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ABSTRACT 
Simultaneous stabilization is recognized as one of the open 

issues in linear system theory, arises for instance in many 

applications such as reliable control, robust control and 

nonlinear control. This paper deals with designing a constant 

output feedback controller for the stabilization of given M 

linear systems. The design equations are functions of the 

state and control weighting matrices.  
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I.INTRODUCTION 
The problem of simultaneously stabilizing a family of linear 

continuous systems by an output controller is considered 

here. The simultaneous stabilization problem (SSP)  

can be formally stated as given an r-tuple ( ),...... ( )i rG s G s  

of proper distinct transfer functions for plants, find a 

compensator C(s) (if it exists) such that all closed-loop 

 

systems 
( ) ( )

, ( 1, 2,...... )
1 ( ) ( )

i

i

C s G s
i r

C s G s



  are internally 

 

stable [1, 2, 3].If the compensator C(s) is further restricted to 

be stable, i.e. it has no unstable poles, then the simultaneous 

stabilization problem (SSP) is referred to as a strong 

simultaneous stabilization problem (SSSP). The requirement 

for a stable compensator arises in certain cases where the 

instability of the compensator appears to result in poor 

overall system sensitivity are to variations in plant 

parameters as is shown in [4].   

 

The motivation behind the simultaneous control problem is 

to control a nonlinear system, represented by linear models 

at different operating points, using one controller. In this 

case, each linear model represents an operating point. The 

parameter variations of the system model form a low-

frequency upper bound on the singular values of the loop 

gain transfer function. . Some of the robust controller design 

methods, LQG/LTR for example, have no mechanism for 

dealing with this upper bound. On the other hand, the 

simultaneous control technique can make gain scheduling 

easier to implement by reducing the number of operating 

points to be scheduled. This is accomplished by grouping the 

total number of pre-specified operating points into classes. A 

different controller is then designed for each of these classes 

[5]. Another use of the simultaneous control is in the design  

 

 

of controllers that are robust against sensor or actuator 

failures. When a sensor or an actuator fails during operation, 

the system characteristics change, effectively generating a 

new system. Simultaneous control design can be used to 

design a single controller that gives good performance for 

both the original system and the new system generated by 

the failure. 

The simultaneous control problem has attracted many 

researchers over the last many years. Some of the results for 

single-input single-output (SISO) transfer functions were 

reported in [6,7]. Peterson [8] obtained a nonlinear state 

feedback controller that quadratically stabilized a set of 

single-input linear systems simultaneously. Schmitendorf [9] 

acquired a sufficient condition for the existence of a 

stabilizing linear state feedback for a collection of single-

input linear systems. Miller [10,11] employed linear 

periodically time-varying controllers for the simultaneous 

stabilization and disturbance rejection for a set of linear 

systems. Suryanarayana et al. [12] have also addressed the 

problem of simultaneously stabilizing controllers for 

automated vehicles. Strong simultaneous stabilization of 

linear systems is addressed in [15,16]. Wang et al. [17] and, 

subsequently, Cai etc al. [18] have also addressed the 

problem of simultaneous stabilization of nonlinear systems. 

In this paper a design technique for the stabilization of M 

continuous systems by a single output feedback controller 

has been developed. 

 

II. METHODOLOGY 
Consider the system: 

      

        (1) 

 
 

Where  is a vector of dimension v, and the value of  

determines the system matrices. The above system may 

represent a linear approximation of a non linear system at 

different operating points. It may also represent an uncertain 

plant. In the first case, is used as an index for identifying 

operating points while in the second case  may represent 

intervals of uncertainties of system’s parameters. 

 

 

 

STABILIZATION OF LINEAR SYSTEMS 
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Definition 1. The region of operation of the above system is 

the domain of . 

 

Definition 2.  The linear systems 

     

      (2) 

 
 

, represent the system in (1) if the stabilization 

of the  systems in (2) guarantees the stabilization of (1). 

Assume that the  systems in (2) represent the system in 

(1). We also assume that each of the   systems in (2) is 

stabilizable by output-feedback controller, and we seek an 

output-feedback controller  which stabilizes the system in 

(1) for some values of . The following theorem shows how 

to construct such a controller. 

 

Theorem.  An output feedback controller  ( ) ( )u t Ky t  

which stabilizes the system in (1) exists if there exist 

'iQ s and 'iR s such that 

' 0, 1,.....,t t t t t

i i i i i i i j i i i i j i

j i j i

Q C K R K C C K B P PB K C i M
 

     

                       (3) 

Where iK  is given by 

1 1( )t t t

i i i i i i i i iK R B PN C C N C 
                    (4) 

 

iP  is given by  

  ( ) 0
i t t

i i i i i i i i i i i i i i i iA B K C P P A B K C Q C K R K C     

            (5) 

And iN  is the solution of 

    0
t

i i i i i i i i i iN A B K C A B K C N I    
 

          (6) 

Proof  

Define  Lyapunov function 
t

i iV x Px  

Where iP  is a positive definite matrix. Using the controller 

in (4), system (1) is stable if the derivatives of iV with 

respect to time  

  

are negative for all . Choose  as the solution 

of (5), the derivative of  will be negative if and only if (3) 

is satisfied. 

 

III. EXAMPLE 
Consider the stabilization of the short-period longitudinal 

modes of the McDonnell Douglas F4-E aircraft. This is a 

three-state model. The states are normal acceleration, pitch 

rate, and elevator angle. Consider two operating points 

representing (1) Mach 0.5, altitude 5000ft., and (2) Mach 9, 

and altitude 35,000 ft. The system matrices corresponding to 

these flight conditions are: 

 

 
 

 
 

 
and 

 
 

Using the result, the output-feedback controller is  

 

 

which is found using (3) – (6). The designed controller 

stabilizes both operating points. The eigen values of first 

operating point are  and the 

second operating point has eigenvalues -135.3, -1.8 and -

20.3. Figs 1 and 2 show the impulse responses of the 

uncontrolled and controlled system with the designed 

controller for first as well as for second operating point. 

 

 
Figure1. Impulse responses of the uncontrolled system and the 

controlled system with the designed controller at first operating 

point 
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Figure2. Impulse responses of the uncontrolled system and the 

controlled system with the designed controller at second operating 

point 

 

IV. CONCLUSION 
The paper has utilized the state and control weighing 

matrices of the LQR output-feedback controller for solving 

the problem of stabilization more than one system by a fixed 

controller. The stabilization of aircraft at two different 

operating points is presented. 
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