of one-way key

chains. A salient feature of the authentication protocol

is that it supports source authentication without

precluding in-network processing and passive

participation.

5.3.1. Individual Key

Every node has a unique key that it shares pairwise

with the base station. This key is used for secure

communication between a node and the base station.

For example, a node may send an alert to the base

station if it observes any abnormal or unexpected

behaviour by a neighbouring node. Similarly, the base

station can use this key to encrypt any sensitive

information, e.g. keying material or special instruction

that it sends to an individual node.

5.3.2. Group Key

This is a globally shared key that is used by the base

station for encrypting messages that are broadcast to

the whole group. For example, the base station issues

missions, sends queries and interests. Note that from

the confidentiality point of view there is no advantage

to separately encrypting a broadcast message using

the individual key of each node. However, since the

group key is shared among all the nodes in the

network, an efficient rekeying mechanism is

necessary for updating this key after a compromised

node is revoked.

5.3.3. Cluster Key

A cluster key is a key shared by a node and all its

neighbours, and it is mainly used for securing locally

broadcast messages, e.g., routing control information,

or securing sensor messages which can benefit from

passive participation. For passive participation to be

feasible, neighbouring nodes should be able to decrypt

and authenticate some classes of messages, e.g.,

sensor readings, transmitted by their neighbours. This

means that such messages should be encrypted or

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 740 | P a g e

authenticated by a locally shared key. Therefore, in

LEAP each node possesses a unique cluster key that it

uses for securing its messages, while its immediate

neighbours use the same key for decryption or

authentication of its messages.

5.3.4. Pairwise Shared Key

Every node shares a pairwise key with each of its

immediate neighbors. In LEAP, pairwise keys are

used for securing communications that require privacy

or source authentication. For example, a node can use

its pairwise keys to secure the distribution of its

cluster key to its neighbors, or to secure the

transmissions of its sensor readings to an aggregation

node. Note that the use of pairwise keys precludes

passive participation. In [40], the creators of LEAP

have described the schemes provided by LEAP for

sensor nodes to establish and update individual keys,

pairwise shared keys, cluster keys, and group keys for

each node. Revocation of a compromised node and

the subsequent rekeying mechanism is also described.

6.CONCLUSION

The purpose of this research paper is to survey the

current state of art on this topic identify issues for

further study. An attempt is made to cover general

security issues of WSN research and present

achievement in security engineering with regards to

earlier survey work along with the security

capabilities of major implementation platforms to

highlight essential available and required mechanism

for the software engineers.

REFERENCES

[1] Yang Xiao,(Eds.) Wireless Sensor Network

Security: A Survey. Security in Distributed, Grid, and

Pervasive Computing, Auerbach Publications, CRC

Press, 2006

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam,

and E. Cayirci. A survey on sensor networks. IEEE

Communications Magazine, 40(8):102–114, August

2002.

[3] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and

D. E. Culler. Spins: security protocols for sensor

networks. Wireless Networking, 8(5):521–534, 2002.

[4] J. Deng, R. Han, and S. Mishra. INSENS:

intrusion-tolerant routing in wireless sensor networks.

In Technical Report CU-CS-939-02, Department of

Computer Science, University of Colorado, 2002.

[5] B. Karp and H. T. Kung. GPSR: greedy perimeter

stateless routing for wireless networks. In

Proceedings of the 6th annual international

conference on Mobile computing and networking,

pages 243–254. ACM Press, 2000.

[6] P. Papadimitratos and Z. J. Haas. Secure routing

for mobile ad hoc networks. In Proceedings of the

SCS Communication Networks and Distributed

System Modeling and Simulation Conference (CNDS

2002), 2002.

[7] S. Tanachaiwiwat, P. Dave, R. Bhindwale, and A.

Helmy. Poster abstract secure locations: routing on

trust and isolating compromised sensors in location

aware sensor networks. In Proceedings of the 1st

international conference on Embedded networked

sensor systems, pages 324–325. ACM Press, 2003.

[8] D. Estrin, R. Govindan, J. S. Heidemann, and S.

Kumar. Next century challenges: Scalable

coordination in sensor networks. In Mobile

Computing and Networking, pages 263–270, 1999.

[9] L. Hu and D. Evans. Secure aggregation for

wireless networks. In SAINTW ’03: Proceedings of

the 2003 Symposium on Applications and the Internet

Workshops (SAINT’03 Workshops), page 384. IEEE

Computer Society, 2003.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and

W. Hong. Tag: a tiny aggregation service for ad-hoc

sensor networks. SIGOPS Oper. Syst. Rev.,

36(SI):131–146, 2002.

[11] B. Przydatek, D. Song, and A. Perrig. Sia: Secure

information aggregation in sensor networks, 2003.

[12] N. Shrivastava, C. Buragohain, D. Agrawal, and

S. Suri. Medians and beyond: new aggregation

techniques for sensor networks. In SenSys ’04:

Proceedings of the 2nd international conference on

Embedded networked sensor systems, pages 239–249.

ACM Press, 2004.

[13] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical

en-route detection and filtering of injected fase data in

sensor networks. In IEEE INFOCOM 2004, 2004.

[14] A. R. Beresford and F. Stajano. Location Privacy

in Pervasive Computing. IEEE Pervasive Computing,

2(1):46–55, 2003.

[15] T. Kaya, G. Lin, G. Noubir, and A. Yilmaz.

Secure multicast groups on ad hoc networks. In

Proceedings of the 1st ACM workshop on Security of

Ad hoc and Sensor Networks (SASN ’03), pages 94–

102. ACM Press, 2003.

[16] S. Rafaeli and D. Hutchison. A survey of key

management for secure group communication. ACM

Comput. Surv., 35(3):309–329, 2003.

[17] S. Ganeriwal and M. Srivastava. Reputation-

based framework for high integrity sensor networks.

In Proceedings of the 2nd ACM workshop on Security

of ad hoc and sensor networks, Washington DC,

USA, 2004.

[18] Z. Liang and W. Shi. Enforcing cooperative

resource sharing in untrusted peer-to-peer

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue.2, pp-733-741 ISSN: 2249-6645

 www.ijmer.com 741 | P a g e

environment. ACM Journal of Mobile Networks and

Applications (MONET), 10(6):771–783, 2005.

[19] Z. Liang and W. Shi. Analysis of

recommendations on trust inference in the open

environment. Technical Report MIST-TR-2005-002,

Department of Computer Science, Wayne State

University, February 2005.

[20] Z. Liang and W. Shi. PET: A PErsonalized Trust

model with reputation and risk evaluation for P2P

resource sharing. In Proceedings of the HICSS-38,

Hilton Waikoloa Village Big Island, Hawaii, January

2005.

[21] K. Ren, T. Li, Z. Wan, F. Bao, R. H. Deng, and

K. Kim. Highly reliable trust establishment scheme in

ad hoc networks. Computer Networks: The

International Journal of Computer and

Telecommunications Networking, 45:687–699,

August 2004.

[22] S. Tanachaiwiwat, P. Dave, R. Bhindwale, and

A. Helmy. Location-centric isolation of misbehavior

and trust routing in energy-constrained sensor

networks, April 2004.

[23] Z. Yan, P. Zhang, and T. Virtanen. Trust

evaluation based security solution in ad hoc networks.

In NordSec 2003, Proceedings of the Seventh Nordic

Workshop on Secure IT Systems, 2003.

[24] H. Zhu, F. Bao, R. H. Deng, and K. Kim.

Computing of trust in wireless networks. In

Proceedings of 60th IEEE Vehicular Technology

Conference, Los Angles, California, September 2004.

[25] R. Anderson and M. Kuhn. Tamper resistance - a

cautionary note. In The Second USENIX Workshop on

Electronic Commerce Proceedings, Oakland,

California, 1996.

[26] R. Anderson and M. Kuhn. Low cost attacks on

tamper resistant devices. In IWSP: International

Workshop on Security Protocols, LNCS, 1997.

[27] C. Hartung, J. Balasalle, and R. Han. Node

compromise in sensor networks: The need for secure

systems. Technical Report Technical Report CU-CS-

988-04, Department of Computer Science, University

of Colorado at Boulder, 2004.

[28] L. Hu and D. Evans. Using directional antennas

to prevent wormhole attacks. In In 11th Annual

Network and Distributed System Security Symposium,

February 2004.

[29] O. K¨omerling and M. G. Kuhn. Design

principles for tamper-resistant smartcard processors.

In appeared in the USENIX Workshop on Smartcard

Technology proceedings, Chicago, Illinois, USA, May

1999.

[30] N. Sastry, U. Shankar, and D. Wagner. Secure

verification of location claims. In ACM Workshop on

Wireless Security, September 2003.

[31] A. Seshadri, A. Perrig, L. van Doorn, and P.

Khosla. Swatt: Software-based attestation for

embedded devices. In In Proceedings of the IEEE

Symposium on Security and Privacy, May 2004.

[32] X. Wang, W. Gu, S. Chellappan, K.t Schoseck,

and Dong Xuan. Lifetime optimization of sensor

networks under physical attacks. In Proc. of IEEE

Internationl Conference on Communications, May

2005.

[33] X. Wang, W. Gu, S. Chellappan, Dong Xuan,

and Ten H. Laii. Search-based physical attacks in

sensor networks: Modeling and defense. Technical

report, Dept. of Computer Science and Engineering,

The Ohio-State University, February 2005.

[34] A. D. Wood and J. A. Stankovic. Denial of

service in sensor networks. Computer, 35(10):54–62,

2002.

[35] D. W. Carman, P. S. Krus, and B. J. Matt.

Constraints and approaches for distributed sensor

network security. Technical Report 00-010, NAI

Labs, Network Associates, Inc., Glenwood, MD,

2000.

[36] http://www.xbow.com/wireless home.aspx, 2006.

[37] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E.

Culler, and K. Pister. System architecture directions

for networked sensors. In Architectural Support for

Programming Languages and Operating Systems,

pages 93–104, 2000.

[38] J. A. Stankovic et al. Real-time communication

and coordination in embedded sensor networks.

Proceedings of the IEEE, 91(7):1002–1022, July

2003.

[39] Mayank Saraogi, Security in Wireless Sensor

Networks; Department of Computer Science,

University of Tennessee, Knoxville

[40] Chris Karlof, Naveen Sastry, David Wagner.

TinySec: A Link Layer Security Architecture for

Wireless Sensor Networks. ACM SenSys 2004,

November 3-5, 2004.

