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Abstract: Cloud Storage provides whatever amount of 

storage you require, on an immediate basis. It is persistent. It 

can be accessed in a variety of ways, both in the data center 

where the cloud is housed, as well as via the Internet. If you 

obtain this from an external provider, it is purchased on a 

pay as you go basis. You do not manage it, you use it, and 

the service provider manages it." Cloud systems should be 

geographically dispersed to reduce their vulnerability due to 

earthquakes and other catastrophes, which increase technical 

challenge on a great level of distributed data interpretability 

and mobility. Data interoperability is even more essential in 

the future as one component of a multi-faceted approach to 

many applications; many open challenges still remain such 

as cloud data security and the efficiency of query processing 

in the cloud. The proliferation of malware in recent years has 

presented a serious threat to the security of computer 

systems. Polymorphic computer viruses, which adopt 

obfuscation technique, are more complex and difficult than 

their original versions to detect, as well as new, previously 

unseen viruses, often making antivirus companies ineffective 

when using the classic signature-based virus detection 

technique. In this paper, we rest on the analysis of Win API 

calling sequences of PE files and propose a new approach for 

detecting polymorphic or even unknown malware in the 

Windows platform based on data mining technique, namely 

OOA Mining algorithm. Our approach rests on an analysis 

based on the Win API calling sequence that reflects the 

behavior of a piece of particular code. we develop the 

Intelligent Malware Detection System (IMDS) using 

Objective- Oriented Association (OOA) mining based 

classification. IMDS is an integrated system consisting of 

three major modules: PE parser, OOA rule generator, and 

rule based classifier. An OOA Fast FP- Growth algorithm is 

adapted to efficiently generate OOA rules for classification. 

A comprehensive experimental study on a large collection of 

PE files obtained from the anti-virus laboratory of King- Soft 

Corporation is performed to compare various malware 

detection approaches. 

 

Keywords: OOA Mining, Windows API Sequence, PE 

File, Malware 
 

I. Introduction 
    The proliferation of malware in recent years has presented 

a serious threat to the security of computer systems. 

Polymorphic computer viruses, which adopt obfuscation 

technique, are more complex and difficult than their original 

versions to detect, as well as new, previously unseen viruses, 

often making antivirus companies ineffective when using the 

classic signature-based virus detection technique. In this 

paper, we rest on the analysis of Win API calling sequences 

of PE files and propose a new approach for detecting 

polymorphic or even unknown malware in the Windows 

platform based on data mining technique, namely OOA 

Mining algorithm[21]. Our approach rests on an analysis 

based on the Win API calling sequence that reflects the 

behavior of a piece of particular code. The analysis is carried 

out directly on the PE code. It is achieved in three major 

steps: construct the API calling sequences for both training 

set and testing set; and then extract the OOA rules from the 

training set using OOA Mining algorithm; at last, detect the 

testing set according to the OOA rules created by the OOA 

rules generator. We implement a malware detection system, 

DMAV system, to evaluate the effectiveness of our proposed 

approach, mainly three major modules included: 1. PE 

Parser: considering that virus scanner is a speed sensitive 

application, and, in order to improve the system 

performance, we develop a PE parser to construct the API 

calling sequences of a PE file instead of using a third party 

disassembler. In advance, in order to make  convenience for 

our DMAV system’s further analysis, we also implement 

three other functions: function calls’ extraction from a PE 

file’s export  table, the extraction of a PE file’s section 

information and the disassembler of a PE file. 2. OOA Rules 

Generator: after extracting the Win API sequences of the 

training set by our PE parse, we store these Win API 

sequences into the database as signatures, then pass them 

through the OOA Rules generator to mine the rules 

satisfying the specific objective, and thus store such rules 

into the OOA Rules database. In addition, we implement 

three distinguishing algorithms for our OOA mining, and 

they are as follows: OOA_Apriori, OOA_FPgrowth, 

OOA_DMAV_FPgrowth. 3. Malware Detection Module: in 

order to determine whether a PE file in the testing set is a 

malware or not, we pass this PE file’s API sequence 

constructed by our PE parser, together with each OOA Rule 

in OOA Rules database created by our OOA rule generator, 

through a malware detection module. In this paper, we make 

contribution to optimize the signature creation using OOA 

mining algorithm, and, the experiment results illustrate that, 

compared to the other two OOA mining algorithms, our 

OOA_DMAV_FPgrowth algorithm performs the highest 

Object Oriented Association (OOA) Mining Based Classification in 

Storage Cloud 
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efficiency. Thus, encouraging experimental results 

demonstrate the robustness and intelligence of our DMAV 

system: compared with several popular anti-virus software’s, 

our DMAV system can detect not only known viruses, but 

also polymorphic and new previously unseen malware 

effectively and efficiently. 

II. Related Work 
Besides the traditional signature-based malware detection 

methods, there is some work to improve the signature-based 

detection [15, 3, 12] and also a few attempts to apply data 

mining and machine learning techniques to detect new 

malicious executables. Sung et al. [15] developed a signature 

based malware detection system called SAVE (Static 

Analyzer of Vicious Executables) which emphasized on 

detecting polymorphic malware. The basic idea of this 

approach is to extract the signatures from the original 

malware with the hypothesis that all versions of the same 

malware share a common core signature. Schultz et al. [13] 

applied Naive Bayes method to detect previously unknown 

malicious code. Decision Tree was studied in [18, 9]. Kolter 

et al. [9] gathered 1971 benign executables and 1651 

malicious executables in Windows PE format, and examined 

the performance of different classifiers such as Naive Bayes, 

support vector machine (SVM) and Decision Tree using 10-

fold cross validation and plotting ROC curves [16]. Their 

results also showed that the ROC curve of the Decision Tree 

method dominated all others. Different from earlier studies, 

our work is based on a large collection of malicious 

executables collected at KingSoft Anti-Virus Laboratory. In 

addition, we apply OOA mining technique to extract the 

characterizing frequent patterns to achieve accurate malware 

detection since frequent patterns found by association 

mining carry the underlying semantics of the data 

III. The System Architecture 

Our IMDS system is performed directly on Windows PE 

code. PE is designed as a common file format for all flavors 

of Windows operating system, and PE viruses are in the 

majority of the viruses rising in recent years. Some famous 

viruses such as CIH, CodeRed, CodeBlue, Nimda, Sircam, 

Killonce, Sobig, and LoveGate all aim at PE les. The system 

consists of three major components: PE parser, OOA rule 

generator, and malware detection module, as illustrated in 

Figure 1. 

The functionality of the PE parser is to generate the 

Windows API execution sequence for each benign/malicious 

executable. Since a virus scanner is usually a speed sensitive 

application, in order to improve the system performance, we 

developed a PE parser to construct the API execution 

sequences of PE les instead of using a third party 

disassembler. If a PE file is previously compressed by a third 

party binary compress toll, it needs to be decompressed 

before being passed to the PE parser. Through the API query 

database, the API execution sequence generated by the PE 

parser can be converted to a group of 32-bit global IDs 

which represents the static execution sequence of the 

corresponding API functions. 

 

Figure 1.  IMDS system architecture. 

Then we use the API calls as the signatures of the PE les 

and store them in the signature database, which contains 6 

fields: record ID, PE file name, file type (“0” represents 

benign file while “1” is for malicious file), called API 

sequence name, called API ID, and the total number of 

called API functions. After that, an OOA mining algorithm 

is applied to generate class association rules which are 

recorded in the rule database. To finally determine whether a 

PE file is malicious or not, we pass the selected API calls 

together with the rules generated to the malware detection 

module to perform the association rule based classification. 

 

IV. CLASSIFICATION BASED ON OOA 

MINING 
Both classification and association mining play important 

roles in data mining techniques. Classification is “the task of 

learning a target function that maps each feature set to one of 

the predefined class labels” [17]. For association rule 

mining, there is no predetermined target. Given a set of 

transactions in the database, all the rules that satisfied the 

support and confidence thresholds will be discovered [1]. As 

a matter of fact, classification and association rule mining 

can be integrated to association rule based classification [10, 

2]. This technique utilizes the properties of frequent patterns 

to solve the scalability and over fitting issues in 

classification and achieves excellent accuracy [2]. In our 

IMDS system, we adapted OOA mining techniques [14] to 

generate the rules. 
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A. OOA Definitions 

In our IMDS system, the goal is to find out how a set of 

API calls supports the specific objectives:  

 1) Definition1: (Support and confidence)  

be an itemset and  be an association rule 

in OOA mining. The support and confidence of the rule are 

defined as:  

  

 where 

the function count returns the number of records in the 

dataset DB where holds. 

2) Definition 2: (OOA frequent itemset) Given  as 

a user-specified minimum support.  is OOA frequent 

item set/pattern in DB if  

3) Definition 3: (OOA rule) Given  as a user-

specified confidence. Let  be an OOA 

frequent itemset.  is an OOA rule if 

. 

 

B. OOA Fast FP-Growth Algorithm 

Although Apriori algorithm can be extended to OOA 

mining, it requires many iterations to generate all of the 

frequent itemsets before generating the association rules. An 

alternative OOA mining algorithm called OOA FP-Growth 

is designed based on FP-Growth algorithm [6, 5]. In general, 

OOA FP-Growth algorithm is much faster than OOA Apriori 

for mining frequent itemsets. However, when the minimum 

support is small, OOA FP-Growth generates a huge number 

of conditional FP-trees recursively, which is time and space 

consuming. Our malware detection relies on finding frequent 

patterns from large collections of data, therefore, the 

efficiency is an essential issue to our system. In our IMDS 

system, we extend a modified FP-Growth algorithm 

proposed in [4] to conduct the OOA mining. This algorithm 

greatly reduces the costs of processing time and memory 

space, and we call it OOA Fast FP-Growth algorithm. 

Similar to OOA FP-Growth algorithm, there are also two 

steps in OOA Fast FP-Growth algorithm: constructing an 

OOA Fast FPtree and generating frequent patterns from the 

tree. But the structure of an OOA Fast FP-tree is different 

from that of an OOA FPtree in the following way: (1) The 

paths of an OOA Fast FP-tree are directed, and there is no 

path from the root to leaves. Thus, fewer pointers are needed 

and less memory space is required. (2) In an OOA FP-tree, 

each node is the name of an item, but in an OOA Fast FP-

tree, each node is the sequence number of an item, which is 

determined by the support count of the item. The detailed 

description can be referenced in [4].   

C. An Illustrating Example 

At the beginning of this section, we state that frequent 

patterns are essential to accurate classification. To 

demonstrate the effectiveness of the frequent patterns, we 

show an example rule generated by OOA Fast FP-Growth 

algorithm. We sample 5611 records from our signature 

database, of which 3394 records are malicious executables 

and 2217 records are benign executables. One of the rules 

we generated 

is:

 where os and oc represent the support and confidence, 

respectively. After converting the API IDs to API names via 

our API query database, this rule becomes: 

(KERNEL32.DLL,OpenProcess;CopyFileA;CloseHandle

;GetVersionExA;GetModuleFileNameA;WriteFile)→ 

obj1=(Group=Malicious)(os=0.296739,oc=0.993437) 

After analyzing the API sequence in this rule, we know 

that the program actually executes the following functions: 

(i) returns a handle to an existing process object; (ii) copies 

an existing file to a new file; (iii) closes the handle of the 

open object; (iv) obtains extended information about the 

version of the currently running operating system; (v) 

retrieves the complete path of the file that contains the 

specified module of current process; and (vi) writes data to 

the file. with the os and oc values, we know that this 

sequence of API appears in 1665 malware, while only in 11 

benign files. Obviously, it is one of the essential rules for 

determining whether an executable is malicious or not. In the 

experiments section, we perform a comprehensive 

experimental study to evaluate the efficiency of different 

OOA mining algorithms. 

D. Associative Classifier 

For OOA rule generation, we use the OOA Fast FP-

Growth algorithm to obtain all the association rules with 

certain support and confidence thresholds, and two 

objectives: 

 Then we apply the technique of classification based on 

association rules (CBA) to build a CBA classifier [10] as our 

malware detection module. The CBA classifier is built on 

rules with high support and confidence and uses the 

association between frequent patterns and the type of _les for 

prediction. So, our malware detection module takes the input 

of generated OOA rules and outputs the prediction of 

whether an executable is malicious or not.  
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V. DATA COLLECTION 
As stated previously, we obtained 29580 Windows PE 

_les of which 12214 were recognized as benign executables 

while 17366 were malicious executables. The malicious 

executables mainly consisted of backdoors, worms, and 

Trojan horses and all of them were provided by the Anti-

virus laboratory of KingSoft Corporation. The benign 

executables were gathered from the system _les of Windows 

2000/NT and XP operating system.  

VI. EXPERIMENTAL RESULTS AND 

ANALYSIS 
We conduct three sets of experiments using our collected 

data. In the first set of experiments, we evaluate the 

efficiency of different OOA mining algorithms. The second 

set of experiments is to compare the abilities to detect 

polymorphic and unknown malware of our IMDS system 

with current widely-used anti-virus software. 

The efficiency and false positives by using different 

scanners have also been examined. Finally, we compare our 

IMDS system with other classification based methods. All 

the experiments are conducted under the environment of 

Windows 2000 operating system plus Intel P4 1Ghz CPU 

and 1Gb of RAM.  

A. Evaluation of Different OOA Mining Algorithms 

In the first set of experiments, we implement OOA 

Apriori, OOA FP-Growth, and OOA Fast FP-Growth 

algorithms under Microsoft Visual C++ environment. We 

sample 5611 records from our signature database, which 

includes 3394 records of malicious executables and 2217 

records of benign executables. By using different support 

and confidence thresholds, we compare the efficiency of the 

three algorithms, we observe that the time complexity 

increases exponentially as the minimum support threshold 

decreases. However, it shows obviously that the OOA Fast 

FP-Growth algorithm is much more efficient than the other 

two algorithms, and it even doubles the speed of performing 

OOA FP-Growth algorithm.  

B. Comparisons of Different Anti-virus Scanners 

In this section, we examine the abilities of detecting 

polymorphic malware and unknown malware of our system 

in comparison with some of the popular software tools such 

as Norton AntiVirus 2006, Dr.Web, McAfee VirusScan and 

Kaspersky Anti-Virus. The efficiency and the number of 

false positives are also evaluated.  

 

1) Polymorphic Virus Detection 

In this experiment, we sample 3000 malicious _les and 

2000 benign _les in the training data set, then we use 1500 

malware and 500 benign executables as the test data set. 

Several recent Win32 PE viruses are included in the test data 

set for analysis such as Lovedoor, My doom, Blaster, and 

Beagle. For each virus, we apply the obfuscation techniques 

described in [15] to create a set of polymorphic versions. 

Then we compare our system with current 

most widely-used anti-virus software. The results shown 

in Table 4 demonstrate that our IMDS system achieves better 

accuracy than other software in polymorphic malware 

detection.  

2) Unknown Malware Detection 

In order to examine the ability of identifying new and 

previously unknown malware of our IMDS system, in the 

test data set, we use 1000 malware analyzed by the experts in 

KingSoft Anti-virus laboratory, while the signatures of the 

malware have not been recorded into the virus signature 

database. Comparing with other anti-virus software, our 

IMDS system performs most accurate detection. The results 

are listed in Table 5.  

 

3) System Efficiency and False Positives 

In malware detection, a false positive occurs when the 

scanner marks a benign file as a malicious one by error. 

False positives can be costly nuisances due to the waste of 

time and resources to deal with those falsely reported files. 

In this set of experiments, in order to examine the system 

efficiency and the number of false positives of the IMDS 

system, we sample 2000 executables in the test data set, 

which contains 500 malicious executables and 1500 benign 

ones. First, we compare the efficiency of our system with 

different scanners including the scanner named. SAVE. [15, 

20] described in related work and some widely-used anti-

virus software. The results illustrate that our IMDS system 

achieves much higher efficiency than other scanners when 

being executed in the same environment. The number of 

false positives by using different scanners are also examined. 

By scanning 1500 benign executables 

whose signatures have not been recorded in the signature 

database, the obtained results clearly shows that the false 

positives by using our IMDS system are much fewer than 

other scanners.  

C. Comparisons of Different Classification Methods 

In this set of experiments, we compare our system with 

Naïve Bayes, Support Vector Machine (SVM) and Decision  

tree methods. We randomly select 2843 executables from 

our data collection, in which 1207 files are benign and 1636 

executables are malicious. Then we convert the transactional 

sample data in our signature database into a relational table, 

in which each column corresponds to an API and each row is 

an executable. This transformation makes it easy to apply 

feature selection methods and other classification 

approaches. First, we rank each API using Max- relevance 

algorithm [11], classification. In the experiments, we use the 

Naive Bayes classifier and J4.8 version of Decision Tree 

implemented in WEKA [19], and also the SVM 

implemented in LIBSVM package [7]. For the OOA Fast 

FP-Growth mining, we select thresholds based on two 

criteria: setting  as close to 1 as possible; and selecting a 

big  without exceeding the maximum support in the data 

set. Then, in the experiment, we set  to 0.294 and  

to 0.98. Ten-fold cross validation is used to evaluate the 

accuracy of each classifier.  
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VII. CONCLUSIONS 
In this paper, we describe our research effort on malware 

detection based on window API sequence. In summary, our 

main contributions are: (1) We develop an integrated IMDS 

system based on analysis of Windows API execution 

sequences. The system consists of three components: PE 

parser, rule generator and classifier; (2) We adapt existing 

association based classification techniques our system on a 

large collection of executables including 12214 benign 

samples and 17366 malicious ones; (4) We provide a 

comprehensive experimental study on various anti-virus 

software as well as various data mining techniques for 

malware detection using our data collection; (5) Our system 

has been already incorporated into the scanning tool of 

KingSoft's AntiVirus software. 
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