
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-547-551 ISSN: 2249-6645

 www.ijmer.com 547 | Page

V.Naresh Kumar
!
 Ramesh nallamalli

2
 Gorantla praveen

3

I.Pavan Kumar
4
 K Subrahamanyam

5

M.Tech[CSE] M.Tech[CSE] M.Tech[CSE] M.Tech[CSE] Professor
1 ,2, 3, 4, 5

Dept of computer Science and Engineering, KL University, Vaddeswaram, Guntur (District), AP.

Abstract: Cloud Storage provides whatever amount of

storage you require, on an immediate basis. It is persistent. It

can be accessed in a variety of ways, both in the data center

where the cloud is housed, as well as via the Internet. If you

obtain this from an external provider, it is purchased on a

pay as you go basis. You do not manage it, you use it, and

the service provider manages it." Cloud systems should be

geographically dispersed to reduce their vulnerability due to

earthquakes and other catastrophes, which increase technical

challenge on a great level of distributed data interpretability

and mobility. Data interoperability is even more essential in

the future as one component of a multi-faceted approach to

many applications; many open challenges still remain such

as cloud data security and the efficiency of query processing

in the cloud. The proliferation of malware in recent years has

presented a serious threat to the security of computer

systems. Polymorphic computer viruses, which adopt

obfuscation technique, are more complex and difficult than

their original versions to detect, as well as new, previously

unseen viruses, often making antivirus companies ineffective

when using the classic signature-based virus detection

technique. In this paper, we rest on the analysis of Win API

calling sequences of PE files and propose a new approach for

detecting polymorphic or even unknown malware in the

Windows platform based on data mining technique, namely

OOA Mining algorithm. Our approach rests on an analysis

based on the Win API calling sequence that reflects the

behavior of a piece of particular code. we develop the

Intelligent Malware Detection System (IMDS) using

Objective- Oriented Association (OOA) mining based

classification. IMDS is an integrated system consisting of

three major modules: PE parser, OOA rule generator, and

rule based classifier. An OOA Fast FP- Growth algorithm is

adapted to efficiently generate OOA rules for classification.

A comprehensive experimental study on a large collection of

PE files obtained from the anti-virus laboratory of King- Soft

Corporation is performed to compare various malware

detection approaches.

Keywords: OOA Mining, Windows API Sequence, PE

File, Malware

I. Introduction
 The proliferation of malware in recent years has presented

a serious threat to the security of computer systems.

Polymorphic computer viruses, which adopt obfuscation

technique, are more complex and difficult than their original

versions to detect, as well as new, previously unseen viruses,

often making antivirus companies ineffective when using the

classic signature-based virus detection technique. In this

paper, we rest on the analysis of Win API calling sequences

of PE files and propose a new approach for detecting

polymorphic or even unknown malware in the Windows

platform based on data mining technique, namely OOA

Mining algorithm[21]. Our approach rests on an analysis

based on the Win API calling sequence that reflects the

behavior of a piece of particular code. The analysis is carried

out directly on the PE code. It is achieved in three major

steps: construct the API calling sequences for both training

set and testing set; and then extract the OOA rules from the

training set using OOA Mining algorithm; at last, detect the

testing set according to the OOA rules created by the OOA

rules generator. We implement a malware detection system,

DMAV system, to evaluate the effectiveness of our proposed

approach, mainly three major modules included: 1. PE

Parser: considering that virus scanner is a speed sensitive

application, and, in order to improve the system

performance, we develop a PE parser to construct the API

calling sequences of a PE file instead of using a third party

disassembler. In advance, in order to make convenience for

our DMAV system’s further analysis, we also implement

three other functions: function calls’ extraction from a PE

file’s export table, the extraction of a PE file’s section

information and the disassembler of a PE file. 2. OOA Rules

Generator: after extracting the Win API sequences of the

training set by our PE parse, we store these Win API

sequences into the database as signatures, then pass them

through the OOA Rules generator to mine the rules

satisfying the specific objective, and thus store such rules

into the OOA Rules database. In addition, we implement

three distinguishing algorithms for our OOA mining, and

they are as follows: OOA_Apriori, OOA_FPgrowth,

OOA_DMAV_FPgrowth. 3. Malware Detection Module: in

order to determine whether a PE file in the testing set is a

malware or not, we pass this PE file’s API sequence

constructed by our PE parser, together with each OOA Rule

in OOA Rules database created by our OOA rule generator,

through a malware detection module. In this paper, we make

contribution to optimize the signature creation using OOA

mining algorithm, and, the experiment results illustrate that,

compared to the other two OOA mining algorithms, our

OOA_DMAV_FPgrowth algorithm performs the highest

Object Oriented Association (OOA) Mining Based Classification in

Storage Cloud

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-547-551 ISSN: 2249-6645

 www.ijmer.com 548 | Page

efficiency. Thus, encouraging experimental results

demonstrate the robustness and intelligence of our DMAV

system: compared with several popular anti-virus software’s,

our DMAV system can detect not only known viruses, but

also polymorphic and new previously unseen malware

effectively and efficiently.

II. Related Work
Besides the traditional signature-based malware detection

methods, there is some work to improve the signature-based

detection [15, 3, 12] and also a few attempts to apply data

mining and machine learning techniques to detect new

malicious executables. Sung et al. [15] developed a signature

based malware detection system called SAVE (Static

Analyzer of Vicious Executables) which emphasized on

detecting polymorphic malware. The basic idea of this

approach is to extract the signatures from the original

malware with the hypothesis that all versions of the same

malware share a common core signature. Schultz et al. [13]

applied Naive Bayes method to detect previously unknown

malicious code. Decision Tree was studied in [18, 9]. Kolter

et al. [9] gathered 1971 benign executables and 1651

malicious executables in Windows PE format, and examined

the performance of different classifiers such as Naive Bayes,

support vector machine (SVM) and Decision Tree using 10-

fold cross validation and plotting ROC curves [16]. Their

results also showed that the ROC curve of the Decision Tree

method dominated all others. Different from earlier studies,

our work is based on a large collection of malicious

executables collected at KingSoft Anti-Virus Laboratory. In

addition, we apply OOA mining technique to extract the

characterizing frequent patterns to achieve accurate malware

detection since frequent patterns found by association

mining carry the underlying semantics of the data

III. The System Architecture

Our IMDS system is performed directly on Windows PE

code. PE is designed as a common file format for all flavors

of Windows operating system, and PE viruses are in the

majority of the viruses rising in recent years. Some famous

viruses such as CIH, CodeRed, CodeBlue, Nimda, Sircam,

Killonce, Sobig, and LoveGate all aim at PE les. The system

consists of three major components: PE parser, OOA rule

generator, and malware detection module, as illustrated in

Figure 1.

The functionality of the PE parser is to generate the

Windows API execution sequence for each benign/malicious

executable. Since a virus scanner is usually a speed sensitive

application, in order to improve the system performance, we

developed a PE parser to construct the API execution

sequences of PE les instead of using a third party

disassembler. If a PE file is previously compressed by a third

party binary compress toll, it needs to be decompressed

before being passed to the PE parser. Through the API query

database, the API execution sequence generated by the PE

parser can be converted to a group of 32-bit global IDs

which represents the static execution sequence of the

corresponding API functions.

Figure 1. IMDS system architecture.

Then we use the API calls as the signatures of the PE les

and store them in the signature database, which contains 6

fields: record ID, PE file name, file type (“0” represents

benign file while “1” is for malicious file), called API

sequence name, called API ID, and the total number of

called API functions. After that, an OOA mining algorithm

is applied to generate class association rules which are

recorded in the rule database. To finally determine whether a

PE file is malicious or not, we pass the selected API calls

together with the rules generated to the malware detection

module to perform the association rule based classification.

IV. CLASSIFICATION BASED ON OOA

MINING
Both classification and association mining play important

roles in data mining techniques. Classification is “the task of

learning a target function that maps each feature set to one of

the predefined class labels” [17]. For association rule

mining, there is no predetermined target. Given a set of

transactions in the database, all the rules that satisfied the

support and confidence thresholds will be discovered [1]. As

a matter of fact, classification and association rule mining

can be integrated to association rule based classification [10,

2]. This technique utilizes the properties of frequent patterns

to solve the scalability and over fitting issues in

classification and achieves excellent accuracy [2]. In our

IMDS system, we adapted OOA mining techniques [14] to

generate the rules.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-547-551 ISSN: 2249-6645

 www.ijmer.com 549 | Page

A. OOA Definitions

In our IMDS system, the goal is to find out how a set of

API calls supports the specific objectives:

 1) Definition1: (Support and confidence)

be an itemset and be an association rule

in OOA mining. The support and confidence of the rule are

defined as:

 where

the function count returns the number of records in the

dataset DB where holds.

2) Definition 2: (OOA frequent itemset) Given as

a user-specified minimum support. is OOA frequent

item set/pattern in DB if

3) Definition 3: (OOA rule) Given as a user-

specified confidence. Let be an OOA

frequent itemset. is an OOA rule if

.

B. OOA Fast FP-Growth Algorithm

Although Apriori algorithm can be extended to OOA

mining, it requires many iterations to generate all of the

frequent itemsets before generating the association rules. An

alternative OOA mining algorithm called OOA FP-Growth

is designed based on FP-Growth algorithm [6, 5]. In general,

OOA FP-Growth algorithm is much faster than OOA Apriori

for mining frequent itemsets. However, when the minimum

support is small, OOA FP-Growth generates a huge number

of conditional FP-trees recursively, which is time and space

consuming. Our malware detection relies on finding frequent

patterns from large collections of data, therefore, the

efficiency is an essential issue to our system. In our IMDS

system, we extend a modified FP-Growth algorithm

proposed in [4] to conduct the OOA mining. This algorithm

greatly reduces the costs of processing time and memory

space, and we call it OOA Fast FP-Growth algorithm.

Similar to OOA FP-Growth algorithm, there are also two

steps in OOA Fast FP-Growth algorithm: constructing an

OOA Fast FPtree and generating frequent patterns from the

tree. But the structure of an OOA Fast FP-tree is different

from that of an OOA FPtree in the following way: (1) The

paths of an OOA Fast FP-tree are directed, and there is no

path from the root to leaves. Thus, fewer pointers are needed

and less memory space is required. (2) In an OOA FP-tree,

each node is the name of an item, but in an OOA Fast FP-

tree, each node is the sequence number of an item, which is

determined by the support count of the item. The detailed

description can be referenced in [4].

C. An Illustrating Example

At the beginning of this section, we state that frequent

patterns are essential to accurate classification. To

demonstrate the effectiveness of the frequent patterns, we

show an example rule generated by OOA Fast FP-Growth

algorithm. We sample 5611 records from our signature

database, of which 3394 records are malicious executables

and 2217 records are benign executables. One of the rules

we generated

is:

 where os and oc represent the support and confidence,

respectively. After converting the API IDs to API names via

our API query database, this rule becomes:

(KERNEL32.DLL,OpenProcess;CopyFileA;CloseHandle

;GetVersionExA;GetModuleFileNameA;WriteFile)→

obj1=(Group=Malicious)(os=0.296739,oc=0.993437)

After analyzing the API sequence in this rule, we know

that the program actually executes the following functions:

(i) returns a handle to an existing process object; (ii) copies

an existing file to a new file; (iii) closes the handle of the

open object; (iv) obtains extended information about the

version of the currently running operating system; (v)

retrieves the complete path of the file that contains the

specified module of current process; and (vi) writes data to

the file. with the os and oc values, we know that this

sequence of API appears in 1665 malware, while only in 11

benign files. Obviously, it is one of the essential rules for

determining whether an executable is malicious or not. In the

experiments section, we perform a comprehensive

experimental study to evaluate the efficiency of different

OOA mining algorithms.

D. Associative Classifier

For OOA rule generation, we use the OOA Fast FP-

Growth algorithm to obtain all the association rules with

certain support and confidence thresholds, and two

objectives:

 Then we apply the technique of classification based on

association rules (CBA) to build a CBA classifier [10] as our

malware detection module. The CBA classifier is built on

rules with high support and confidence and uses the

association between frequent patterns and the type of _les for

prediction. So, our malware detection module takes the input

of generated OOA rules and outputs the prediction of

whether an executable is malicious or not.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-547-551 ISSN: 2249-6645

 www.ijmer.com 550 | Page

V. DATA COLLECTION
As stated previously, we obtained 29580 Windows PE

_les of which 12214 were recognized as benign executables

while 17366 were malicious executables. The malicious

executables mainly consisted of backdoors, worms, and

Trojan horses and all of them were provided by the Anti-

virus laboratory of KingSoft Corporation. The benign

executables were gathered from the system _les of Windows

2000/NT and XP operating system.

VI. EXPERIMENTAL RESULTS AND

ANALYSIS
We conduct three sets of experiments using our collected

data. In the first set of experiments, we evaluate the

efficiency of different OOA mining algorithms. The second

set of experiments is to compare the abilities to detect

polymorphic and unknown malware of our IMDS system

with current widely-used anti-virus software.

The efficiency and false positives by using different

scanners have also been examined. Finally, we compare our

IMDS system with other classification based methods. All

the experiments are conducted under the environment of

Windows 2000 operating system plus Intel P4 1Ghz CPU

and 1Gb of RAM.

A. Evaluation of Different OOA Mining Algorithms

In the first set of experiments, we implement OOA

Apriori, OOA FP-Growth, and OOA Fast FP-Growth

algorithms under Microsoft Visual C++ environment. We

sample 5611 records from our signature database, which

includes 3394 records of malicious executables and 2217

records of benign executables. By using different support

and confidence thresholds, we compare the efficiency of the

three algorithms, we observe that the time complexity

increases exponentially as the minimum support threshold

decreases. However, it shows obviously that the OOA Fast

FP-Growth algorithm is much more efficient than the other

two algorithms, and it even doubles the speed of performing

OOA FP-Growth algorithm.

B. Comparisons of Different Anti-virus Scanners

In this section, we examine the abilities of detecting

polymorphic malware and unknown malware of our system

in comparison with some of the popular software tools such

as Norton AntiVirus 2006, Dr.Web, McAfee VirusScan and

Kaspersky Anti-Virus. The efficiency and the number of

false positives are also evaluated.

1) Polymorphic Virus Detection

In this experiment, we sample 3000 malicious _les and

2000 benign _les in the training data set, then we use 1500

malware and 500 benign executables as the test data set.

Several recent Win32 PE viruses are included in the test data

set for analysis such as Lovedoor, My doom, Blaster, and

Beagle. For each virus, we apply the obfuscation techniques

described in [15] to create a set of polymorphic versions.

Then we compare our system with current

most widely-used anti-virus software. The results shown

in Table 4 demonstrate that our IMDS system achieves better

accuracy than other software in polymorphic malware

detection.

2) Unknown Malware Detection

In order to examine the ability of identifying new and

previously unknown malware of our IMDS system, in the

test data set, we use 1000 malware analyzed by the experts in

KingSoft Anti-virus laboratory, while the signatures of the

malware have not been recorded into the virus signature

database. Comparing with other anti-virus software, our

IMDS system performs most accurate detection. The results

are listed in Table 5.

3) System Efficiency and False Positives

In malware detection, a false positive occurs when the

scanner marks a benign file as a malicious one by error.

False positives can be costly nuisances due to the waste of

time and resources to deal with those falsely reported files.

In this set of experiments, in order to examine the system

efficiency and the number of false positives of the IMDS

system, we sample 2000 executables in the test data set,

which contains 500 malicious executables and 1500 benign

ones. First, we compare the efficiency of our system with

different scanners including the scanner named. SAVE. [15,

20] described in related work and some widely-used anti-

virus software. The results illustrate that our IMDS system

achieves much higher efficiency than other scanners when

being executed in the same environment. The number of

false positives by using different scanners are also examined.

By scanning 1500 benign executables

whose signatures have not been recorded in the signature

database, the obtained results clearly shows that the false

positives by using our IMDS system are much fewer than

other scanners.

C. Comparisons of Different Classification Methods

In this set of experiments, we compare our system with

Naïve Bayes, Support Vector Machine (SVM) and Decision

tree methods. We randomly select 2843 executables from

our data collection, in which 1207 files are benign and 1636

executables are malicious. Then we convert the transactional

sample data in our signature database into a relational table,

in which each column corresponds to an API and each row is

an executable. This transformation makes it easy to apply

feature selection methods and other classification

approaches. First, we rank each API using Max- relevance

algorithm [11], classification. In the experiments, we use the

Naive Bayes classifier and J4.8 version of Decision Tree

implemented in WEKA [19], and also the SVM

implemented in LIBSVM package [7]. For the OOA Fast

FP-Growth mining, we select thresholds based on two

criteria: setting as close to 1 as possible; and selecting a

big without exceeding the maximum support in the data

set. Then, in the experiment, we set to 0.294 and

to 0.98. Ten-fold cross validation is used to evaluate the

accuracy of each classifier.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-547-551 ISSN: 2249-6645

 www.ijmer.com 551 | Page

VII. CONCLUSIONS
In this paper, we describe our research effort on malware

detection based on window API sequence. In summary, our

main contributions are: (1) We develop an integrated IMDS

system based on analysis of Windows API execution

sequences. The system consists of three components: PE

parser, rule generator and classifier; (2) We adapt existing

association based classification techniques our system on a

large collection of executables including 12214 benign

samples and 17366 malicious ones; (4) We provide a

comprehensive experimental study on various anti-virus

software as well as various data mining techniques for

malware detection using our data collection; (5) Our system

has been already incorporated into the scanning tool of

KingSoft's AntiVirus software.

VIII. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for

association rulemining. In Proceedings of VLDB-94,

1994.

[2] H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative

frequentpattern analysis for effective classi_cation. In

ICDE-07, 2007.

[3] M. Christodorescu and S. Jha. Static analysis of

executables to detectmalicious patterns. In Proceedings

of the 12th USENIX SecuritySymposium, 2003.

[4] M. Fan and C. Li. Mining frequent patterns in an fp-tree

withoutconditional fp-tree generation. Journal of

Computer Research andDevelopment, 40:1216.1222,

2003.

[5] J. Han and M. Kamber. Data mining: Concepts and

techniques, 2ndedition. Morgan Kaufmann, 2006.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns

without candidategeneration. In Proceedings of

SIGMOD, pages 1.12, May 2000.

[7] C. Hsu and C. Lin. A comparison of methods for

multiclass supportvector machines. IEEE Trans. Neural

Networks, 13:415.425, 2002.

[8] J. Kephart and W. Arnold. Automatic extraction of

computer virussignatures. In Proceedings of 4th Virus

Bulletin InternationalConference, pages 178.184, 1994.

[9] J. Kolter and M. Maloof. Learning to detect malicious

executables inthe wild. In Proceedings of KDD’04,

2004.

[10] B. Liu, W. Hsu, and Y. Ma. Integrating classi_cation

and associationrule mining. In Proceedings of KDD’98,

1998.

[11] H. Peng, F. Long, and C. Ding. Feature selection based

on mutualinformation: Criteria of max-dependency,

max-relevance, andmin-redundancy. IEEE Trans.

Pattern Analysis and MachineIntelligence, 27, 2005.

[12] J. Rabek, R. Khazan, S. Lewandowski, and R.

Cunningham.Detection of injected, dynamically

generated, and obfuscatedmalicious code. In

Proceedings of the 2003 ACM workshop on

Rapidmalcode, pages 76.82, 2003.

[13] M. Schultz, E. Eskin, and E. Zadok. Data mining

methods for detection of new malicious executables. In

Proceedings of IEEEInternational Conference on Data

Mining, 2001.

[14] Y. Shen, Q. Yang, and Z. Zhang. Objective-oriented

utility-basedassociation mining. In Proceedings of IEEE

InternationalConference on Data Mining, 2002.

[15] A. Sung, J. Xu, P. Chavez, and S. Mukkamala. Static

analyzer of vicious executables (save). In Proceedings

of the 20th AnnualComputer Security Applications

Conference, 2004.

[16] J. Swets and R. Pickett. Evaluation of diagnostic system:

Methodsfrom signal detection theory. Acdemic Press,

1982.

[17] P. Tan, M. Steinbach, and V. Kumar. Introduction to

data mining. Addison Wesley, 2005.

[18] J. Wang, P. Deng, Y. Fan, L. Jaw, and Y. Liu. Virus

detection using data mining techniques. In Proceedings

of IEEE InternationalConference on Data Mining, 2003.

[19] H. Witten and E. Frank. Data mining: Practical

machine learning tools with Java implementations.

Morgan Kaufmann, 2005.

[20] J. Xu, A. Sung, P. Chavez, and S. Mukkamala.

Polymorphic malicious executable sanner by api

sequence analysis. In Proceedings of the International

Conference on Hybrid Intelligent Systems, 2004.

[21] Yanfang Ye*, Dingding Wang, Dongyi Ye, "Intelligent

Malware Detection System" in proceedings of Industrial

and Government Track Short Paper, 2007.

