
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1039 | Page

Nishant Chaurasia
M.Tech Scholar in CSE

Oriental institute of science and technology

Bhopal, India

er.nishant2012@gmail.com

Prof. Sanjay Sharma
Asst. Professor in CSE Department

Oriental institute of science and technology

Bhopal, India

Abstract: The most common transport protocol is the

Transmission Control Protocol. Transmission Control

Protocol (TCP) is reliable, connection oriented transport

protocol which provides end-to-end data delivery in

networks. TCP was primarily designed for wired

networks and it shows performance degradation when

used in wireless networks. The main concern in wireless

networks with TCP is the packet loss which is mostly

considered to have occurred due to congestion. The

Transmission Control Protocol comes in many variants

like TCP, Tahoe, Reno, New Reno, Vegas, Sack and so on.

In a Mobile Ad Hoc Network or Dynamic Environment,

temporary link failures and route changes happen

frequently. With the assumption that all packet losses are

due to congestion, TCP performs poorly in such

environment. While there has been some research on

improving TCP performance over Dynamic Environment,

most of them require feedback from the network or the

lower layer. In this paper we constitute a realistic

Dynamic Environment by considering multistage error

model in the design of wireless packet losses. Mobility in

structure is also conceived to estimate the actual

performance of TCP. Moreover the behaviour of TCP

Tahoe, Reno, New Reno, Sack, Vegas, fack, lite and west-

wood in Dynamic network is simulated to perceive the

impact of wireless link on the behaviour of these TCP

variants. Finally from the result of our simulation we

conclude the best TCP variants for different

circumstances and detecting or responding to out-of-order

packet delivery events, which are the results of frequent

route changes. In our simulation study, this approach had

achieved best performance improvement, without

requiring feedback from the network.

Keywords: TCP Features, Advantages, TCP Variants, TCP

algorithms and characteristics.

I. INTRODUCTION
Transmission Control Protocol (TCP) was originally defined

in RFC 793 [1]. TCP is reliable, connection oriented transport
protocol which provides end-to-end data delivery in networks.

TCP was primarily designed for wired networks and it shows

performance degradation when used in wireless networks.

TCP is a window based reliable transport layer protocol that

achieves its reliability through sequence numbers and

acknowledgements [2]. TCP assumes that all the packet losses

are due to congestion. When a packet is lost, TCP applies

congestion avoidance mechanisms and slows its transmission

rate. However, wireless networks are known to experience

sporadic and usually temporary losses due to fading,

shadowing, hand off that cannot be considered congestion.
Packets can be lost due to hand offs as a mobile node moves

out of range of a base station and into the range of another

packet lost during such transitions also initiate TCPs

congestion avoidance. TCP is based on the principle of

“conservation of packets”, which means that in the case a

connection works at the available capacity of bandwidth, the

packet is not to be inserted into the network until the second

packet doesn’t leave the network [3]. TCP implements the

above principle by using the acknowledgements to time the

outgoing packets, because the acknowledgement means that

the specific packet has left the network.
TCP maintains the congestion window to represent the

network capacity. The transmitter can send data up to the

minimum value of congestion window and advertised

window. Congestion control is the flow control imposed by

the transmitter, while the advertised window is the flow

control imposed by the receiver. The first control is based on

the transmitter’s perception of network congestion, while the

second is related to the size of available space in the buffer at

the receiver for the given connection.

TCP operates in three phases:

1. Connection establishment
2. Data transfer

3. Connection termination

The basic implementations of TCP are based on Jacobson’s

classical slow start algorithm for congestion avoidance and

control [4- 5]. A number of solutions have been proposed to

remove the problem of congestion. This paper performs

analysis on the variants of TCP that have evolved for

performance improvement in wireless networks.

II. TCP FEATURES AND ADVANTAGES
TCP provides a connection oriented, reliable, byte stream

service. The term connection oriented means the two

applications using TCP must establish a TCP connection with

each other. It is a full duplex protocol, meaning that each TCP

connection supports a pair of byte streams, one flowing in

each direction. TCP includes a flow-control mechanism for

Study of TCP Variants Compression on Congestion Window

and Algorithms in Dynamic Environment

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1040 | Page

each of these byte streams that allow the receiver to limit how

much data the sender can transmit. TCP also implements a
congestion-control mechanism. TCP is a reliable connection

oriented end-to-end protocol which has many mechanisms to

provide reliable communication. But a small number of

packets are lost due to congestion and buffer overflow. In

such cases, TCP ensures reliability by using sequence

numbers and time-out intervals. The packet of the particular

sequence number is resent after the time-out timer runs out.

TCP runs on the concept of “Conservation of Packets” [4].

The TCP provides different facilities as discussed below in

the following list.

A. Stream Data Transfer

TCP transfers a continuous stream of bytes. TCP does this by
grouping the bytes in TCP segments, which are passed to IP

for transmission to the destination. TCP decides how to

segment the data and forwards the data at its own

convenience.

B. Reliability

TCP assigns a sequence number to each byte transmitted, and

expects a positive acknowledgment (ACK) from the receiving

TCP. If the ACK is not received within a timeout interval, the

data is retransmitted. The receiving TCP uses the sequence

numbers to rearrange the segments when they arrive out of

order, and to eliminate duplicate segments.

C. Flow Control

The receiving TCP, when sending an ACK back to the sender,

also indicates to the sender the number of bytes it can receive

beyond the last received TCP segment, without causing

overrun and overflow in its internal buffers. This is sent in the

ACK in the form of the highest sequence number it can

receive without problems.

D. Multiplexing

To allow for many processes within a single host to use TCP

communication facilities simultaneously, the TCP provides a

set of addresses or ports within each host. Concatenated with

the network and host addresses from the internet
communication layer this forms a socket. A pair of sockets

uniquely identifies each connection.

E. Logical Connection

The reliability and flow control mechanisms described above

require that TCP initializes and maintains certain status

information for each data stream. The combination of this

status, including sockets, sequence numbers and window

sizes, is called a logical connection. Each connection is

uniquely identified by the pair of sockets used by the sending

and receiving processes.

F. Full Duplex
TCP provides for concurrent data streams in both

directions.

III. TCP VARIENTS AND COMPARISION

A. TCP

TCP provides important features of flow control, reliability,

congestion control and connection management. Originally,

TCP designed for wired networks but it also performs well in

wireless networks. In order to improve its performance TCP

cuts down the size of its congestion window resulted in

further performance degradation. This is a more serious

problem in busty and highly mobile networks which have

rapid topological changes (Henna, 2009)[9]. TCP provides

division for sequenced data stream into packets, confirms the
packets delivery with the possibility of losing the IP layer

loses, retransmit, reorders, or packets duplication and

monitoring the network band capacity to avoiding

congestions. TCP protocol can provide over two end points

connection, flow rate controlling with bidirectional link and

data reliability.

B. TCP Tahoe

TCP Tahoe is the congestion control mechanism suggested by

Van Jacobson. The actual TCP data transmission is clocked

by the acknowledgements received. But at the start of the

transmission, there would not be any acknowledgement. To

overcome this, the Tahoe suggests a mechanism called “slow
start”. According to this mechanism, the congestion window

size is taken as 1 at the beginning of start or a restart of data

transmission. After sufficient acknowledgements are received,

the congestion window size is additionally increased. After

congestion is achieved, the window size is multiplicatively

decreased. This is called Additive Increase Multiplicative

Decrease [5]. Whenever a packet is lost, the “go back n”

method is used, and the entire pipe is emptied. This results in

a high bandwidth delay.

C. TCP Reno

TCP Reno has all the advantages of Tahoe like the slow start
mechanism and the time-out intervals. Also, it has some

intelligent mechanisms to detect the packet losses previously.

After each packet loss, the entire pipe is not emptied. It uses a

Fast Retransmit mechanism in which when 3 duplicate

acknowledgements are received, it is understood that there is

packet loss. Hence even before the actual packet loss is

detected, the packet is retransmitted. It has the disadvantage

of reducing the window size more than required and hence

cannot afford Fast Recovery [6]. If window size is reduced

very much, then the normal course grained timeout.

D. TCP New Reno

The TCP New Reno [7] is more advanced than TCP Reno. It
is able to detect multiple packet losses. It also enters the fast

recovery mechanism like Reno, but it does not end up

reducing the congestion window size. It waits till the

acknowledgements of all the congested packets are received.

The actual disadvantage of the New Reno is that it takes a

whole Round Trip Time to detect a single packet loss.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1041 | Page

E. TCP Vegas

The TCP Vegas [8] is a modified version of Reno. It works on
the proactive measures to control congestion rather than

reactive measures. It uses an algorithm to check for timeouts.

It also overcomes the problem of requiring enough duplicate

acknowledgements to detect a packet loss. It also uses a

slightly modified slow start mechanism. It has the mechanism

to detect congestion even before packet losses occur, but it

also retains the other mechanisms of Reno and Tahoe.

Overall, the Vegas has a new retransmission mechanism, a

modified slow start algorithm and congestion avoidance

scheme.

F. TCP Sack:

TCP with selective acknowledgment (Sack) permits the
receiver of data to openly acknowledge the data in out of

order which arrived to data sender. If Sack is used, the TCP

sender does not resend the data Sacked through the period of

loss recovery. Many of research proved that Sack technique

enhance TCP throughput if multiple packet loss happen

during same window (Ekiz, et al., 2011). Sack algorithm is a

mutual between selective duplication resending strategy, has

been suggested to overcoming the limits and with

accumulative acknowledgment structure for TCP (Kettimuthu

and All cock, 2004). TCP with Sack is behaving more easily

to understand than other two algorithms, Tahoe and Reno.
TC Sack needs that packets not acknowledging

accumulatively but must acknowledging in selective manner

because of that every ACK includes a block that defines each

segment if acknowledged. So, TCP sender has an image of the

acknowledged segments and the segments that outstanding.

Every time TCP sender go in fast recovery phase, it sets a

mutable pipe that is determine the amount of data is still

outstanding in the path of the network and fix the congestion

window to half of the recent value. Whenever it accepts an

acknowledgment it decreases the pipeline by one and for each

it resends a segment it increases it by one. When the pipeline

is going to less than congestion window size, it detects the
segments which are still not received and resend them. If no

segments in outstanding situation, then it will send new

packets, therefore more than single segment losses can be able

to send within single RTT. The major problematic with

implementation of TCP Sack is that presently selective

acknowledgement does not deliver via the receiver and to

implementing TCP Sack it not very easy process, but it

precise and complicated task.

G. TCP Fack

TCP with forward acknowledgement (Fack) is a different

algorithm which works on upper options of TCP Sack. TCP
Fack is use info providing via Sack to adding extra accurate

control to the data injection in to the pipe of network within

during recovery process. The basic concept of Fack

mechanism is by considering the greatest sequence number of

forward selective acknowledgement as a mark that completely

previous segments which unselectively acknowledged were

lost. This monitoring permits to improve the recovery process

of packets losses meaningfully. Fack algorithm is taking a

more violent methodology and considering unacknowledged

holes among lost packets and Sack blocks. This methodology
frequently outcomes improved TCP performance than the

traditional approach, it is excessively violent if packets have

been rearranged in the pipeline, due to these holes between

blocks of Sack does not designate packets loss in this state

(Sarolahti and Kuznetsov, 2002). The congestion window of

TCP Fack is illustrated in figure 6, where a different behavior

of the adjusting the window size. Fack presents a good

technique to halving the size of window if the congestion

occurred. If cwnd is instantly halved, TCP sender breaks

transferring for a while and then restarts if the sufficient

amount of data leaving the network. If the congestion

happens, the window size must be halved depending on the
multiplicative reduction of the exact cwnd. The sender

recognizes the congestion state after it happened at least

single RTT and if through that RTT in slow start phase, then

the recent value of cwnd will duplicated than previous value if

when congestion happened. So, in this state, the congestion

window is firstly halved to determine the accurate cwnd

which must be further reduced. However, TCP Fack offers

congestion avoidance and fast retransmit mechanisms, but it

aspects a lot of circumstances in recovery processes and also

is not easy to implement Fack over applications (Tayade,

2011).

H. TCP Lite

TCP Lite is a service that provides a transport method that

interrupts TCP in order to reduce the overhead involved in

session management in which no data is transmitted or

received. TCP Lite reduces or eliminates pure TCP protocol

data units used in the set up and ACK while maintaining

order, integrity, reliability and security of traditional TCP.

TCP lite uses big window and protection against wrapped

sequence number. Lite performs over TCP same as Reno. But

when window increases it have some problems to

Maintain them.

I. TCP West-wood
The TCP Westwood (TCPW) is a sender-side-only

modification to TCP New Reno that is intended to better

handle large bandwidth-delay product paths, with potential

packet loss due to transmission or other errors, and with

dynamic load.TCP Westwood protocol relies on a simple

modification of the TCP source protocol behaviour for a faster

recovery. This is performed by setting both a slow start

threshold and a congestion window values that result from the

effective connection while congestion is experienced. Hence,

TCPW attempts to make a more “informed” decision, in

contrast with TCP Reno, which automatically halves the
congestion window after three duplicate ACKs. Like TCP

Reno, TCPW cannot distinguish between buffer overflow

losses and random losses. However, in presence of random

losses, TCP Reno overreacts and reduces the window by half.

TCP West Wood cannot distinguish between buffer overflow

and random losses. It does not provide fast recovery

mechanism for data packet or ACK.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1042 | Page

IV. VARIENTS SIMULATIONS
The plots of the congestion window for all TCP variants are

following. The values of cwnd are taken from a simulation

runtime of 200 seconds with the presence of packet error rate

of 10-3. However for better understanding of the behaviour of

congestion window of each TCP variants, the value of the

congestion window is traced for an interval of every second.

Fig 3(a): Congestion window dynamics of TCP Tahoe

Fig 3(b): Congestion window dynamics of TCP Reno

Fig 3(c): Congestion window dynamics of TCP New Reno

Fig 3(d): Congestion window dynamics of TCP Sack

Fig 3(e): Congestion window dynamics of TCP Vegas

Fig 3(f): Congestion window dynamics of TCP fack

Fig 3(g): Congestion window dynamics of TCP lite

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1043 | Page

Fig 3(h): Congestion window dynamics of TCP west-wood

V. TCP ALGORITHMS AND CHARACTERSTICS

A. Slow Start

It operates by observing that the rate at which new packets

should be injected into the network is the rate at which the

acknowledgments are returned by the other end. Slow start

adds another window to the sender's TCP: the congestion

window, called "cwnd". When a new connection is established

with a host on another network, the congestion window is

initialized to one segment (i.e., the segment size announced by

the other end, or the default, typically 536 or 512). Each time

an ACK is received, the congestion window is increased by

one segment. The sender can transmit up to the minimum of
the congestion window and the advertised window. The

congestion window is flow control imposed by the sender,

while the advertised window is flow control imposed by the

receiver. The former is based on the sender's assessment of

perceived network congestion; the latter is related to the

amount of available buffer space at the receiver for this

connection. The sender starts by transmitting one segment and

waiting for its ACK. When that ACK is received, the

congestion window is incremented from one to two, and two

segments can be sent. When each of those two segments is

acknowledged, the congestion window is increased to four.

This provides an exponential growth, although it is not exactly
exponential because the receiver may delay its ACKs,

typically sending one ACK for every two segments that it

receives. At some point the capacity of the internet can be

reached, and an intermediate router will start discarding

packets. This tells the sender that its congestion window has

gotten too large. Early implementations performed slow start

only if the other end was on a different network. Current

implementations always perform slow start.

B. Congestion Avoidance (Additional Increase)

If the receiver window is large enough, the slow start

mechanism described in the previous routers in between the
hosts will start discarding packets. As mentioned earlier TCP

interprets packet loss as a sign of congestion, and when this

happens TCP invokes the Congestion Avoidance mechanism

[10]. Even though slow start and congestion avoidance is two

different mechanisms they are more easily described together.

In the joint description below a new TCP variable is

introduced. This variable, ssthresh, is the slow start threshold
which TCP uses to determine if slow start or congestion

avoidance is to be conducted.

1. When establishing a new connection cwnd is initialized

to 0 < cwnd <= min (4*MSS, Max (2*MSS, 4380bytes))

2. The sender side TCP sends a maximum of in (cwnd,

rwnd) bytes

3. When congestion occurs Ssthresh <-min (min (cwnd,

rwnd) / 2, 2* MSS). If congestion was due to a timeout slow

start is conducted.

4. When new data is acknowledged by the other end cwnd

is increased. The way in which TCP increases the cwnd

depends On if we are doing slow start (cwnd<ssthresh) or
congestion avoidance The increase of cwnd in slow start was

described in the previous Section, and if we are doing

congestion avoidance then cwnd <- cwnd + (1/cwnd).

C. Fast Retransmit

TCP may generate an immediate acknowledgment (a

duplicate ACK) when an out- of-order segment is received.

This duplicate ACK should not be delayed. The purpose of this

duplicate ACK is to let the other end know that a segment was

received out of order, and to tell it what sequence number is

expected. Since TCP does not know whether a duplicate ACK

is caused by a lost segment or just a reordering of segments, it
waits for a small number of duplicate ACKs to be received. It

is assumed that if there is just a reordering of the segments,

there will be only one or two duplicate ACKs before the

reordered segment is processed, which will then generate a

new ACK. If three or more duplicate ACKs are received in a

row, it is a strong indication that a segment has been lost. TCP

then performs a retransmission of what appears to be the

missing segment, without waiting for a retransmission timer to

expire.

D. Fast Recovery

After fast retransmit sends what appears to be the missing

segment, congestion avoidance, but not slow start is
performed. This is the fast recovery algorithm. It is an

improvement that allows high throughput under moderate

congestion, especially for large windows. The reason for not

performing slow start in this case is that the receipt of the

duplicate ACKs tells TCP more than just a packet has been

lost. Since the receiver can only generate the duplicate ACK

when another segment is received, that segment has left the

network and is in the receiver's buffer. That is, there is still

data flowing between the two ends, and TCP does not want to

reduce the flow abruptly by going into slow start. The fast

retransmit and fast recovery algorithms are usually
implemented together as follows.

1. When the third duplicate ACK in a row is received, set

ssthresh to one-half the current congestion window, cwnd, but

no less than two segments. Retransmit the missing segment.

Set cwnd to ssthresh plus 3 times the segment size. This

inflates the congestion window by the number of segments that

have left the network and which the other end has cached.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1044 | Page

2. Each time another duplicate ACK arrives, increment

cwnd by the segment size. This inflates the congestion window
for the additional segment that has left the network. Transmit a

packet, if allowed by the new value of cwnd.

3. When the next ACK arrives that acknowledges new

data, set cwnd to ssthresh (the value set in step.

This ACK should be the acknowledgment of the

retransmission from step 1, one round-trip time after the

retransmission. Additionally, this ACK should acknowledge

all the intermediate segments sent between the lost packet and

the receipt of the first duplicate ACK. This step is congestion

avoidance, since TCP is down to one-half the rate it was at

when the packet was lost.

E. Selective Acknowledgment
Multiple packet losses from a window of data can have a

catastrophic effect on TCP throughput. Multiple dropped

segments generally cause TCP to lose its ACK-based clock;

reducing overall throughput. The Selective Acknowledgment

(SACK) [11] is a strategy which corrects this behaviour in the

face of multiple dropped segments. With selective

acknowledgments, the data receiver can inform the sender

about all segments that have arrived successfully, so the sender

need retransmit only the segments that have actually been lost.

It allows the receiver to acknowledge discontinuous blocks of

packets that were received correctly, in addition to the
sequence number of the last contiguous byte received

successively. The acknowledgement can specify a number of

SACK blocks, where each SACK block is conveyed by the

starting and ending sequence numbers of a contiguous range

that the receiver correctly received.

F. Flow Control

In computer networking, flow control is the process of

managing the data rate between two nodes to prevent a fast

sender from outrunning a slow receiver. It provides

mechanism for the receiver to control the transmission speed,

so that it is not overwhelmed. Flow Control should be

distinguished from congestion control, which is used for
controlling the flow of data when congestion has occurred

actually. In a connection between a client and a server, the

client tells the server the number of bytes it is willing to

receive at one time from the server; this is the client's receive

window, which becomes the server's send window. Likewise,

the server tells the client how many bytes of data it is willing

to take from the client at one time; this is the server's receive

window and the client's send window. Since the window size

can be used in this manner to manage the rate at which data

flows between the devices at the ends of the connection, it is

the method by which TCP implements flow control, one of the
“classical” jobs of the transport layer. Flow control is vitally

important to TCP, as it is the method by which devices

communicate their status to each other. By reducing or

increasing window size, the server and client each ensure that

the other device sends data just as fast as the recipient can deal

with it. Flow control is a technique whose primary purpose is

to properly match the transmission rate of sender to that of the

receiver and the network. It is important for the transmission to

be at a high enough rates to ensure good performance, but also

to protect against overwhelming the network or receiving host.
Congestion control is primarily concerned with a sustained

overload of network intermediate devices such as IP routers.

TCP uses the window field, briefly described previously, as

the primary means for flow control. During the data transfer

phase, the window field is used to adjust the rate of flow of the

byte stream between communicating TCPs.

G. Retransmission Mechanism

Retransmission Mechanism [12] keeps track of when each

segment was sent and it also calculates an estimate of the RTT

by keeping track of how long it takes for the acknowledgment

to get back. Whenever a duplicate acknowledgement is

received it checks to see if the (current time segment
transmission time)> RTT estimate; if it is then it immediately

retransmits the segment without waiting for 3 duplicate

acknowledgements or a coarse timeout [12]. Thus it gets

around the problem faced by Reno of not being able to detect

lost packets when it had a small window and it didn’t receive

enough duplicate ACK’s. To catch any other segments that

may have been lost prior to the retransmission, when a non

duplicate acknowledgment is received, if it is the first or

second one after a fresh acknowledgement then it again checks

the timeout values and if the segment time since it was sent

exceeds the timeout value then it re-transmits the segment
without waiting for a duplicate acknowledgment [12]. Thus in

this way Vegas can detect multiple packet losses.

H. Congestion Avoidance:

Congestion avoidance is the algorithm used by TCP to

avoid losing packets, if packets are lost. TCP performs

congestion avoidance [4,8,12] when cwnd is greater than

ssthresh. In the congestion avoidance phase, the cwnd is

increased by 1 full-sized segment every round-trip time (RTT).

Congestion avoidance continues until congestion is detected.

Congestion can be detected in two ways:

1) Receipt of duplicate acknowledgment

2) Due to time timeout

VI. CONCLUSION
Transmission Control Protocol was designed initially for

wired networks it results in performance degradation when

used in wireless networks. Transmission Control Protocol is

responsible for reliable transport and regulation of data flow

from source to destination. The primary reasons for

performance degradation are packet losses, link failures, hand

offs and long round trip time.

In this research, the performance of five different clones of

TCP (Tahoe, Reno, NewReno, Sack, Vegas, Fack, Lite, West-

wood) have been analyzed in the presence of high bit error.

We can say that as the distance between the source and
destination increases the delay time also increases and hence

the total throughput starts reducing so to improve the

throughput we increase the window size. Therefore on the

WAN when the distance increases between the source and

destination the throughput starts to reduce and hence to

increase and support the large number of users we increase the

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1039-1045 ISSN: 2249-6645

 www.ijmer.com 1045 | Page

window size. The effect of mobility (with incorporated

Handoff) on the performance of TCP has been simulated.
From the analysis, it is seen that the throughput of TCP

degrades with increasing the speed of the mobile station. We

have also analyzed the behaviour of these five TCP clones in

the presence of both high bit error and handoff. From the

analysis, it is observed that the throughput of these five TCP

clones seriously degrades because of heavy packet losses due

to both handoffs and high bit error.

VII. FUTURE WORK
In future, the efficiency of the TCP agents can be studied

after introducing some amount of mobility to the nodes and the

second is to analyze behaviour of TCP in cellular mobile

environment considering coverage, battery power, and other

impacts that are found in cellular mobile environment.

ACKNOWLEDGMENT
I am deeply thankful to my Guide Prof. Sanjay Sharma of

Computer Science and my all friends whose help, stimulating

suggestions and encouragement helped me in all the time for

my review.

REFERENCES
[1] Postel J.,“Transmission Control Protocol”, RFC793,

Internet Request for Comments 793, Sept. 1981.

[2] Stevens, Richard W.,“TCP/IP Illustrated”, 2001.

[3] Barakat C., Altman E., Dabbous W.,“On TCP

performance in a heterogeneous network: a survey”,

1999.

[4] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The

Protocols, Addison-Wesley, 1994
[5] K. Fall and S. Floyd, "Simulation-based comparison of

Tahoe, Reno, and SACK TCP," Computer

Communication Review, vol. 26, pp. 5--21, July 1996.

[6] Jitendra Padhye , Victor Firoiu , Donald F. Towsley ,

James F. Kurose, “Modeling TCP Reno performance: a

simple model and its empirical validation,” IEEE/ACM

Transactions on Networking (TON), v.8 n.2, p.133-145,

April 2000

[7] S.Floyd, T.Henderson “The New-Reno Modification to

TCP‟s Fast Recovery Algorithm” RFC 2582, Apr 1999.

[8] Lawrence S. Brakmo and Larry L. Peterson, "TCP Vegas:

End to end congestion avoidance on a global
Internet,"Ekiz, N., A.H. Rahman and P.D. Amer, 2011.

Misbehaviors in TCP SACK generation. ACM

SIGCOMM Computer Communication Review, 41(2):

16-23.

[9] Henna, S., 2009. A Throughput Analysis of TCP Variants

in Mobile Wireless Networks, pp: 279-284.IEEE.

[10] W. Stevens, “TCP Slow Start, Congestion Avoidance

Fast Retransmit Algorithm”, IETF RFC 2001, January

1997.

[11] Lawrence, S. Brakmo, Student Member IEEE and Larry

L. Peterson“TCP Vegas end congestion avoidance on a

Global Internet, October 1995.
[12] S.Floyd, T.Henderson “The New- Reno Modification to

TCP’s fast Recovery Algorithm”RFC 2582, Apr 1999.

AUTHORS PROFILE

Nishant Chaurasia born in 1987 in Gwalior,

India. He awarded B.E in Computer Science and
Engineering from the Rajiv Gandhi Technical

University,Bhopal, India in 2009. From 2009-
present, He has been M.Tech student in Computer

Science and Engineering, at the Rajiv Gandhi
Technical University,Bhopal, India.

Prof. Sanjay Sharma is an Assistant Professor

of Computer Science Department in Oriental

Institute of Science and Technology, Bhopal,

Madhya Pradesh, India. He obtained his

M.Tech degree from RGPV University. His

research interest is in the field of MANETs.

